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By ' 'positive definite matr ices" or, briefly, definite matrices, we mean in 
this note self-adjoint matrices all the characteristic values of which are positive. 
Alternatively, they can be defined as matrices, all the hermitian quadra t ic 
forms of which are real and positive. I t is well known tha t these two definitions 
are equivalent and it is the existence of two equivalent definitions which 
renders the subject particularly interesting. Thus , it follows from the first 
definition tha t A~l is positive definite for positive definite A ; it follows from 
the second definition tha t the sum of two positive definite matrices is also 
positive definite. Similarly, we shall call a matrix positive semidefinite or, 
briefly, semidefinite if it is self-adjoint and none of its characteristic values are 
negative, or if all of its hermitian quadrat ic forms are non-negative. A matr ix 
which is definite is also semidefinite bu t a semidefinite matrix is, of course, not 
necessarily definite. 

The concept of a positive definite matrix permits a partial ordering of the 
self-adjoint matrices. A > B means tha t A — B is positive definite. T h e 
principal and very deep theorem concerning such a partial ordering is due to 
Lôwner (2). I t specifies the functions which preserve the partial ordering. I t 
s ta tes : If the characteristic values of both A and B are in an interval i, the 
equation f(A) > f(B) follows from A > B if the analytic function / , defined 
in the real interval i, bu t extended into the complex plane, is of such nature 
t ha t the signs of the imaginary par t of z and of f(z) are the same. I t 
follows from the last condition immediately t h a t / ( s ) is real and monotonically 
increasing in i, bu t this is only a necessary condition. The analytic extension 
referred to in Lôwner 's theorem must not cross the real axis. Thus , as will 
incidentally be shown also in the present note, A% > B% il A > B and both A 
and B are positive definite. Hence, the interval i in this case is (0, <») bu t it 
may be any interval on the positive real axis. However, z* = r*.e*i(f> if z = rei<f> 

and — 7T < 0 < 7T, the analytic extension not permit t ing z to cross the negative 
real axis. 

We shall not be concerned here with Lôwner's theorem bu t with the positive 
semidefinite na ture of a set of matrices which occurred in an expression sug­
gested for information content (7). The two theorems of the present note are 
essentially equivalent and express the fact t ha t the information content of a 
mixture p = ap± + (1 — a)p2 of two ensembles pi and p2 is a convex function 
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of the mixing parameter a for 0 < a < 1. The expression for the information 
content in question is — Trace[p% k]2, it measures the amount of information 
which the ensemble p provides as far as quantities are concerned which do not 
commute with the additive conserved quantity k. The reason for our interest 
in such an information content is that the measurement of quantities which 
do not commute with a conserved additive quantity (such as energy) requires, 
according to the quantum theory of measurement, a macroscopic apparatus, 
whereas the quantities which commute with all conserved additive quantities 
can be measured with microscopic means (see 1, 6). 

We begin with a few lemmas. Lemma 2 follows easily from a theorem of 
Lyapunov (4) and Lemma 3 can also be inferred from (5). 

LEMMA 1. If A is self-adjoint, B positive definite, and AB + BA = 0, then 
A = 0. 

The last statement is synonymous with the statement that all characteristic 
values of A are zero. Let us consider, therefore, a characteristic vector <t> of A 
and denote its characteristic value by X. We then calculate 

(1) 0 = (0, (AB + BA)<t>) = (A$, B& + (<£, BA<j>) 
= X(0,£0) + X ( 0 , B 0 ) . 

Since (</>, B<j>) is positive, X = 0 and hence ^ 4 = 0 . 

LEMMA 2. If B and AB + BA = C are positive definite, A is also positive 
definite. If C is semidefinite, so is A. 

We first prove that A is self-adjoint. The adjoint of the equation 

(2) AB + BA = C 

is 

(2a) BA* + A*B = C, 

the dagger denoting hermitian adjoint. Subtracting (2a) from (2), one obtains 

(3) (A - A*)B + B(A - A*) = 0. 

Hence, Lemma 1 applied to B and the self-adjoint i(A — A*), shows that 
i(A — A*) = 0, that is A = A* is self-adjoint. 

Let us consider, therefore, a characteristic vector ^ of A and denote its 
characteristic value by a. Since AB + BA is positive definite, 

(4) 0 < (*, (AB + BA)f) = (*, ABf) + (*f BA$) 

= (A$, B>p) + a(f, B$) = 2aty, B#) 

so that a is positive since (\p, B\//) is also positive. 
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If AB + BA is semidefinite, A is also semidefinite. On the contrary, AB + 
BA need not be definite if A and B are definite. In order to see this, let us 
consider first a positive, semidefinite B. This can be given the form 

B = 
Bu 0 
0 0 

in which B is composed of four submatrices and Bu is definite. Hence, if we 
write similarly 

we obtain 

AB + BA 

An A12 

A21 A22 

B11A H + AuBn BiiAu 
A21Bu 0 

Unless Au = A21 = 0, this is surely indefinite, i.e., some of its characteristic 
values are negative. Now, B can be made positive by an arbitrarily small 
change. If this is small enough, some of the characteristic values of AB + BA 
will still be negative. 

LEMMA 3. Again let B be definite. Then, for a given C there is one and only one 
A such that AB + BA = C. If C is self-adjoint, or definite, or semidefinite, so 
is A. 

In order to prove the existence of A, it seems best to use the principal axes 
of B as co-ordinate system, i.e., to assume Bik = bidik with bt > 0. Then 
AB + BA = C reads 

(5) A ik bk + biA ik = Cik 

or 

(6) Aik = Cn/ibt + h). 

This proves the uniqueness of A and shows that it is self-adjoint if C is self-
adjoint. The fact that A is definite and semidefinite for definite and semidefinite 
C is now a consequence of Lemma 2. 

The preceding lemmas suggest defining a fraction of matrices C/B which 
satisfies the equation 

(7) §5 + 5§=2C. 

One sees from (6) that C/B is uniquely defined if no characteristic value of B 
is zero and if no two characteristic values are oppositely equal. However, 
throughout the present paper, the denominators of fractions will be definite. 
According to (7), Jordan's quasi-product of B and C/B is just C so that the 
operation of division implied by (7) is the inverse of Jordan's quasi-multiplica-
tion (3). 
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The fractions of matrices satisfy a few identities and we shall mention those 
which will be needed in the rest of the present note. 

LEMMA 4. If C/B = A, then C/A = B. Furthermore 

for arbitrary functions f and g of B. Finally, for arbitrary C\, Ci 

The first part of the lemma is a consequence of the fact that C/B and B 
enter symmetrically into the defining equation (7). Equation (8) follows from 
(7) by multiplying it on the left by f(B) and on the right by g (B) and noting 
that B commutes with f(B) and g{B). Hence 

f(B)^g{B)-B + B-f(B)^g(B) = 2f(B)Cg(B). 

This is equivalent to (8). In order to prove (9), we transform the commutator 
on the right side 

(9a) [ C\ Ci D C\ Ci D „ C\ C2 
~B-B>B\ = ^ - B B - B ^ - B 

= !(2c>-*f)-(2C>-§*)f 
= 2§C2-2Clf. 

Actually, (8) will be used only for definite B and f(B) = g(B) = B^, whence 

a») *§£-*&• 
where B* is to be understood as the positive definite square root of B. Equation 
(9) will be used only in the form 

(96) Trace ( ^ G - d ^ ) = 0. 

This is an immediate consequence of (9) because the trace of every commutator 
vanishes 

T r a c e d , B] - Trace AB - Trace BA = Trace AB - Trace AB, 

the trace of a product of two factors being independent of the order of the 
factors. 

LEMMA 5. If A and B are positive definite (semidefinite), so is A X B, where 
the cross denotes the direct product. 
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This is obvious since the characteristic values of A X B are the products 
a j bk of the characteristic values of A and B. 

LEMMA 6. If A and B are definite and A2 > B2 (i.e., A2 — B2 is also positive 
definite), then A > B. 

In fact, 

(10) A2- B2 = J ( ^ + £ ) C 4 - 5 ) + J (4 -B)(A +B). 

Since 4̂ + B is definite, the positive nature of A — B is a consequence of 
Lemma 2. It follows also from Lôwner's theorem. If A2 — B2 is semidefinite, 
4̂ and B still being definite, A — B is semidefinite. 

On the contrary, if ^4, 5 , and A — B are definite, ^42 — B2 need not be 
positive definite. 

LEMMA 7. If A > A', B > B', and A + A' as well as B + B' are definite, 
then A X B > A' X Bf. 

This follows from the identity 

(11) A X B - A' X B ' = h(A - A') X (B + B') + ±(A + A') X (B-B'). 

The right side is the sum of two matrices, both of which are definite, because of 
Lemma 5. Hence, A X B - A' X B' is also positive, A X B > A' X B'. 

The preceding lemmas were obtained in order to prove the following theorem. 

THEOREM 1. If S is positive definite, N self-adjoint, ST + TS = N2, then 

(12) Q = SXT + TXS - NXN 

is positive semidefinite. 

The bar in (12) denotes complex conjugation, the cross the Kronecker 
(direct) product. It follows, first, from Lemma 2 and the semidefinite nature of 
N2, that T = %N2/S is also semidefinite so that 5 and T enter our theorem 
almost interchangeably. The rows and columns of Q can suitably be denoted 
by double indices, such as KK', XXr, . . . , the first of which denotes a row or 
column of the first factor in the Kronecker product, the second a row or 
column of the second factor. Hence, (12) in terms of its matrix elements reads 

(12a) QKK> 

Similarly, the vectors to which Q can be applied will have double indices. 
If \p is such a vector with components if/w, these can be considered to form a 
matrix M (if/). This will be called the matrix of the vector \f/. One then easily 
verifies that the matrix of (A X B)\p is 

(13) M {{A X B)f) = AM(f)B\ 

Hence, (12) gives 

(13a) M(Q4>) = SMMT + TMty)S - NM(f)N. 
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The daggers are omitted because S, T, and iVare all self-adjoint. The quadratic 
form (\f/, Q\j/) becomes, if one sets, for brevity, M(ip) = P but substitutes 
T = *#*/$, 

(14) (*, Qf) = Trace [jP^SPfj + p t f$ P 5 - P^NPN 

This is, evidently, a hermitian quadratic form of the elements of P and will 
become a similar form of the components of N if we replace one of the factors 
N in every term by iV*. This is permissible since N is self-adjoint. We define, 
therefore, the bihermitian form 

/ + NfN *NN* 
(14a) qa(N, -P) = (*, Qii) = Trace [P^SP A-~f + P 1 ̂  PS 

-~P^PN - | p V P i V f j . 

This is defined no matter whether N is self-adjoint or not. The index 5 on g 
is to remind us that the coefficients of the bihermitian form depend on S; this 
is assumed to be definite and hence self-adjoint. 

We shall now show that qs is invariant under a transformation 

(15) qs(N, P) = qs(S-PS\ S~*NS-*). 

This equation plays a decisive role in the proof of Theorem 1. Since 5 is definite, 
its square roots are hermitian, and S* will denote the definite square root of 
5. Similarly S~^ = (S*)"1 will be definite. We shall show that the first term of 
qs(S*PS*, S-*NS~*) is equal to the first term of qs(N, P ) . The same applies to 
the second term but the third term of qs(S^PS*> S~^NS~^) is equal to the fourth 
term of qs(N, P ) , and conversely. However, we shall show only the invariance 
of the first term under the transformation (15). 

The first term of (14a), with N replaced by S^PS^ and P replaced by 
S-^NS-ï, is 

Trace [s^N^SS^NS^ S*P ^ j ? ^ / 

and, on account of (8b), this is equal to 

Trace (s^N*NS*-&^jf S1) = Trace ( ^ ^ f ^ ) . 

Further, because of (9b), this is equal to 

Trace (^P*Sp) = Trace (?&!§) , 

i.e., equal to the first term of qs(N, P ) . The other relations, which were men­
tioned before, can be proved in the same way so that (15) is established. 

We shall next prove the following lemma. 
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LEMMA 8. The characteristic vectors of Q can be assumed to have such a form 
that the corresponding matrix C is self-adjoint. 

In fact, it follows from Qf = q\p with Mty) = C and (13a) that 

(16) SCT + TCS - NCN = qC. 

The hermitian adjoint of (16) is, since q is real, 

(16a) TC*S + SC*T - NCfN = qC\ 

Taking the sum and difference of (16) and (16a), one sees that C + C* and 
i(C — C') also correspond to characteristic vectors of Q, and their characteristic 
value is q. If C 7^ 0, at least one of these does not vanish and this, or the two 
of them, can replace C. 

LEMMA 9. C = 1 is the matrix of a characteristic vector of Q; its characteristic 
value is 0. 

This follows immediately from (16) and ST + TS = N2. The characteristic 
vector itself is 
(17) W = 5KX. 

Since all characteristic vectors which belong to another characteristic value of 
Q are orthogonal to this one, we have the following lemma. 

LEMMA 10. The trace of each matrix C of the characteristic vector of a non-zero 
characteristic value of Q vanishes; no such matrix can be definite or semidefinite. 

The last conclusion is obvious since the sum of the characteristic values of 
C is zero and they cannot all vanish. Hence, at least one of them must be 
negative. 

If a quadratic form such as (14a) can become negative for any N and P , it 
will be negative also if these are normalized. We can confine our attention, 
therefore, to the value of qs(N, P) for normalized iVand P 

(18a) S \NKX\2 = Trace i\Wf = 1, 
KX 

(18i) E l^x|2 = T r a c e P P + = 1. 

We next note that qs(N, P) is defined in a closed bounded domain of its argu­
ments NK\, PK\ if these are restricted by (18a), (186). Hence, it will assume its 
minimum value for some values of these arguments and our task is just to 
prove that it leads to a contradiction to assume that this minimum is negative. 
We can even further stipulate that both N and P are self-adjoint—N is 
naturally so, and the expression qs(N, P) = (^, (hp) will assume its minimum 
value for given N for a \f/ which is a characteristic vector of Q. Lemma 8 shows, 
however, that the matrix of any characteristic vector of Q can be assumed to 
be self-adjoint. We note incidentally that if N and P are self-adjoint, the 
variables of qs on the right side of (15) are also self-adjoint. 
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The form qs(N, P) is surely not increased if N is replaced by the positive 
definite or semidefinite square root Nv of its square. Such a substitution does 
not affect (18a) because this merely fixes the sum of the squares of the charac­
teristic values of N and the transition from N to Np merely changes the sign 
of the negative characteristic values of N. Further, the T of (12) is completely 
determined by S and N2 = Np

2 so that the first two terms of Q are not affected 
by the change. It follows, however, from Lemma 7 that Np X Np > N X N 
since Np > N, as one can see best in the diagonal form of these matrices. It 
follows that qs(N, P) assumes its minimum for a definite or semidefinite N. 
It may assume the same value, of course, for other N as well. 

It now follows from (15) that qs(S^PS^ S~~*NS~*) also assumes its minimum 
for some semidefinite N. Writing N' = S^PS^ and P' = S^NS'K the latter 
becomes semidefinite and we find that qs(N', Pr) assumes its minimum value 
for a semidefinite P' if the normalization of N' and Pr now is, instead of (18a) 
and (186), 
(19a) Trace (S-*JV'S-*)2 = 1, 

(196) Trace (SlP'S")2 = 1. 

It will be demonstrated now that if the minimum of qs(N', Pf) is negative, 
this minimum cannot be assumed for a definite or semidefinite P ' , the normaliza­
tion being given by (19). In fact, the P' which makes qs(N

r, P') a minimum 
cannot be semidefinite if the minimum is negative, no matter what N' is. 
This would be an immediate consequence of Lemma 10 if the normalization 
were given by Trace P'P'^ = 1, the analogue of (186). In this case Pr would 
be the matrix which corresponds to a characteristic vector with a non-zero 
characteristic value of a Q. Lemma 10 shows, however, that such a matrix 
cannot be semidefinite. Since the normalization of P' is actually given by 

(20) i : |P\x|2sKSx= 1, 
KX 

we shall have to prove that the Pr which makes qs(N'f Pr) a negative minimum 
cannot be semidefinite with the normalization (20) either. For (20), 5 was 
assumed to be diagonal, and its diagonal elements were denoted by s. These 
are, by the assumption of Theorem 1, positive. 

Instead of normalizing Pf by (20), we can use an unnormalized Pf but use 
for qs the expression 

(21) ?>(w,,p. )=JfcW . 
2-/ \Y K\\ SKS\ 

Q' is the Q in which N is replaced by N', the $' is the vector to which P' cor­
responds, i.e., \[/'KX = P'K\- In order to calculate a<s(iV /,P /), we decompose \pf 

into two parts; one of these is a multiple x ^° of the characteristic vector \f/° 
of (17), the other, \j/1, a linear combination of the other characteristic vectors 
ofQ'. 
(22) V = V + **° or f>A = tKx + xdK^ 
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Since Q'\[>° = 0, the expression 

Ws G V ) = w + xr, Q'it1 + #°)) = GP + xt«, Q'r) 

is independent of x. If it is negative, qs will assume its smallest value for the 
x which makes the denominator of (21) smallest. Hence, we calculate 

(24) E \fKX\2sK sx = E Il^xl2 + ««x(**«x + *#*) + \X2\ÔKX]SK SX 

= E l**l2*«*x + E ((* + *)*« + \x2\)sl 

This assumes its minimum for 

(24a) 

Hence, the matrix element P', 

E «̂« 2 
SK 

E *« 
becomes 

(25) P'w = ^ = </> + * = 
E (̂ MM — ^î/c)^»c2 

E ̂  
For the JJL for which yp1^ is the smallest of all, ypf

 KK, this is surely negative so that 
P' cannot be semidefinite. This argument is valid unless all \pl

KK are equal. 
In this case, however, all P'm = 0 and P1 can be semidefinite only if all its 
elements are zero—a case which is incompatible with the normalization (20). 
We see, therefore, that the assumption qs(N\ Pf) = qs(N, P) < 0 leads to a 
contradiction so that our theorem is established. 

It was mentioned that 5 and T play almost equivalent roles in Theorem 1. 
The difference is that whereas 5 was assumed to be definite, only the semi-
definite nature of T follows from ST + TS = N2. We state, therefore, the 
following theorem. 

THEOREM 2. Let S and T be semidefinite, N self-adjoint, ST + TS = N2; 
then SX f+TXS — NXNis also semidefinite. 

Note that even though N2 is naturally semidefinite, since 5* is only semi-
definite, the semidefinite nature of T does not follow from ST + TS = N2 and 
had to be postulated. 

In order to establish Theorem 2, it is simplest to introduce again the charac­
teristic vectors of 5 as co-ordinate axes. S, T, and N then will be written as 
supermatrices 

(26) 0 0 
0 522 r t 

T22 
N 

Nu Nv. 

Sn is a diagonal matrix with real positive diagonal elements, Tu, T^, JVn, Na 
are self-adjoint. The equation ST + TS = N2 shows that the submatrix of 
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N2 in the upper left corner vanishes. However, the vanishing of a diagonal 
element of the square of a self-adjoint matrix entails the vanishing of the 
corresponding row and column of the matrix itself. Hence, Nn = Nn = 0 and 
it now follows from ST + TS = N2 that T12 = 0 also: 

\TU 0 
lo r22 | |, # = | 

0 0 | 
10 NM\ 

It now follows from the semidefinite nature of T that Tu and T22 are also 
semidefinite. 

The subdivision of 5, T, and N into submatrices corresponds to a decom­
position of the underlying vector space into two orthogonal parts and this 
leads to a decomposition of the product space of this space with itself into four 
parts. Since the non-diagonal submatrices of S, T, and N all vanish, all four 
of these parts are invariant under any direct product of the three matrices. All 
vectors in the first of these spaces are annihilated by Qf i.e., <2ii;ii = 0. In the 
second space Qi2;i2 = Tn X S22 and this is the direct product of a semi-
definite and a definite matrix and, hence, semidefinite by Lemma 5. The same 
applies in the third space (?2i;2i = £22 X Tn. The effect of Q in the last space 
is 
( 2 8 ) (?22;22 == O22 X J- 22 ~f" ^ 2 2 X $22 — -^22 X iV22 

and the semidefinite nature of this is a consequence of Theorem 1. This then 
proves Theorem 2. 
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