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Abstract
Aberrant microbiota composition and function have been linked to several pathologies, including type 2 diabetes. In animal models, prebiotics
induce favourable changes in the intestinal microbiota, intestinal permeability (IP) and endotoxaemia, which are linked to concurrent
improvement in glucose tolerance. This is the first study to investigate the link between IP, glucose tolerance and intestinal bacteria in human
type 2 diabetes. In all, twenty-nine men with well-controlled type 2 diabetes were randomised to a prebiotic (galacto-oligosaccharide mixture)
or placebo (maltodextrin) supplement (5·5 g/d for 12 weeks). Intestinal microbial community structure, IP, endotoxaemia, inflammatory
markers and glucose tolerance were assessed at baseline and post intervention. IP was estimated by the urinary recovery of oral 51Cr-EDTA
and glucose tolerance by insulin-modified intravenous glucose tolerance test. Intestinal microbial community analysis was performed by high-
throughput next-generation sequencing of 16S rRNA amplicons and quantitative PCR. Prebiotic fibre supplementation had no significant
effects on clinical outcomes or bacterial abundances compared with placebo; however, changes in the bacterial family Veillonellaceae
correlated inversely with changes in glucose response and IL-6 levels (r −0·90, P= 0·042 for both) following prebiotic intake. The absence of
significant changes to the microbial community structure at a prebiotic dosage/length of supplementation shown to be effective in healthy
individuals is an important finding. We propose that concurrent metformin treatment and the high heterogeneity of human type 2 diabetes
may have played a significant role. The current study does not provide evidence for the role of prebiotics in the treatment of type 2 diabetes.
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Evidence from animal studies supports a causal link between
low-grade inflammation, insulin resistance and impaired
intestinal barrier function(1,2); however, we recently demon-
strated for the first time that intestinal permeability (IP) is
compromised in type 2 diabetes (T2D) patients compared
with healthy age- and BMI-matched volunteers(3). Increased
small IP as measured by urinary excretion of orally adminis-
tered 51Cr-EDTA was significantly and positively correlated
with the inflammatory marker TNF-α. This may indicate that
the chronic systemic low-grade inflammation characterising
metabolic diseases such as T2D is associated with a leaky gut
in humans.

It is hypothesised that the impaired intestinal barrier leads to
an increased translocation of the gram-negative bacteria cell
membrane component lipopolysaccharide (LPS) (as well as
whole bacteria and other luminal antigens) into the circulation,
which results in metabolic endotoxaemia. LPS is a ligand of the
toll-like receptor 4 (TLR-4). Activation of TLR-4 signalling by LPS
results in a low-grade inflammation, which affects insulin
signalling and thus induces insulin resistance(1). Interestingly
circulating LPS is indeed elevated in T2D compared with
healthy controls(4,5). However, whether this is due to increased
paracellular movement or due to fat-induced LPS absorption
through increased chylomicron formation is unclear(6).

Abbreviations: GOS, galacto-oligosaccharide; IP, intestinal permeability; LPS, lipopolysaccharide; qPCR, quantitative real-time PCR; T2D, type 2 diabetes.
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Intestinal dysbiosis in T2D has been observed in a number of
cross-sectional studies(7–12). Larsen et al.(7) found that Betapro-
teobacteria and the Bacteroidetes:Firmicutes ratio correlated
positively with plasma glucose concentrations. Thus, as a
potential therapeutic target, altering intestinal bacterial commu-
nity structure and thereby reducing LPS load and uptake, may
be beneficial in T2D. An approach to changing the intestinal
bacterial composition by diet is with the use of prebiotics and
probiotics. Studies in rodents suggest that prebiotics, probiotics
and synbiotics may improve intestinal barrier function and
glucose control(2,13–15). However, few studies have investigated
the use of prebiotic supplementation in human T2D(16–22) and
none in terms of the potential mechanistic effects on the
intestinal barrier. This is the first study to investigate the effects of
prebiotic supplementation on intestinal bacteria, IP, endotox-
aemia and glucose tolerance concurrently in T2D patients.

Methods

This was a randomised, double-blind, placebo-controlled par-
allel study comparing the effects of prebiotic supplementation
with placebo treatment for 12 weeks on glucose control, IP,
intestinal bacterial composition, endotoxaemia and inflamma-
tory markers in patients with T2D. The protocol was approved
by the Central London NRES Committee (REC reference
no. 11/LO/1141) and the University of Surrey Ethics Committee
and was conducted according to the declaration of Helsinki.
The trial was registered at the UK Clinical Research Network
portfolio database under trial identifier ISRCTN07813749.

Subjects

Men with well-controlled T2D aged 42–65 years were recruited
through local general practices and advertisement in a local
newspaper. Because of the repeated administration of the
radioactive compound 51Cr-EDTA and the potential influence of
the menstrual cycle on outcomes, women were excluded from
the study. All patients provided written informed consent.
Exclusion criteria included the use of antibiotics in the past
3 months, use of anti-inflammatory medications (except a low-
dose (75mg/d) aspirin), diuretics, proton-pump inhibitors,
inflammatory bowel disease, Crohn’s disease, coeliac disease and
irritable bowel syndrome. Patients were asked to exclude pro-
biotic products and prebiotic supplements (other than the study
supplement) from their diet for 2 weeks before the first study visit
and throughout the study. Furthermore, they were asked not to
change their lifestyle during the study. The sample size for this
study was based on the primary outcome measure of changes to
IP and based on our own published pilot data using this method
in patients with well-controlled T2D(3). In this parallel-design
study, thirty patients provided 80% power to detect a treatment
difference between groups of 1·6% in total permeability, using
the calculated SD in this cohort of 1·57 (α 0·05).

Study protocol

After the screening procedure, patients were randomised to
either prebiotic fibre (galacto-oligosaccharide mixture (GOS

mixture); Bi2muno) or placebo (maltodextrin) supplementation
for 12 weeks according to a randomisation scheme generated at
randomization.com. Both supplements were supplied by
Clasado Ltd as dry white powders in sachets each containing
5·5 g and were readily mixed into beverages or food. The GOS
mixture has been used in previous trials and is described by
Vulevic et al.(23). A dose of 5·5 g of GOS mixture has previously
been demonstrated to have a bifidogenic effect in healthy
individuals of this age and BMI, and be well tolerated in terms
of gastrointestinal effects(23,24). Patients were contacted twice
during the 12-week supplementation to monitor side effects and
compliance. Patients returned unused sachets following the
supplementation to verify compliance. Dietary intake data (7-d
diet diary), clinical data and faecal samples were collected at
baseline and at the end of the intervention. The diet diaries
were analysed in DietPlan6 (Forestfield Software Ltd). Faecal
samples were collected in sterile universal polystyrene con-
tainers and were kept refrigerated. Faecal samples were stored
at −20°C initially and in a −80°C freezer for long-term storage.

The co-primary outcomes of the study were changes in IP,
endotoxaemia and glucose tolerance. Secondary outcomes
were changes in intestinal bacterial composition, inflammatory
markers, lipids, blood pressure and anthropometric measure-
ments. Use of metformin was considered a confounding factor.
However, as thirteen out of fourteen patients in the prebiotic
group were metformin treated, it was not possible to perform a
subgroup analysis to explore a potential interaction between
metformin and prebiotic treatment.

Intestinal permeability

IP was measured by 24-h urinary excretion of orally adminis-
tered 51Cr-EDTA, as previously described(3). We utilised
51Cr-EDTA as a probe, as it is stable in the colonic luminal
environment allowing assessment of colonic permeability and it
is easily detected in the urine(25).

Anthropometric and blood pressure measurements

Having fasted overnight, patients attended the CEDAR Centre of
the Royal Surrey County Hospital. Body weight and body
composition were measured by bioimpedance (Tanita). Waist
circumference was measured at the level of the navel with a
tape measure. Blood pressure was measured on the non-
dominant arm after 5min of rest in a semi-upright position, and
the mean of three readings was calculated (Omron MX3 Plus;
Omron Healthcare Europe).

Glucose tolerance, inflammatory markers and lipids

Glucose tolerance was assessed using a frequently sampled
insulin-modified intravenous glucose tolerance test (IVGTT), as
previously described(26). Blood was collected in EDTA tubes for
glucose, insulin and C-peptide and HbA1c measurements and
into serum tubes containing clotting activator or pyrogen-free
tubes for measurements of inflammatory markers, lipids and
LPS in serum. Aprotinin was added to blood samples (200
kallikrein inhibiting units/ml blood) collected for C-peptide
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measurement. Blood samples were centrifuged at 3000g at 4°C
for 10min, and serum and plasma were stored at −20 or −80°C.

Biochemical analyses

Whole-blood glucose concentrations were measured on an YSI
2300 STAT Plus™ (YSI Life Sciences) with an average intra-assay
CV of 4·8% and inter-assay CV of 5·8%. Plasma insulin and
C-peptide were analysed in duplicate using RIA (Millipore) with
average intra-assay CV of 7·7 and 4·2% and inter-assay CV of
12·6 and 6·4%, respectively. HbA1c and serum high-sensitivity
C-reactive protein were measured by the Surrey Pathology
Partnership, an accredited laboratory, and serum IL-6 and TNF-α
were measured using a Luminex platform and Biorad bio-plex
kits and software (Bio-Rad). Serum TAG, total cholesterol, HDL-
cholesterol and NEFA were measured on an ILab650 using
commercially available kits (Randox Laboratories and Instru-
mentation Laboratory). All intra-assay CV were <2% and
inter-assay CV≤ 3% for lipid measurements. LDL-cholesterol
concentration was calculated using the Friedewald formula(27).
LPS was measured in duplicate using Endosafe-MCS (Charles
River Laboratories), as previously described(15). Serum LPS-
binding protein (LBP) and sCD14 concentrations were measured
using commercially available kits according to the manu-
facturer’s instructions (Hycult Biotechnology). The average intra-
assay CV were 3·9 and 8·5% for LBP and sCD14, respectively.

Amplification and high-throughput sequencing

Amplification and sequencing were performed as previously
described by Ellis et al.(28). Further details are provided in the
online Supplementary material.

Bioinformatics

The sequences were processed in Qiime(29) using the Ampli-
conNoise(30) pipeline that utilises flowgram information of the
sequences to correct for errors. The samples were demulti-
plexed by exact matching of both barcode and primer, and the
sequences were filtered and trimmed on the basis of identifi-
cation of low-quality signals(31). The filtered flowgrams were
clustered to remove platform-specific errors and converted into
sequences using the PyroNoise algorithm. The sequences had
barcodes and degenerate primers removed before trimming at
400 bp. They were then further clustered by SeqNoise to
remove PCR single-base errors. In the final step, the Perseus
algorithm was used to identify chimeras.
The denoised sequences were classified using the standalone

Ribosomal Database Project (RDP) classifier(32). From this, taxa
frequencies at five different levels – phylum, class, order, family
and genus – were calculated. In addition, a non-supervised
approach was used; operational taxonomic units (OTU) were
generated at 3% divergence following pair-wise global
sequence alignment and hierarchical clustering with an average
linkage algorithm. After generating the abundance tables, mul-
tivariate statistical analyses in the context of metadata were
done in R using Vegan package (http://cran.r-project.org/web/
packages/vegan/) for obtaining α- and β-diversity estimates, as

well as permutation ANOVA using distance measures (adonis
function). For calculating α-diversity measures, the samples
were rarefied to the minimum sample size, whereas for other
statistics we log-normalised the abundance tables. Where
appropriate, P-values were adjusted using the Benjamini–
Hochberg method to control the false discovery rate.

Quantification of bacterial groups by quantitative PCR

Total bacteria, Bifidobacterium, Roseburia, Lactobacillus,
Enterobacteriaceae, Clostridium leptum and Clostridium
coccoides groups were quantified using quantitative real-time
PCR (qPCR). The qPCR methods are described in the online
Supplementary material.

Statistical analysis

Clinical outcomes and diet data are presented as mean values
with their standard errors or medians and interquartile ranges as
appropriate. Baseline values between groups were compared
using an unpaired t test or Mann–Whitney test and within-group
changes with a paired t test or Wilcoxon’s matched pairs signed-
rank test as appropriate. Treatment effects were assessed by
comparing differences in changes from baseline between
groups using ANCOVA with baseline values as covariates or the
Mann–Whitney test if log transformation did not normalise data
distribution. AUC for glucose, insulin and C-peptide was cal-
culated using the trapezoid rule. Glucose and insulin data were
modelled using Bergman’s minimal model (MINMOD Millen-
nium version), as previously described(26). Homoeostasis model
assessment (HOMA) for insulin sensitivity (%S), β-cell function
(%B) and insulin resistance (IR) were calculated using the
HOMA2 Calculator (http://www.dtu.ox.ac.uk/). Associations
between changes in gut bacteria abundance, diet and clinical
outcomes were assessed by Kendall’s rank correlations. Ana-
lysis of qPCR data were performed on log10 transformed values.
The level of significance was set at P< 0·05. Data were analysed
using GraphPad Prism 6, SPSS versions 21 and 22 and R.

Results

Fig. 1 shows the flow chart for the study. Of the thirty-two
patients recruited, two patients withdrew from the study
because of gastrointestinal upset (n 1) and antibiotic treatment
(n 1). Another participant in the prebiotic group was excluded
from the data analysis because of antibiotic treatment. Char-
acteristics of the twenty-nine patients who were included in the
final data analyses are shown in Table 1. All patients had been
on a stable treatment for at least 3 months before taking part in
the study and had no changes to their medications during the
study. Two patients in the placebo group did not undergo a full
post-supplementation IVGTT because of venous access pro-
blems; however, a fasting blood sample was obtained from one
of the patients and data from the initial 20min of the IVGTT for
the second patient were included in the data analysis.

Compliance, assessed by the number of unused sachets of
supplement, was 96% (range: 84–100%) for both treatments.
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No adverse side effects were reported by the participants. There
were no significant differences between groups in clinical
outcomes at baseline; however, Enterobacteriaceae were higher
(P= 0·0379) (online Supplementary Fig. S2(e)) and Pepto-
streptococcaceae levels lower (P= 0·0019) in the prebiotic
group at baseline.

Anthropometrics and blood pressure

Supplementation with the prebiotic fibre had no significant
effects on body weight, BMI, body fat percentage, waist
circumference or blood pressure when compared with placebo
(Table 1).

Intestinal permeability

Prebiotic supplementation had no significant effect on IP, as
measured by urinary recovery of 51Cr-EDTA when compared
with placebo (Fig. 2).

Glucose tolerance

Prebiotic treatment had no significant effect on glucose, insulin
and C-peptide fasting concentrations or responses during

IVGTT compared with placebo (Table 2). The change in
glucose effectiveness at zero insulin in the placebo group was
significantly different from the prebiotic group.

Inflammatory markers and lipids

There were no significant effects of prebiotic treatment on
inflammatory markers, LPS or lipids, although the prebiotic
tended to reduce total cholesterol and LDL-cholesterol (online
Supplementary Table S1).

Dietary assessment

At baseline, the energy intake in the prebiotic group was 8929
(SEM 538) kJ/d with percentage of energy obtained from carbo-
hydrate, sugar, fat, SFA and protein of 42·1 (SEM 2·5), 14·5
(SEM 1·7), 36·6 (SEM 1·5), 12·5 (SEM 0·8) and 15·7 (SEM 0·9)%,
respectively. In the placebo group, the mean daily energy
intake was 8683 (SEM 581) kJ and carbohydrate, sugar, fat, SFA
and protein provided 40·0 (SEM 1·5)%, 14·3 (SEM 1·0)%, 37·7 (SEM
1·5)%, 12·1 (SEM 0·4)% and 16·8 (SEM 0·8)% of total energy,
respectively. The percentage dietary energy from protein
increased by 1·1% in the placebo group, and this was
significantly different from that observed in the prebiotic group

Assessed for eligibility (n 39)

Excluded (n 7) 
♦ Not meeting inclusion criteria (n 1) 
♦ Declined to participate (n 4) 
♦ Other reasons (n 2) 

Analysed (n 15) 

♦ Excluded from analysis (n 0)

Lost to follow-up (n 0) 

Discontinued intervention (gastrointestinal
upset) (n 1) 

Placebo 
Allocated to intervention (n 16) 

♦ Received allocated intervention (n 16)

♦ Did not receive allocated intervention (n 0)

Lost to follow-up (n 0)

Discontinued intervention (antibiotic treatment)
(n 1) 

GOS 
Allocated to intervention (n 16) 

♦ Received allocated intervention (n 16)

♦ Did not receive allocated intervention (n 0)

Analysed (n 14)

♦ Excluded from analysis (antibiotic treatment)
   (n 2)

Allocation

Analysis

Follow-up

Randomised (n 32)

Enrollment

CONSORT 2010 Flow diagram

Fig. 1. Flow chart showing the recruitment and retention of patients in the study. GOS, galacto-oligosaccharide.
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(online Supplementary Table S2). No other significant differ-
ences in dietary intakes were observed between groups.

Gut microbiota composition

Prebiotic fibre treatment did not induce significant changes in
diversity, evenness (the relative abundance of species) and

richness (the number of species per sample) indices when
compared with placebo. However, bacterial diversity, as
assessed by the Shannon and inverse Simpson indices, and
richness increased significantly within the prebiotic group
(online Supplementary Table S3).

Faecal bacterial DNA extraction was unsuccessful (DNA
concentration <50 ng/µl) for some samples, resulting in n 11 in

Table 1. Characteristics of the treatment groups at baseline (pre) and after supplementation (post) and diabetes medications*
(Mean values with their standard errors; n 14 in the prebiotic group and n 15 in the placebo group)

Prebiotic Placebo

Pre Post Pre Post

Mean SEM Mean SEM Mean SEM Mean SEM P†

Age (years) 56·7 1·6 – 58·1 1·7 – –

Time since diagnosis (years) 4·6 0·6 – 4·0 0·8 – –

Ethnicity (n) – –

Caucasian 11 14
Asian 2 0
Black 1 1

Body weight (kg) 87·0 3·5 87·6 3·6 86·7 3·2 86·8 3·2 0·335
BMI (kg/m2) 28·0 1·1 28·2 1·1 28·4 0·9 28·5 0·9 0·333
Body fat (%)‡ 26·5 1·3 27·3§ 1·3 26·0 1·5 26·5 1·4 0·514
Waist circumference (cm)|| 101·3 3·1 101·7 3·6 101·5 2·7 101·2 2·6 0·451
Blood pressure (systolic) (mmHg)|| 136 2 133 3 136 3 132§ 4 0·942
Blood pressure (diastolic) (mmHg)|| 86 2 83 2 84·0 1·7 81·1 1·6 0·909
Diabetes medications (n)¶

Metformin 7 3
Metformin and gliclazide 3 2
Metformin and sitagliptin 1 2
Metformin, gliclazide and sitagliptin 1 0
Metformin, sitagliptin and thiazolidinedione 1 0
Sitagliptin and gliclazide 1 1
Gliclazide 0 1

* There were no differences in baseline (Pre) values between groups (P>0·05, unpaired t test).
† The P-value is for the comparison of the change between groups with Pre value as covariate (ANCOVA). Other medications (n) used by patients in the prebiotic group were statins

(11), blood pressure medication (8), fenofibrate (2), omeprazole (2), low-dose aspirin (1), levothyroxine sodium (1) and citalopram (1). Other medications used in the placebo
group were statins (8), blood pressure medication (8), low-dose aspirin (5), Omeprazole (2), benign prostate hyperplasia medications (2), hay fever medication (2), betahistine
hydrochloride (1), asthma medication (1), medications for incontinence (2), sleep medication (1) and anti-fungal medication (1).

‡ n 13 in the placebo group.
§ Significant within-group change (P<0·05, paired t test).
|| n 13 in the prebiotic group.
¶ The remaining six patients in the placebo group were diet/exercise controlled.
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Fig. 2. Intestinal permeability estimated by 51Cr-EDTA excreted in urine following 12 weeks of prebiotic ( , n 14) or placebo ( , n 15) supplementation.
(a) Percentage 51Cr-EDTA excreted before (pre) and after supplementation (post) and (b) change in 51Cr-EDTA excreted. Values are means with their standard
errors represented by vertical bars. There were no significant differences between treatment groups (P= 0·322, P= 0·235 and P= 0·176 (ANCOVA) for small intestinal
(0–6 h), colon (6–24h) and total tract (0–24h) permeability, respectively).
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the prebiotic group and n 12 in the placebo group for the qPCR
data set. After removing samples with <400 bp, the meta-
genomics data set consisted of n 7 in the prebiotic group and
n 9 in the placebo group.
Consistent with previous reports on composition of the gut

microbiota in humans, Bacteroidetes and Firmicutes were the two
dominant phyla followed by Proteobacteria, unclassified bacteria
and Actinobacteria (data not shown). Bacterial community
structure in the treatment groups changed only slightly during the
study, but the change was greater in the prebiotic group, as can be
observed in the non-metric multidimensional scaling (NMDS) plot
(online Supplementary Fig. S1(A)). The change in the placebo
group was mainly because of the changes in metformin-treated
patients (online Supplementary Fig. S1(B)). However, comparison
of bacteria abundances at all taxonomic levels did not reveal any
significant effect of treatment when adjusted for multiple testing
(data not shown). Nonetheless, permutation ANOVA showed a
trend towards an effect of treatment (P=0·099) at the OTU level.
When metformin was included as a cofactor, metformin had a

significant effect on bacterial community structure at the genus
level (R2=0·084, P=0·009), whereas only a trend was detected
when the analysis was performed on OTU (R2=0·039, P=0·078).

Quantification of bacterial groups by quantitative
real-time PCR

Prebiotic treatment had no significant effect on Bifidobacterium
or any of the other bacteria measured (online Supplementary
Fig. S2). Bifidobacterium levels increased in both groups;
however, the change within the prebiotic group was greater
and close to significance (P= 0·0582).

Correlations between changes in bacteria, clinical
outcomes and dietary intakes

As an a priori aim was to investigate the role of prebiotic fibre
intake specifically for hypothesis generation, correlations were

Table 2. Glucose tolerance outcomes at baseline and after 12 weeks of supplementation*
(Mean values with their standard errors; medians and interquartile ranges (IQR); n 13 for placebo group and n 14 for prebiotic group)

Prebiotic Placebo

Pre Post Pre Post

Mean SEM Mean SEM Mean SEM Mean SEM P†

Glucose, fasting (mmol/l)‡ 6·1 0·4 6·8§ 0·4 6·2 0·3 6·5 0·3 0·227
Glucose tAUC180min (mM×min) 1319 74 1414§ 84 1234 89 1289 98 0·485
Glucose iAUC180min (mM×min) 222 33 197 32 153 32 170 35 0·221
Insulin, fasting (pmol/l)‡|| 83·5 14·7 94·0 18·7 94·6 15·3 83·0 13·0 0·543
Insulin tAUC180min (pM×min)|| 6026 774 7121 948 6867 1091 6274 821 0·112
Insulin iAUC180min (pM×min) 3522 355 4301§ 449 3892 626 3784 568 0·171
Insulin tAUC10min (pM×min)¶ 176 28 175 33 182 33 151 24 0·355
Insulin iAUC10min (pM×min)¶ 37 14 18 6 23 19 16 12 0·946
C-peptide tAUC180min (pM×min) 339 30 403 41 342 41 333 44 0·166
C-peptide iAUC180min (pM×min) 71 9 94 11 73 14 59 20 0·111
HbA1c (mmol/mol)‡|| 51·2 3·1 53·1 3·2 46·3 1·8 48·4 2·4 0·946
HbA1c (%)‡ 6·8 0·3 7·0 0·3 6·4 0·2 6·6 0·2 –

AIRg (mU/l per min) 39·1 13·4 21·2 5·2 38·3 15·6 23·1 10·5 0·856
DI 0·4507

Median 38 49·8 53·6 20·6
IQR 5·5–119·1 2·7–111·3 0–172·4 0·1–36·8

SI ((mU/l)−1 min−1) 0·2358
Median 1·95 2·18 4·48 1·91
IQR 0·95–3·98 0·16–4·32 1·31–172·5 0·22–4·84

GEZI (per min) 0·0212
Median 0·022 0·018 0·015 0·020
IQR 0·011–0·025 0·005–0·026 −0·217 to 0·021 0·016–0·023

β-Cell function (mU/mM) 173·1 30·4 139·5 24·8 165·9 26·7 113·2§ 14·6 0·350
IR (mmol mU/l2) 3·6 0·8 4·3 0·9 4·3 0·8 3·9 0·9 0·337
HOMA2 %B‡ 100·4 10·9 90·2 11·6 100·2 10·9 81·3§ 7·0 0·362
HOMA2 %S‡ 0·2147

Median 62·6 59·0 54·1 65·5
IQR 46·0–97·2 37·6–92·3 36·4–87·2 39·1–82·4

HOMA2 IR‡ 0·1994
Median 1·60 1·7 1·88 1·58
IQR 1·03–2·18 1·08–2·68 1·15–2·77 1·27–2·56

tAUC, total AUC; iAUC, incremental AUC; AIRg: acute insulin response to glucose; DI, disposition index; SI, insulin sensitivity; GEZI, glucose effectiveness at zero insulin; IR, insulin
resistance; HOMA, homoeostasis model assessment; %B, % β-cells; %S, % sensitivity.

* There were no differences in baseline (Pre) values between groups (P>0·05, unpaired t test or Mann–Whitney test).
† The P-value is for the comparison of the change between groups with Pre value as covariate (ANCOVA).
‡ n 15 for placebo group.
§ Significant within-group change (P<0·05, paired t test or Wilcoxon’s matched pairs signed-rank test).
|| ANCOVA performed on log-transformed values.
¶ n 14 for placebo group.
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calculated for each treatment group separately. The correlations
differed between the two groups as can be observed from the
different patterns in the heat maps (online Supplementary
Fig. S3(A–E)). Changes in large bowel permeability (51Cr-EDTA
6–24 h excretion) were positively correlated with bacterial
changes at all taxonomic levels in the prebiotic group. The
strongest correlations were for Verrucomicrobia, Euryarchaeota
and Methanobacteria (online Supplementary Fig. S3(A, B));
Rikenellaceae and unclassified Clostridiales (online Supple-
mentary Fig. S3(D)); and six genera, including Alistipes, Shigella
and Flavonifractor (online Supplementary Fig. S3(E)). Further-
more, changes in small intestinal and total IP (51Cr-EDTA 0–6 h
and 0–24 h excretion, respectively) correlated positively with
changes in Enterobacteriaceae measured by qPCR (r 0·527,
P= 0·024, adjusted P= 0·51 for both small intestinal and total
tract permeability) in the prebiotic group. In contrast, only few
bacteria correlated with changes in glucose tolerance outcomes;
Actinobacteria and Bifidobacterium correlated positively and
Veillonellaceae and Clostridium cluster XVIII inversely with
glucose total AUC (tAUC) (online Supplementary Fig. S3(A–D)).
Unclassified Enterobacteriaceae correlated positively with fasting
glucose, insulin sensitivity, high-sensitivity C-reactive protein and
waist circumference (online Supplementary Fig. S3(D)).
In the prebiotic group the strongest correlations between

bacteria and inflammatory markers were observed for sCD14,
which correlated inversely with Verrucomicrobia and unclassi-
fied bacteria, Erysipelotrichales and Verrucomicrobiales,
Verrucomicrobiacea, Lactobacillaceae and Erysipelotrichaceae
(online Supplementary Fig. S3(A, C, D)). Actinobacteria and
Firmicutes correlated positively with IL-6 and TNF-α, respec-
tively (online Supplementary Fig. S3(A)). Furthermore, IL-6
correlated positively with Bifidobacterium and negatively
with Veillonellaceae and Dialister (online Supplementary
Fig. S3(C, D, E)). Changes in small IP correlated with glucose
response (incremental AUC) and carbohydrate energy percen-
tage (r −0·429, P= 0·033 for both) and colon IP correlated with
protein intake (r 0·464, P= 0·021) in the prebiotic group.
However, because of the small sample size, apart from the
association between Veillonellaceae and IL-6 and glucose tAUC
(r −0·90, adjusted P = 0·042 for both) none of these correlations
in the prebiotic group were statistically significant after adjust-
ment for multiple testing.

Discussion

In this study, 12 weeks of prebiotic fibre supplementation did not
have a significant beneficial effect on glucose tolerance outcomes
in individuals with well-controlled T2D. Although there was a
decrease in the IP in the prebiotic group, this was not statistically
significant. Because of the number of patients presenting with
permeability values within the normal range being higher than
expected based on our previous work (50 v. 28%)(3), in future, it
would be deemed necessary to test the role of prebiotics in those
with a demonstrated impairment in barrier function to assess the
true functionality of this dietary fibre.
Bifidobacterium levels increased in both treatment groups,

although there was a trend towards post-intervention levels

being higher in the prebiotic group. GOS has previously been
shown to increase bifidobacteria levels, although it was noted
that some volunteers were non-responders(23,24,33,34) and one
study did not find a significant bifidogenic effect of GOS com-
pared with placebo treatment(35). Interestingly, others have
reported a poorer bifidogenic effect of GOS in males and
overweight individuals(34). However, other factors may play a
role in these negative findings including the type and dosage of
GOS administered, background diet, as well as the methods of
analysis of Bifidobacterium(33). As for the background diet,
particularly the relatively high dietary fibre intake (>20 g/d) in
this cohort may have diminished the effect of the prebiotic
supplement.

We used a dose of 5·5 g prebiotic/d, which may be con-
sidered to be low compared with other studies in which doses
of 10 g or more prebiotic were consumed(16,18,19). A duration of
12 weeks may not have been sufficient to elicit a significant
effect on clinical outcomes, although it would have been ample
time for changes in the microbiota to become apparent. Resis-
tant starch (which is also a prebiotic) improves first-phase
insulin secretion and insulin sensitivity in individuals at risk of
T2D within this time scale(26,36); however, it shows less efficacy
in those already with T2D(37). An unexpected finding was a
decrease in first-phase insulin secretion and an increase in
HbA1c in both groups in addition to an increase in fasting
glucose within the prebiotic group. This suggests that short-term
treatment with a low-dose prebiotic fibre does not prevent
further deterioration of key clinical parameters in T2D. The
metabolic derangements in established T2D may be difficult to
reverse, as shown by the fact that prebiotic supplementa-
tion(18,19,37) does not improve glucose control in T2D, whereas
a high efficacy is shown in metabolic syndrome.

Metformin had a significant effect on the intestinal bacterial
composition at the genus level, although it only explained a
small part (<10%) of the variation in bacterial composition.
Others have recently demonstrated a profound effect of met-
formin on intestinal bacterial community, bile acids, gut archi-
tecture, intestinal glucose utilisation, as well as circulating
glucagon-like peptide 1, LBP and LPS(9,38–43). The effect of
metformin on glucose control may partly be mediated by these
intestinal effects; the increase in the mucin-degrading bacteria
Akkermansia muciniphila following metformin treatment is
thought to be beneficial(15,40). Prebiotics have been shown to
increase A. muciniphila in mice(15); however, we did not
observe significant changes in A. muciniphila levels following
prebiotic treatment. However, it is a limitation of this study that
all thirteen participants for whom bacterial data were available
in the prebiotic group were on metformin, whereas only seven
participants in the placebo group were on metformin. It seems
plausible that metformin may have masked the effects of the
prebiotic in the present study, and it is a possible explanation
underlying the discrepancy with both animal work and meta-
bolic syndrome, as metformin treatment would not be admi-
nistered in animal models of T2D.

The fact that the cohort in this study consisted of patients with
well-controlled T2D may also play a role. Inflammatory markers
were generally low in this group, and this may have been
because of a favourable combination of lifestyle factors and
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medication. However, inflammatory markers are often low in
patients with T2D. This may be because some of the anti-
hypertensive and lipid-lowering medications taken by the
patients in this study have anti-inflammatory properties and
these types of medications may also influence gut bacterial
composition(44). No clear links between IP and intestinal bac-
teria were found in this study. The positive correlation between
Enterobacteriaceae and 51Cr-EDTA recovery was not significant
after adjustment for multiple testing, although it has been useful
in hypothesis generation for future work. Others have sug-
gested that a potential link exists between gut health and
Enterobacteriaceae because of endotoxin-producing opportu-
nistic pathogens in this bacterial family(45). Nevertheless, we
found a significant inverse association between changes in
Veillonellaceae and IL-6 and glucose tAUC, suggesting a link
between this bacterial family, inflammation and glucose
response. Veillonellaceae comprises several acetate and pro-
pionate producers(46), and it has been suggested that SCFA may
mediate some of the beneficial effects of prebiotics on host
metabolism(47). The limitations in this study are primarily related
to the small sample size, which makes it difficult to detect subtle
effects of a low dose of prebiotic in a heterogeneous study
cohort and the potential confounding effects of various medi-
cations. In this study, a decision was made at the outset to
include numerous clinical and bacterial outcomes, in order to
be hypothesis generating for future more focused clinical
studies.
In conclusion, supplementation with a low-dose prebiotic for

12 weeks in metformin-treated T2D patients did not improve
glucose control; this is now in line with other work showing
lack of efficacy of dietary fibres in the treatment of T2D in
contrast to their beneficial role in T2D prevention(37). However,
our study was limited by the small sample size. Before adjust-
ment for multiple testing, many significant associations between
changes in intestinal bacteria and clinical outcomes were
observed during this study, providing focus and avenues for
further work. The commonly used drug metformin is now
known to be a significant confounder in the study of bacterial
populations in T2D and must be accounted for in future work in
this cohort.
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