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Abstract. We show that the Kodaira dimension of the moduli space of polarizedK3 surfaces of
degree 2n is nonnegative ifn = 42, 43, 51, 53, 55, 57, 59, 61, 66, 67, 69, 74, 83, 85, 105, 119 or 133.
We use an automorphic form associated with the fake monster Lie algebra constructed by Borcherds.
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1. Introduction

LetK2n be the coarse moduli space ofK3 surfaces with a primitive polarization of
degree 2n. It follows from the Torelli theorem forK3 surfaces thatK2n is described
as an arithmetic quotientD2n/Γ2n whereD2n is a 19-dimensional bounded sym-
metric domain of type IV andΓ2n is an arithmetic subgroup of O(2,19)Q. Recently,
Borcherds [2] constructed a remarkable automorphic formΦ of weight 12 on a
26-dimensional bounded symmetric domain of type IV. By dividingΦ by a product
of linear functions vanishing onD2n and by restricting it toD2n, we have an
automorphic formΦ2n onD2n with respect toΓ2n (see Borcherdset al. [3]). The
purpose of this note is to show the following theorem:

THEOREM. Assume thatn = 42,43,51,53,55,57,59,61,66,67,69,74,83,85,
105,119or 133.ThenΦ2n is a cusp form of weight19on D2n with respect toΓ2n.

An automorphic form of weight 19 onD2n gives a section of the canonical line
bundle of the smooth locus ofD2n/Γ2n. Moreover, it is known that a cusp form of
weight 19 gives a global section of the canonical line bundle of a smooth model of
a compactification ofD2n/Γ2n (Bauermann [1]). Thus we have the corollary:

COROLLARY 1.1.Assume that n is the same as above. Then the Kodaira dimen-
sion ofK2n = D2n/Γ2n is nonnegative.
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If m = n·l2 for some natural numberl, thenΓ2n ⊃ Γ2m and we have a dominant
map fromD2m/Γ2m toD2n/Γ2n (O’Grady [12], Kond̄o [6], Lemma 3.2). Hence,
we have

COROLLARY 1.2.Assume thatn is the same as above andm = n·l2 for some l.
Then the Kodaira dimension ofK2m is nonnegative.

We remark that if 16 n 6 11,17 or 19, thenK2n is unirational and, in particular,
its Kodaira dimension is−∞. Forn 6 4, this is classical and for othern’s, this was
shown by Mukai [7], [8], [9]. On the other hand, in the paper [6], the author proved
that if n = p2 andp is a sufficiently large prime number, thenK2n is of a general
type, i.e. the Kodaira dimension ofK2n is equal to dimK2n (= 19). However, the
author did not have an effective estimate ofp. Also, Gritsenko [5] proved that the
Kodaira dimension of the double coverD2n/Γ̄2n of D2n/Γ2n is nonnegative ifn
is not perfect square and positive ifn is square free andn > 3 by using the lifting
of Jacobi forms, wherēΓ2n = Γ2n ∩ SO(2,19)Q.

2. Preliminaries

A latticeL is a freeZ-module of finite rank endowed with an integral symmetric
bilinear form〈 , 〉. If L1 andL2 are lattices, thenL1⊕L2 denotes the orthogonal
direct sum ofL1 andL2. An isomorphism of lattices preserving the bilinear forms
is called anisometry. A sublatticeS of L is calledprimitive if L/S is torsion free.

A lattice L is even if 〈x, x〉 is even for eachx ∈ L. A lattice L is non-
degenerateif the discriminantd(L) of its bilinear form is nonzero, andunimodular
if d(L) = ±1. If L is a nondegenerate lattice, thesignatureof L is a pair(t+, t−)
wheret± denotes the multiplicity of the eigenvalues±1 for the quadratic form on
L⊗R.

Let L be a nondegenerate even lattice. The bilinear form ofL determines a
canonical embeddingL ⊂ L∗ = Hom(L,Z). The factor groupL∗/L, which is
denoted byAL, is an Abelian group of order|d(L)|. We extend the bilinear form
onL to the one onL∗, taking value inQ, and define

qL: AL → Q/2Z, qL(x+ L) = 〈x, x〉+ 2Z (x ∈ L∗).

We callqL thediscriminant quadratic formof L.
We denote byH the hyperbolic lattice defined by

(
0
1

1
0

)
which is an even

unimodular lattice of signature (1,1), and byAm, Dn or El an even negative
definite lattice associated with the Dynkin diagram of typeAm,Dn orEl (m > 1,
n > 4, l = 6, 7, 8). Aroot of a latticeL is a vectorr in L with 〈r, r〉 = −2. For an
even negative definite latticeL, we denote byR(L) the sublattice ofL generated
by all roots inL which is called theroot sublatticeof L and isometric to a direct
sum of someAm,Dn, El.
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LetX be aK3 surface. PutL = H2(X,Z). ThenL admits a canonical structure
of a lattice induced from the cup product. It is an even unimodular lattice with
signature (3,19) and, hence, isometric toH⊕H⊕H⊕E8⊕E8 (e.g., Nikulin [11],
Thm. 1.1.1). Leth be a primitive vector ofLwith 〈h, h〉 = 2n. Then the orthogonal
complement ofh in L is isometric toL2n = H ⊕ H ⊕ E8 ⊕ E8 ⊕ 〈−2n〉. Put
Ω2n = {[ω] ∈ P(L2n ⊗ C): 〈ω, ω〉 = 0, 〈ω, ω̄〉 > 0}. ThenΩ2n consists of two
connected components. We denote byD2n either one connected component, which
is a bounded symmetric domain of type IV and of dimension 19. LetΓ2n be the
group of isometries ofL which fix h and preserve the componentD2n. ThenΓ2n

acts onD2n properly discontinuously and, hence, by Cartan’s theoremD2n/Γ2n

has a canonical structure of normal analytic space. We callD2n theperiod space
of K3 surfaces with a primitive polarization of degree 2n. It follows from Torelli
theorem forK3 surfaces thatD2n/Γ2n is a coarse moduli space ofK3 surface with
a primitive polarization of degree 2n.

A boundary componentof D2n is a maximal connected complex analytic
subset inD̄2n \ D2n where D̄2n is the topological closure ofD2n in {[ω] ∈
P(L2n ⊗ C): 〈ω, ω〉 = 0}. A boundary component is calledrational if its sta-
bilizer subgroup of O(L2n ⊗ R) is defined overQ. It is known that the set of
rational boundary components ofD2n bijectively corresponds to the set of all
primitive totally isotropic sublattices ofL2n (Scattone [13], (2.1.7)). IfE is a
totally isotropic sublattice, then the corresponding rational boundary component is
defined byP(E ⊗C)∩ D̄2n. Since the signature ofL2n is (2,19), the dimension of
a rational boundary component is either 0 or 1. For simplicity, we now assume
that n is square-free. LetF be a rational boundary component andE the cor-
responding primitive totally isotropic sublattice. If dimF = 0, thenF is unique
moduloΓ2n and if dimF = 1, then we have an orthogonal decomposition

L2n = H ⊕H ⊕K,

whereH ⊕ H containsE andK ' E⊥/E (Scattone [13], Thm. 4.0.1, Lemma
5.2.1). Let{e1, . . . , e21} be a base ofL2n such that

(〈ei, ej〉)16i,j621 =



0 0 0 0 1

0 0 0 1 0

0 0 Q 0 0

0 1 0 0 0

1 0 0 0 0


,

where{e1, e2} is a base ofE andQ is the intersection matrix ofK. In case
dimF = 0, F is unique moduloΓ2n and, hence, we may assume thatE is
generated bye1. Denote byq0 (resp.q1) the symmetric bilinear form associated
with the matrix(〈ei, ej〉)26i,j620 (resp.Q). Also denote byL0 the sublatticee⊥1 /e1
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of L2n. Letz = Σziei be a homogeneous coordinate ofP(L2n⊗C). Then we have
the following unbounded realization ofD2n.

(1.1) In case dimF = 0:

D2n ' {z = (z2, . . . , z20) ∈ C19: (Im(zi)) ∈ C(F )},

whereC(F ) = {y = (y2, . . . , y20) ∈ R19: q0(y, y) > 0, y2 > 0}.
(1.2) In case dimF = 1:

D2n ' {(z,w, τ) = (z2, z3, . . . , z19, z20)

∈ H+ × C17×H+: Im(z)− Re(hτ (w,w)) > 0},

wherehτ (w,w′) = {−q1(w, w̄′) + q1(w,w′)}/4 Im (τ) (see Kondo [6], Sect. 2).
Let f be an automorphic form onD2n with respect toΓ2n. Thenf has an

expansion with respect to(1.1) which is called theFourier expansionof f atF :

f =
∑

ρ∈C̄(F )∩L∗0

cρ exp(2π
√
−1 · q0(ρ, z)),

whereC̄(F ) is the closure ofC(F ). Also with respect to (1.2),f has an expansion
which is called theFourier–Jacobi expansionof f atF :

f =
∑
m>0

θm(τ, w) exp(2π
√
−1mz).

We call f a cusp formif for any rational boundary components the initial term
of the above expansion vanishes, i.e.c0 ≡ 0 if dim F = 0 andθ0(τ, w) ≡ 0 if
dimF = 0. Note thatθ0(τ, w) does not depend onw. For more details, we refer
the reader to Borcherds [2], Gritsenko [5], Kondo [6].

3. Automorphic Forms on the Period Domain ofK3 Surfaces

In the following, as in Borcherdset al. [3], we identifyL2n = H⊕H⊕E8⊕E8⊕
〈−2n〉with the sublatticeH⊕H⊕E8⊕E8⊕Zv of II2,26 = H⊕H⊕E8⊕E8⊕E8,
wherev is a primitive vector inE8 with 〈v, v〉 = −2n. Let U be the orthogonal
complement ofv in E8. LetD be the 26-dimensional bounded symmetric domain
of type IV associated withII2,26. Under the above identification,D2n ⊂ D. In the
paper [2], Example 2 of section 10, Borcherds constructed an automorphic formΦ
of weight 12 onD with respect to the group of isometries ofII2,26 which preserve
D. The restriction ofΦ onD2n is identically 0 wheneverU contains a root. So first
divideΦ by a product of linear functions vanishing on the divisors of each of these
roots inU , and then restrict it onD2n. Then we have an automorphic formΦ2n on
D2n with respect toΓ2n which has the following properties (Borcherdset al. [3],
also see Borcherds [2], Thm. 13.1 and its proof):
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(2.1) Φ2n vanishes on the hyperplanes ofD2n each of which is orthogonal to a
vectorr′ ∈ L∗2n with −2 6 〈r′, r′〉 < 0. Herer′ is the projection of a rootr of
II2,26.

(2.2) The weight ofΦ2n is equal to the weight(= 12) of Φ plus half the number of
roots ofU .

Let {ei}16i68 be a set of simple roots ofE8 which satisfies the following:

〈ei, ei〉 = −2, 〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e4〉

= 〈e3, e5〉 = 〈e5, e6〉 = 〈e6, e7〉 = 〈e7, e8〉 = 1 and

〈ei, ej〉 = 0 for other i, j.

LetR be a root lattice isometric toA2⊕A2⊕A1 orA3⊕A1. Note that the number
of roots inR is 14. In the case whereR = A2 ⊕ A2 ⊕ A1, we considerR as one
of the following sublattices ofE8:

(a) 〈e1, e2, e4, e6, e7〉, (b) 〈e1, e2, e5, e6, e8〉, (c) 〈e1, e2, e5, e7, e8〉,

(d) 〈e1, e3, e4, e6, e7〉, (e) 〈e1, e3, e4, e7, e8〉.

In the case whereR = A3 ⊕ A1, we considerR as one of the following
sublattices ofE8:

(f) 〈e1, e2, e3, e6〉, (g) 〈e1, e2, e3, e7〉, (h) 〈e1, e2, e3, e8〉,

(i) 〈e2, e3, e4, e7〉, (j) 〈e2, e3, e5, e7〉, (k) 〈e2, e3, e5, e8〉,

(l) 〈e3, e4, e5, e7〉, (m) 〈e1, e5, e6, e7〉, (n) 〈e4, e5, e6, e7〉,

(o) 〈e1, e6, e7, e8〉, (p) 〈e2, e6, e7, e8〉, (q) 〈e4, e6, e7, e8〉.

If R = 〈eα, eβ , eγ , eδ , eκ〉 (resp.R = 〈eα, eβ , eγ , eδ〉), then we take a vectorv as
a sum:

v = e∗λ + e∗µ + e∗ν (resp. v = e∗κ + e∗λ + e∗µ + e∗ν),

where{α, β, . . . , ν} = {1,2, . . . ,8} ande∗α is the dual ofeα (see Bourbaki [4],
Planche VII). SinceE8 is unimodular,v ∈ E8. A direct calculation shows that the
number−〈v, v〉/2 is equal to

(a) 61, (b) 55, (c) 67, (d) 43, (e) 66, (f) 57, (g) 69, (h) 83, (i) 59, (j) 42,
(k) 53,(l) 51,(m) 85,(n) 74,(o) 133,(p) 105,(q) 119.

Since〈v, v〉/2 is square free,v is primitive inE8. Obviously any root inU (= v⊥

in E8) is contained inR. Hence, the number of roots ofU is 14. Thus, we have an
automorphic formΦ2n of weight 19 (= 12 + 14/2) by (2.2).
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THEOREM. Φ2n is a cusp form of weight19.
Proof. It suffices to see thatΦ2n vanishes on the top dimensional (= 1-dim.)

rational boundary components ofD2n. Sincen is square free, the set of primitive
totally isotropic sublattices of rank two corresponds to the set of isomorphy classes
of even negative definite latticesK such thatL2n ' H ⊕ H ⊕ K (Scattone
[13], Thm. 5.0.2). Here totally isotropic sublattice is contained inH ⊕ H. Since
qK ' qL2n ' −qU , we have an even negative definite unimodular latticeN of
rank 24 such thatK andU are primitive sublattices ofN ,K⊥ ' U andU⊥ ' K
(Nikulin [11], Cor. 1.6.2). Thus, eachK is obtained as the orthogonal complement
of a primitive sublatticeU of someN . Let U ⊂ N be a primitive embedding.
SinceU containsR,N also contains a root. Such latticesN are classified into 23
isomorphism classes which are characterized by its root sublatticeR(N) (Niemeier
[10]). Since rankR(N) = 24, there exists a rootr of N whose projectionr′ into
K∗ has a negative norm:−2 6 〈r′, r′〉 < 0. Note that the totally isotropic primitive
sublattice of rank 2 corresponding toK is contained in the orthogonal complement
of r′. It follows from (2.1) thatΦ2n vanishes the hyperplane orthogonal tor′. Let

Φ2n = Σθm(τ, w)· exp(2π
√
−1mz)

be the Fourier–Jacobi expansion ofΦ2n at this boundary component. Since

θ0(τ, w) = lim
Im(z)→∞

Φ2n,

andθ0(τ, w) does not depend onw, the above implies thatθ0(τ, w) ≡ 0. 2
Remark. There are another embeddings ofR into E8. In the above, we take

embeddings such that the number〈v, v〉/2 is square free. Also we can takev as
a linear combination ofe∗λ, e

∗
µ, e
∗
ν (resp.e∗κ, e

∗
λ, e
∗
µ, e
∗
ν ) with positive coefficients.

Then Φ2n is a cusp form of weight 19 whenever〈v, v〉/2 is square free and
Corollaries 1, 2 hold for thesen.
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