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Abstract. Let A > 1 be a real eigenvalue of an automorphism of the two dimensional
torus. We prove that for a dense, open subset of intervals [a, b]c [0, 1], the sequence
vN(x) =Y.k=o A/[a,b]({A)cx}), where {x} denotes the fractional part of x and *[a()] the
characteristic function of [a, b], satisfies the local limit theorem with respect to
Lebesgue measure on [0,1].

0. Introduction
Let A be a real number, A > 1. It is known (see e.g. [3, p. 164]) that for almost every
xe[0,1], with respect to the Lebesgue measure, the sequence {Akx}, fc>0, where
{x} denotes the fractional part of x, is uniformly distributed in [0, 1]: that is, if X[aM
denotes the characteristic function of a proper subinterval [a, ft] c [0,1], 7 the
Lebesgue measure in [0, 1] and vN the random variable vN(x) =Xfc=0 '

Urn vN(x)/N=b-a, for/a.e.x. (0.1)

We say that the local limit theorem holds if the probability distribution of the
normalized fluctuations of vN tends, as N-»oo, to the normal distribution in the
following strong sense:

(i) lim D f / N = o-2>0;
N—oo

_ (0.2)
(ii) lim sup (VDFpr/(fc)-exp(-(fc-£/

N)2/2D,'v)/v'27r = 0;
N-><x> Oslc==N

where E™, £>f, Pf denote, respectively, the expectation, the variance and the
probability distribution of vN with respect to /.

The local limit theorem has been proved by Moskvin and Postnikov [8] for A = 2.
In this case {X"x} = T"(x), where T is the map of [0, 1] to itself T(x) = 2x mod 1,
that leaves / invariant. In this case" (0.2) may also be obtained as a consequence of
more general theorems about expanding maps of the interval [11].

We consider here the case of A being a real eigenvalue of an automorphism <p of
the two dimensional torus T2 = U2/Z2. In this case the sequence {Anx} is not the
orbit of x for a map of [0, 1] to itself, but it can be regarded as the projection on
one of the coordinate axes of a <p orbit of a point P(x) e T2. This fact allows us to
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exploit the existence of a Markov partition for <p to derive (0.2) from a local limit
theorem for a functional on a Markov chain SN(e) = YdKZo g(Tke), where e =
(e.O.ez e ^ = {0, . . . , V}z, T is the shift on % and £ is a function on %, which, in an
appropriate sense, depends weakly on the e,'s with large i. We follow in our proof
the classical method introduced by Gnedenko [5] for independent random variables
and extended by Dobrushin and Tirozzi [4] to Gibbs random fields. The estimate
of the difference between the distribution of a sum of random variables and the
normal distribution is derived by an estimate of the characteristic function. The first
part of our argument is the proof of a strong version of the integral limit theorem.
Though this part of the proof is quite standard we have included it in the paper,
since the results in the literature on related problems [6], [9] do not apply to our case.

The main difficulties arise in the second part of the proof, where we need to
derive a lower bound on the variance of SN and to check an aperiodicity condition
on its values in order to get an upper bound on the characteristic function of SN.
We remark that these properties are usually given as hypotheses in the literature
about local limit theorems.

The difficulties are mainly due to the fact that not all the transitions between
symbols are allowed and the variable £, depends on all the symbols ex. We therefore
consider only a subset of intervals [a, ft]c[0, 1]. This subset is an open, dense set
containing all the intervals [a, ft] such that either a or ft is sufficiently near to the
first coordinate of a homoclinic point of the automorphism <p. In a subset of
probability space, which asymptotically in N has full measure, the problem of the
long range dependence of the variable £ can be handled. Using special compatible
sequences, we prove condition (0.2(i)) and we check the aperiodicity condition on
values of SN. The orbit of a homoclinic point corresponding to the interval [a, ft]
is used to construct the special compatible sequences. We conjecture that the local
limit theorem is verified at least on a full measure set of intervals, as remark (2.10)
seems to indicate.

In § 1 we recall some properties of the toral automorphisms and of the Markov
partitions. These properties are used in § 2 to show how (0.2) follows from a local
limit theorem for a functional on a Markov chain and to derive the crucial estimates
that are needed in the proof of this theorem. The theorem is proved in § 3. § 4 is
devoted to a brief review of results related to ours.

1. Symbolic dynamics
Let <p be an automorphism of the two-dimensional torus T2 = R2/Z2 induced by a
linear transformation A: R2 -» R2 with integral entries, det A = 1, eigenvalues A > 1,
I/A and corresponding unit eigenvectors e" = (e", e"), es = (e\, es

2). We assume e",
e">0; if not we can consider the automorphism induced by A'= BAd~x where

/signer 0 \
\ 0 sign el)

d{ •, •) will denote the Euclidean distance on T2 and m the Lebesgue measure on
T2. For p = (pi,p2)e T2, W(p) and Ws(p) will denote the unstable and stable
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manifolds through p:

and, for 5>0, (1.1)

Let H(0) be the set of the homoclinic points of 0 = (0,0), H(0) = W(0)n Ws(0).
We note that H(0) is a dense subgroup of T2 and if p e H(Q), then lim^^co <pk(p) = 0.

In order to study the statistical properties of <p we will use the symbolic dynamics
induced by <p via a generating Markov partition of the torus. A Markov partition
9 (see [12, p. 102]) is a finite family of open parallelograms ( P o , . . . , Pv) with sides
parallel to es and e" such that:

(i) UL,P, = T2;
(ii) P, n P, = 0, for 0 < i, j < i;, i *j;

(iii) fl^(f))c3'(?); l • '
(iv)

with ds(u)(0>) = \J°=ids(u)(Pi), where ^ " ' P , denotes the contracting (expanding)
boundary of P,, i.e. the union of the sides of Pf parallel to es("\ and analogously
for <p{$P). The Markov partition 9 is called generating if the smallest complete
(w.r.t. m) o--algebra containing the sets <pk(Pj), -oo<fc<+oo, 0 < i < v, is equal to
the cr-algebra of all the m-measurable sets of T2. In [12, pp. 106-108] and [1] an
explicit construction of a generating Markov partition 9 for an automorphism <p
is given. By considering the generating Markov partition

^<0) = (Qo, • • •, QJ = *-"(&) v • • • v ® v • • v *"(<?),

composed of all non-empty intersections of the type (~)k=-n <pk(Pik) with n large
enough, we easily see that for every 50, 0 < 50< 1, we can find a generating Markov
partition 0>m such that

d i a m ^ ( 0 ) = sup diam<5,<50, (1.3)

inf m « ? , ) > c ^ , (1.4)

where c is a positive constant depending only on <p. It follows from the construction
of 9 that we can assume there are four parallelograms of 0>(o), which we will denote
by <?o,-.-,<?3, such that 0eQon- • nQ3. We note that if i e { 0 , . . . , 3 } and l\°
(#>) is the length of the sides of Q, parallel to e" (es), then for every k, (pk(Qt) is
a parallelogram with a vertex in 0, lying 'on the same side' of 0 as Q, and with sides
parallel to eu (es) of length A ¥ , ° (A"*1/^).

Given 9m we define a u x u matrix B by:

" " t o otherwise. ^L 5 )

We denote by % and ^ y ] , J J ' G Z , i<j, the sets of the compatible sequences:

f = {Ee{0 M}z:8 t i , , t = l ,VfceZ},

t [ y ] = {e e { 0 , . . . , « } [ W : B.t. t+1 = 1, Vfc e [U"]>,
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where [i,j] = {kel: i<fc<y}. We define 0>(n) by

v • • • v <

9>in) is also a Markov partition, whose elements are parallelograms. <?i") =

P\n
k=-n <P~k(QJ for every e e ft_n>B]. We have

d i a m ^ s c ' S o A - " , (1.6)

where c' is a positive constant depending only on <p (for the proof of (1.3), (1.4),
and (1.6) see the proof of the lemma of [12, p. 106] and of lemmas 6.3 and 6.4 of
[1, p. 28 and ff.]).

For every ee% the set (")£?-«> <p~k(QCk) contains a single point which we denote
by n(e). The map TT is an isomorphism in the measure theoretical sense between
the dynamical systems (T2, <p,m) and (#, T, fi), where T is the shift on the sequences:
(Te)i = ei+l and /t is the stationary measure on an irreducible aperiodic Markov
chain with state space {0, . . . ,«} and transition probability matrix Py =
m(<P(Qi)nQj)/m(Qi) (see the theorem of [12, p. 104]).

Now we will give some properties of the Markov partition 9:
(PI) Since A > 1 and 0 is a fixed point for <p, it is easy to see that <p(Qi) n Q,^ 0

for i = 0 , . . . . 3 and, consequently, Bu = 1 for 0 < i < 3.
(P2) Let p e H(0). Then we can find a k > 0 and a compatible sequence e e £[_*,*]

such that <pJ(p) e Qe. for j e [-k, k] and e_fc, ek e {0 , . . . , 3}. This is a straightforward
consequence of the definition of homoclinic points. Indeed, since limi^o,, (pJ(p) = Q,
we can find k such that <p~k(p) and <pk(p) belong to the interior of U?=o Qi-
Let us consider the Markov partition ^><fc) and choose an element Qik) such that
p € Q(

e
k); then the sequence e has the required properties.

2. Preliminary results
Now we state the relation between symbolic dynamics of toral automorphisms and
properties (0.2) by giving some simple geometric arguments.

Let P:[0,1]->T2 be the lifting P(x) = xe"/e\, V = P([0, 1])<= W(0), A =
{p e T 2 : f l < p , < b}, dA its boundary and -̂A the characteristic function of A. Since
A is an eigenvalue of A, with eigenvector e" = (e", e") we have \Jx = (AJxeu/e")l,
so that {\Jx} = (ipl(P(x)))l and

NfI }) (2.1)

Definition (2.1). For every n>0 , let 2n be the sequence of parallelograms:

£ „ = U ^o A-"/2(p) , (2.2)

then, if c0 is small enough and qs5.n, for any n > 0 w(q)= Vn W'oA—/2(^) is a
point in V". Using (2.1) we get:

Y fj m(±n). (2.3)
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Definition (2.2). Let

Sn={ee^n,ny.Q^cz±n},

Z.= U Qi"\
"*" _ (2 4)

A n = U 0(
e

n),
tsD,

and let mn be the sequence of probability measures on T2: mn(A) =
m(/\nZn)/m(2n) forany/4c T2 wi-measurable. Let f̂  be the sequence of functions
on T2: vZ(p) = Id

NJol XtS^ip))- E"> D " and P ? will denote, respectively, the
expectation, the variance and the probability distribution of v" with respect to mn.

PROPOSITION (2.3). Let co be a positive real number, n =[w log JV] and C(<o, N) =
N l^fCO - P"(k)\. Then, for any r > 0, r/iere is w such that for <o > u>,

lim C(ai,N)Nr = 0. (2.5)
N-»oo

Using (2.3) and (2.4) we get

: ^ ( p ) = fc})/m(£n)-PJv(fc)|) (2.6)

and, by the <p-invariance of the measure m, it follows that

m(£n)
J=0

,)j,+ |m(Bn£,)/m(i,)-m(BnS,)/m(2,)j, (2.7)

where B = {peT2: v"(p) = fe}. Let us consider the jth term of the first sum on the
right-hand-side of (2.7). We observe that if p€«pJ(£n) and Xiip)^
#A(<PJ(W(IP~J(P)))) then the segment joining p to <pJ(w((p~J(p))) has to intersect a A.
This segment is parallel to the stable direction contained in <pJ(£n) and of length
less than c0K~n/2\~J. Thus we have

U
fJ(£,)n

(2-8)

On the other hand <pJ(Zn) is a strip whose sides are parallel to the stable and unstable
directions and have lengths bounded by c0A"n/2A"J and cx\' respectively. Therefore

% is a union of at most c,AJ segments of length c2A~"/2A">. We can now
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evaluate the measure of the set appearing on the right-hand side of (2.8) by:

ml U Ws
Co^n-l{q)\^cxk\c,\-n/2-i\-"/2-i)/c'oX-n/2

\ q£tp'(±n)r,dA I

= c4\-
/2-J, (2.9)

where c'o, c3 and c4 are positive constants depending only on <p and c0. The measure
of the set appearing in the jth term of the second sum on the right-hand-side of
(2.7) can be estimated in a similar manner. Since the elements of the partition SP(n)

have diameter less than c'80\~", the set A\A n is contained inside the union of two
vertical strips of width c'80X~". We have

^•(5-)n(A\An)c U
<pJ(2n)i-

(2.10)

and, using the same arguments as in the preceding estimates we get from (2.10)

(2.11)

Finally we estimate the last term of (2.7):

s2(m(iB)-m(2B))/m(5B)
(2.12)

where c8 is a positive constant depending only on (p, 80 and c0. By putting together
the estimates (2.9), (2.11) and (2.12) we get

|P,N(fc)-P?(fc)|<(c4A-"/2+c6A-n)A/(A-l) + c8A-"/2, (2.13)

so that for a large enough we obtain (2.5). •

From now on we shall assume n =[w log N~\, where w is such that (2.5) is true for
r = 4.

Using proposition 2.3 we also obtain

I k(P?(k)-P?(k)) < N2C(w, N) (2.14)

and

<3JV 3 C(IB,JV) . (2.15)

For every e € % let ̂ n)(e) = * A > V ( e ) ) ) and £(e) = ^ (^ ' (^ (e ) ) ) . £\n) is a cylin-
der function with base [i-n,i + n\. For any £ e ^[-n,n] we denote by /J.( the measure
fi conditioned to e, = f, for ie[-n, n] and by E", D", P™, respectively, the
expectation, the variance and the probability distribution of £,=0' £("' w i t n respect
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to fi(. For any £ c T 2 w e have:

= I m^Q^KmiEnQ^ymiQ^))

(2.16)

i.e. the measure mn of a set in T2 can be evaluated as a convex combination of
measures fi( of the corresponding set in %. The following proposition is an immediate
consequence of (2.5), (2.14), (2.15) and (2.16).

PROPOSITION (2.4). Assume that uniformly with respect to £e %[_nny.
(i) \imN^D?/N = o-2>0;

(ii) l im^j£?-£f | . /V 2 = lim^0O|D~-Df|./V2 = 0; _ (2.17)

(Hi) limN.oo supoSfcS,v bfof P?(k) -exp ( - (*- £ f )2/2Df )]/>/2ir = 0.

(0.2)

In order to prove (0.2) therefore we need only to prove (2.17). The proof will be
demonstrated in § 3, where we will make use of the estimates given in the following
propositions.

PROPOSITION (2.5). Let r,seZ, r<s and let ^ [ r > S] , ^l"l] be the a-algebras generated
respectively by e,, f \"\ i e [r, s]. Then there exist two positive constants S e (0, 1), cr,
such that uniformly in N:

sup \ti(AnB)-^(A)^(B)\^o-lS
k, (2.18)

and two positive constants 17 e (0, 1), a2 such that, uniformly in N and n:

sup \v(AnB)-p(A)»(B)\<cr2V
k. (2.19)

fc ^'[i-+k.r+fc + JVl

Proof. The proof of (2.18) can be obtained by standard procedure using the properties
of the Markov chain (see e.g. [7, pp. 365, 366]). Property (2.19) is a consequence
of (2.18) and of the fact that:

n A At) s m(A\Amin(n,k))

<450A"min("'fc)- (2.20)

The proof is completely similar to that of [2, (1.26), p. 38]. •

Definition (2.6). Let r,seZ, r<s, a, <r'e{0,..., u}. We denote by B("s\o; a-') the
cylinder set, with base [r — 2n, r]u[s, s + 2n] defined by:

B(
r"V, o-') = {e e f: er = a, es = a' and VT; e t with 7̂  = e,,

j£[r+ 1 , 5 - 1 ] , t\n\V) = t\n)(e), for ie[r- n, r ] u [ s , s + n]}.

If e e B["s{o; <T'), we need only to look at the symbols e, for i£[r- 1, s— 1] in order

to know the values of f •"' for 1 e [r - n, r] u [s, s + «] .
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PROPOSITION (2.7). If So is small enough, there are a>0, fceZ+ and at least two
indices cr,, cr2 e {0, . . . , 3}, such that for every n

fi(B^(o-,o-'))^a ifs-r>k,o-,o-'e{<rx,o-2}. (2.21)

Proof. Let B("\a), B(_n)(<r) be the events:

B^-iia) = {e 6 g: e0 = a and VT, e f with TJ, = e,,j > 0, (j < 0),

^ ( r , ) = £<">(«), Vl € [0, ll] (i € [-H, 0])}

It is easy to see that B<?\tr) e 3r[0,2n], B
(_n)(o-) 6 ^_2n,0] and B^^a, o-') => TrB(_n)(o-) n

TsBVn)(o-'). Using the stationarity of fj, and (2.18) of proposition (2.5) we get:

(o-')) - <r,Ss-r. (2.22)

Therefore we need only estimate from below /i(B(_n)(<r)) and /u,(Bi.n)(o-')) in order
to prove (2.21). Since the two estimates are completely similar, we just deal with
the case of B(

+
n)(a'). We choose tre{0, . . . ,3} such that Oe Qa, Qo.n3A = 0 . (It is

easy to see that if So is small enough, there are at least two such elements.) Given
keZ+ we can find So so small that, if diam^*(0)<80, x&n is constant on
Uosjs/t (PJ(Q<r) for every n >0 (see the properties of ^><0) given in § 1). This means
that £iin)(v) = £n)(e) for 0< i s k if r)0=e0=o: We define

H(jn\o-) = {e e t : eo= o- and 3rj e f, with r/, = et, i > 0 such that t"\v) * ^"'(e)}-

(2.23)

In view of the previous remark, H*n)(o-) = 0 for 0 < j < k, we have

\<T)=\JH?\CT)= U H)n\a). (2.24)

Now we evaluate n(Hjn)(o-)) for fc<j<n. If e, 776 f and £, = 17, for i>0, then
7r(r?)e^0(77(e)), so that $H)(v)*&}(e) implies «pJ(^0(7r(e)))naAn

Therefore we have

TT(H]"\O-))^ U ^ ^ ( P ) ^ U n,A"J(P). (

where A^ = {9 € A:
By using the same arguments as in proposition (2.3), one can see that <pJ{Q<r) n A'n

is contained in the union of at most c,AJ parallelograms with sides of length c9S0A~n

and c^0S0X~J (c9, cl0 are constants depending only on <p). Therefore:

I I IVs -id

"•/ + A"")<2c,,5oA"-'. (2.26)

Hence by (2.23), (2.26) and (1.4) we get

(2.27)
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so that, for k large enough,

/ i(B<n)(O-))>ca^/2. (2.28)

•
PROPOSITION (2.8). Let r, s € Z, r<s. IfS0 is small enough, k = s-r is large enough
and <re{ai, cr2} {see proposition (2.7)), then there is d>0 such that for any n

:d>O, (2.29)

where D^ denotes the variance with respect to /*.

Proof. If So is small enough, one can choose ae.{o-^, a2}, tr'e {0 , . . . ,«} such that
Oe & and either <?„ <= A, <?„<= T 2 \A or Qa a T 2 \A , <?„,<= A. Moreover, if s - r is
large enough, we can find i , . / - 0 s u c n that <p'(Qa)n Qa^0, <p} {()„•) ̂  Qa-9

i0 and
i+j<s-r. We define two sequences rj, rf'e ij>s] in the following way: T)U. = O- for
fc e [r, s] (the sequence 17 is compatible since <p(Qa-) o Q^ ¥• 0 ) and T>' is any compat-
ible sequence such that rj'r-o; Vr+i = o~' and 17̂  = 0- for r + i + j < f c < s (such a
sequence exists because of the choice of i and j). For every e, e'e. % which agree
in the interval [r, s] with 17 and 77' respectively, we have either

I (^(eJ-li-V))*!, if<?,<=A,
or ' (2.30)

since ^ ( e ) is constant for k e [r, s] and f ,+Us) ^ f r+Ue')- We obtain the proposition
by estimating

inf

€ »: 8jk = ijk, fce[r, s]}), M({e 6 »: ek = ijt, Jke[r, 5]})). (2.31)

Equation (2.31) follows from (2.30) and an elementary estimate of the conditional
variance. •

PROPOSITION (2.9). For a dense open set of intervals [a, fc]<= [0,1] one can choose 80

so small, a, a' € [tr,, o-2] {see proposition (2.7)), k so large, that for r, s e Z, s-r>k
there exists fi, depending only on s — r, such that for m a 2 and n > 0 :

sup max / t ( { e e t : ^ €i"\e)=j mod m

(2.32)

Let us first assume that [a, b] satisfies the hypotheses
( a ) { { p e T 2 : p l = a } 2

(b) a * 0 , fc*l.

https://doi.org/10.1017/S0143385700002856 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002856


194 P. Calderoni, M. Campanino and D. Capocaccia

The hypothesis (2.33(b)) is made just for the sake of simplicity; when it is verified,
the thesis of proposition (2.7) is true for an arbitrary choice of <T,, cr2e {0 , . . . , 3}.
Let fteH(0)naA, then h uniquely defines h", hseU such that h = hue" (mod 1)
and h = hses (mod 1). Let c, b, b'eU2 be defined as:

(0 c = {£eu, ten}n{q + Ze\ZeU}, where q = (0, l )eR2;
(ii) b = h + AN-lc-A~Nc; ' (2.34)

(iii) b' = h + ANc~A-N+xc;
where JV will be suitably chosen in the following. Let c, b, b' be the points of T2

corresponding to c, b, b'. With the notation /j+(-> = hs(u) e\(u), <pk(b) = (b\k),b2
k)),

<pk(b') = (b\{k\ b'2
w) it follows from the previous definitions and (2.34) that, for any

K

( a ) = h~\k= h~\k + cl{\^k+N'l] - A"1"^1) (mod 1)
(2 35)

b, = / l A + c 1 ( A A
( } =^A f c + c-,(A-|k+N|-A-|

Before going on with the proof, we make some comments on the behaviour of the
orbits of b and b'. We can see from (2.34) and (2.35) that <pk{b) and <pk(b'), for k
small in comparison with N, are obtained by adding small perturbations to <pk(h).
If we look at the first coordinates, which determine whether a point belongs to A,
we see that the perturbations have the same direction for k T4 0, whereas for k = 0
they have opposite directions. For k = ±N+k0, with |fco| small with respect to JV,
<pk+\b) and <pk(b') are close to ^^(c). For the other values of k, <pk{b) and cpk{b')
are both close to 0.

Precisely, for N big enough, one can find integers NX,N2,N3, with N3 > N > N2>
N, such that:

(h,) inftez {d(<pk{b), dA)} > p > 0; infke2 {d(<pk(b'), 3A)} > p a 0.
This follows, for N large enough, from the fact that there is only a finite set of k,
for which <pk(h) or <pk(c) are close to dA. Moreover

(h2) x^b)^X^b')\
(h3) X^<Pk{b)) = X*(<pk(b')), for |k| s N, , k * 0.

In fact, XA(<pk(b)) = XA(<Pk(b')) = Xn(<Pk(b)) for those k such that <pk(h)£8& and,
if fc is such that <pk(/i)edA, (h3) is also true because the perturbations <pk(b-h)
and cpk(b'-h) have the same direction. Next

(h4) XA(<P~k(b))=XA(<Pk(b')) = 0, forN,s | fc |<N2.
For N large enough, we can choose JV,, JV2 such that, for JV,s|fc|<JV2, all the
three terms in (2.35) are small (for example JV,, JV2— JV/2). Furthermore

(h5) ^A(«p"+1(b)) = ̂ («p't(fc')), for JV2<|fc|<N3.
This follows from an argument similar to the one used for (h3), but here it is the
orbit of c that is perturbed. Finally

(h6) x\(<Pk(b)) = X*(<Pk(b')) = 0, for|fc|>JV3.
For every Markov partition 0>(O) with diameter smaller than p/2, we can find cr,
a-'e {0 , . . . , 3}, such that QCT n A = Q^n A = 0 , and two sequences 17, 17' e ^-NliN^
with ri_Ny=vLNi = cr, TJN,= VN, = cr' such that beHkl-N, <p~k(QVk) and fc'e
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(~)kl-N,<P~k(QVk)- This is possible through use of (P2) of § 1. So, given r, s e Z ,
s - r > 2 N 3 , w e can define two sequences T, T'e f[rs] Tr+1 = r)_N3+i , T;

r+I = r}LNy+i for
0< i s 2N3 and rr+1 = r^+j = cr' for 2N3< i < s - r. It follows from (h,)-(h6) and from
the construction of T and T' that if e, e'€ f and e, = T,, e! = T! for i e [r, s], then for
any n> 0

= 1. (2.36)

Thus, for every fixed £'e ^r_n>r], £"e ^ [ s s + n ] with £ r = c r and £"s—<T'> and for any
integers j , m, m > 2, 0 < j < m - 1, we have

e, = f ; , i e [ r - n , «], e; = ^[', i€[5, s + ri

s 1 -min (/^({e e f: e, = Tj, ie[r, s]}), n({e e f: e, = TJ, ie[r, s]}))

s l - ( inf P,,)1"' (2.37)

Hence (2.32) is proved.
Since H(0) is a dense set in T2, given an interval [a, b]<=[0,1] there is another

interval [a', b'~\ with max (\a - a'\, \b - b'\) arbitrarily small, such that for [a', b'~\ the
hypotheses (2.33) hold. On the other side, if [a, b] satisfies (2.33) and [a", b"~\ is
such that max (|a — a"|, \b-b"\)<p/2, where p is the constant appearing in (h|),
then it follows immediately that the sequences T, T' e «ftr s] constructed for [a, b] also
work for [a", />"]. •

Remark (2.10). Let us assume 0£dA and that there is a finite set of homoclinic
points h{,..., hv whose orbits keep away from dA and such that the largest common
divisor of the n, =Y.k~=-ooX*(<Pkbi), for i = 1 , . . . , u, is 1. Then (2.32) is verified by
considering compatible sequences corresponding to the points h,,..., hv.

3. Local limit theorem
Assumptions (3.1). Throughout this section we will assume SPi0), k, ax, o-2 e {0 , . . . , 3}
are chosen in such a way that the conclusions of propositions (2.7), (2.8) and (2.9)
are true with the constants a, d, /3, and <o as in 2.4. E^, DM and £M{, DM{ will denote
respectively the expectation and the variance with respect to /x and with respect to

Definitions (3.2). Let p(N) and q(N) be sequences of positive integers, m =

LEMMA (3.3). Let p{N) and q(N) be such that lim\/N/m=0. Then for a, a'e
{<ru(T2},p(N)>k,0<a'<a,

lim sup ^(\sei: £ XB<->l~.M^<*lm\)>fN = 0. (3.1)
N ° ° M J/

https://doi.org/10.1017/S0143385700002856 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002856


196 P. Calderoni, M. Campanino and D. Capocaccia

Proof. Let w'>0. Using proposition (2.5) and (2.7) and applying Chebychev's
inequality we get, for N big enough,

: I«;Vy)(«)£«'m

i:/,o[O.n+a)'IogN]=0 '

< c12 m/((o - a')m - [ » ' log JV])2+ o-, 5" ' 0 8 N-2", (3.2)

where we have estimated the variance of X,;WO,n+(U'iogN;i=0Xflf;W') with respect
to /t using the summabiJity of the mixing coefficients (2.18). The lemma is obtained
by taking a>' large enough. •

LEMMA (3.4). There exists 0 > 0 such that, ifN is large enough, DM(X"o' g\n)) & ON.

Proof. Let no = [« log No] be given and n > n0. Then
n - l

( N- l

(N- lz t
i=0

\ i=0 /

I X |
k = "o |j|>no+2fc+2

Y d»A - c13Nno(max (A"1, fi))^. (3.4)
i=0 /

The last inequality follows from | f i k + 1 ) - ^ k ) | s . l , /*({f<ik+I)'4f<ik)})^4«oA"k (see
(2.20) of proposition (2.5)) and (2.18) of proposition (2.5) (see e.g. [7, th. 17.2.1,
p. 306]). Now let q(N) = 2no+1, p{N) = k znd J N = f K n ] v ( V r = i *>,)• It follows
from propositions (2.7), (2.8) and lemma (3.3) that if 0< a'< a, N is big enough
and AN(a, a') is the event

AN(o-,cr') =

then

o'mj,

ffio; a'))>clA(N-n-l)/(2no+k+ 1). (3.5)

The result follows from (3.4) and (3.5) for n0 sufficiently large. •
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We are now ready to prove the main result.

THEOREM (3.5). Let [a, b~\ belong to the dense open set of subintervals that verify
(2.32). Then (2.17) and hence (0.2) hold.

Proof. We know from proposition 2.4 that (2.17) implies (0.2). So we need only
prove (2.17). Let us put:

j=o

Lemma 3.4 implies that cr2>0.
From now on, we will use the notation: E" = E^Y.1^'1 g^), D~ =

£V(X.1o' fi"')- We give now some inequalities holding uniformly in £e %_-„,„•£
|£?-E? |=£c1 5 logN (3.6)

|Df
N-D?|<c16(logJV)2 (3.7)

I"' -<T2|/| < c n , for every interval /<=[0, N- 1] (3.8)

. (( I ^n)- ^ c,8|/|2, for every finite interval 7 ^ Z . (3.9)

(3.6) follows from (2.18) and the following inequality:

t/ log N]

i=0 '
/ N-l \ / N-l

I fj"> ) - £ j I
\i=[<u'log N]+l / \i=[w'log N]+l

by choosing w'>2a>. (3.8) is an easy consequence of proposition (2.5). (3.7) can be
proved by using (3.8), proposition 2.5 and the following inequality:

2 I 2 l in )

1=0 j = i

+2 £
i=2n+l

i=Oj=2(i+n)+l

8(4n2+n(2n +

+ 2 I <r2 X
i=O k = i+2

c,9(w log AT)2.

X c7-1(l+2n)S'+2 I
i=2n+l i=0
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(3.9) also follows from proposition (2.5) by developing the product (see e.g. the
proof of lemma 18.5.2 in [7, p. 348]).

(2.17 (i)) and (2.17 (ii)) follow from (3.6) and (3.7). In order to get (2.17 (Hi))
let us make the following standard decomposition:

sup (VDf P»(fc)-exp (-(k-E?)2/2D?)/j2^)
OsksN

Jf,(N).

\<pNX(t)-cxp(-t2/2)\dt + ̂  cxp(-t2/2)dt

!*>*«( 0 1 * + I _\(pNti(t)\dt
fl(N)<:\t\<yjN

(3.10)
where

We fix fi(N) = Nus, whereas y will be suitably chosen in the sequel.
We start with the estimate of Ix. This estimate proves a generalized version of

the integral limit theorem. We note that:

- C16(log 2 + cr,< 2a/log
+ C|5 log N/J(T2N - C]6(log N)2, (3.11)

where we estimate the first term in the last inequality as in the proof of (3.6) and
we have made use of (3.6) and (3.7). Then we can substitute <pNtC with
£M(exp (it(£"~o €kn)- E%)/-JD")) in the integral /,.

We now make the decomposition of definition (3.2) with the choice p( N) = N7n°,
q(N) = N1/l° and put rj\n) = v\n)~^(v^), £") = C\n)-Ell(C\"))- The sequences
p{N) and q(N) are chosen in such a way that the ^|n)'s can be neglected, whereas
the rj\"hs are so weakly dependent that we can apply to them a classical limit
theorem for independent variables (see [7, Ch. 18]).

We have:

£M exp

N-l

£M ( exp ( it I
fc = O

-(£M(exp (itrj\n)/JD?)))" (3.12)
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It follows from (2.9) of proposition (2.5) and from the inequalities (3.6), (3.7) and
(3.8) (see [7, th. 18.4.1, p. 338]) that:

lim N1/8 sup

We can write:

= 0 (3.13)

|(fv(exp (it -exp (-t2/2)\

<|(£M(exp (iTi7(
1"

>/vmDM(77<
1"

))))m-exp ( - T 2 / 2 ) |

+ | ex P ( - r 2 /2 ) -exp( - r 2 /2 ) | (3.14)

where r = timD^rj^)/D™)1/2.
The first tenn_ of the right-hand-side of (3.14) can be bounded by (7T 3 /6 ) x

(£M(|^i")|3)/(Vffi[DM(^<
1"

))]3/2) • exp ( - T 2 / 4 ) using [5, theorem 2, p. 202]. So, by
applying the estimates (3.7), (3.8) and (3.9) and inserting the expressions of p, q
and m as functions of N we get

sup Urn J ^g|(£M(exp(i(7J(rVVDf)))m-exp(-<2/2)|^ = 0 (3.15)

The estimate of I{ is obtained by combining (3.11), (3.13) and (3.15).
The estimate of I2 is obvious. In order to estimate 73 and J4 we make the

subdivisions of definition (3.2) with the choice p{N) = k, q(N) = 2n + \ (see also
the assumptions (3.1) for the constants that appear in the sequel). For 0<a'<a,

or — ac ., (\/m

J N — ^[-n,n] v V V i=O •

\N(*,<r') = \ezf: I XB\"\
I i= l

o-,o-'e Wi,o-2}

)>a'm>, £&:

we get:

. (xANi^ exp [it Y

VC{AN{<T,<T'))) (3.16)

The fact that f(k
n) is a cylinder function, with base [k-n, fe+n], and the definition

of AN{(r, a') imply that for every ee AN(cr, a') there are at least a'm intervals 7,
such that T/I"', only depends on e,, j e / f u /, u Ji+i and, for k£ /,-, ^"'(e) = ^fcn)(e'),
for all e'e % such that e) = e,-, 71̂  /,. Then, by using the stationarity of fi, we get:

exp (ft Y fin)/VDf

<sup *, o-')\)a'm. (3.17)
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Now we make separate estimates for t belonging to the regions corresponding to
73 and 74. By proposition (2.8) and Taylor's expansion of the characteristic function,
there exists a constant y> 0 and cr&{o-x, O-2} such that

|7fM(exp (itV\n)/sfD?)\STN, B\i\a, <r'))\<exp (-dt2/4D?) (3.18)

for\t\/jD?<y.
For the region corresponding to 74 we can use (2.32) of proposition (2.9) to make

an estimate of the characteristic function:

|7fM(exp (itV[n)/JD?)\STN, B\i\tr, tr'))\ ^ e~c«, (3.19)

for y< | f | /VD^< IT, where c20 is a positive constant depending on B and k. We
now prove the inequality (3.19). Let us fix a conditioning in B{,"\o; a') and denote
by Po, • • •, Pk the conditional probabilities 7}\n) to assume the values 0, 1, . . . , k. We
see from (2.32) that there are fco,..., kd with 0<k0<- • -<kd<k, d>\ such that
l.c.d. {\kj-ko\,\<j<d}=l and infOsj5Sd pkj>p/(k+1). Then there are ?'>0,
1<7 <d, such that for every T€[-TT, -n-], |T |> y, |cos ((fc,--fco)T)-l)|> y' and

i
k=O

. (3.20)

Now, inserting in the right-hand-side of (3.16) the estimate (3.1) of lemma (3.3)
and the inequalities (3.18), (3.19) and (3.20), we obtain that:

lim 73 = 0, lim 74 = 0. (3.21)
7V-»co N-»oo

The theorem is proved. •

4. Concluding remarks
Integral theorems for sequences of random variables arising in number theory are
proved, e.g., in [10] (limit theorem for the continued fraction expansion), in [6] for
functions of the variables {A nx} with A = 2. In the case A = 2, Moskvin and Postnikov
[8] prove the local limit theorem. The same result is derived in a general context
by Rousseau-Egele [11] by studying the spectral properties of the Ruelle-Perron-
Frobenius operator along the lines of the proof of the local limit theorem for Markov
chains by Nagaev [9]. All these papers deal with the iterates of expanding maps.
In our case, after the reduction to the symbolic dynamics on the torus, the variables
are functions of all the sequence of symbols, whereas in the case of expanding maps
of the interval they depend just on a half line and the arithmetical problem seems
easier to treat.
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