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Abstract. We show that the Kodaira dimension of the moduli space of polariZ8dsurfaces of
degree 2 is nonnegative it = 42, 43, 51, 53, 55, 57, 59, 61, 66, 67, 69, 74, 83, 85, 105, 119 or 133.
We use an automorphic form associated with the fake monster Lie algebra constructed by Borcherds.
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1. Introduction

Let Ko, be the coarse moduli space&f3 surfaces with a primitive polarization of
degree 2. It follows from the Torelli theorem fof 3 surfaces thdt,,, is described
as an arithmetic quotieri®y, /I'2, whereD,, is a 19-dimensional bounded sym-
metric domain of type IV andl,,, is an arithmetic subgroup of(@, 19)q. Recently,
Borcherds [2] constructed a remarkable automorphic férmf weight 12 on a
26-dimensional bounded symmetric domain of type 1V. By dividinigy a product
of linear functions vanishing of,,, and by restricting it toD,,,, we have an
automorphic formd,,, on D5, with respect td',, (see Borcherdst al. [3]). The
purpose of this note is to show the following theorem:

THEOREM. Assume that = 42,43 51, 53,55,57,59, 61, 66,67, 69, 74, 83, 85,
105 1190r 133.Then®,, is a cusp form of weight9 on D,,, with respecttd’s,,.

An automorphic form of weight 19 o®,,, gives a section of the canonical line
bundle of the smooth locus @, /T",,,. Moreover, it is known that a cusp form of
weight 19 gives a global section of the canonical line bundle of a smooth model of
a compactification 0Ds,, /"2, (Bauermann [1]). Thus we have the corollary:

COROLLARY 1.1. Assume that n is the same as above. Then the Kodaira dimen-
sion ofKCy, = Dy, /T2, IS nonnegative.
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If m = n-12 for some natural numbér thenT's, O I's,, and we have a dominant
map fromD,,,, /T2y, t0 D2, /T2, (O’'Grady [12], Kond [6], Lemma 3.2). Hence,
we have

COROLLARY 1.2. Assume that is the same as above and = n-12 for some |.
Then the Kodaira dimension &f,,,, is nonnegative.

We remarkthatif 1< n < 11, 17 or 19, therk,,, is unirational and, in particular,
its Kodaira dimension is-oo. Forn < 4, this is classical and for othetis, this was
shown by Mukai [7], [8], [9]. On the other hand, in the paper [6], the author proved
that if » = p? andp is a sufficiently large prime number, thé,, is of a general
type, i.e. the Kodaira dimension #if,, is equal to dimC, (= 19). However, the
author did not have an effective estimatepofAlso, Gritsenko [5] proved that the
Kodaira dimension of the double covB®,, /T2, of D,, /T2, is nonnegative if
is not perfect square and positivenifis square free and > 3 by using the lifting
of Jacobi forms, wher€y,, = I'z, N SO(2, 19),.

2. Preliminaries

A lattice L is a freeZ-module of finite rank endowed with an integral symmetric
bilinear form(, ). If L1 and L, are lattices, ther1& L, denotes the orthogonal
direct sum ofL; andLL,. An isomorphism of lattices preserving the bilinear forms
is called arisometry A sublatticeS of L is calledprimitiveif L/S is torsion free.

A lattice L is evenif (z,z) is even for eache € L. A lattice L is non-
degeneraté the discriminant/(L) of its bilinear form is nonzero, anchimodular
if d(L) = £1. If L is a nondegenerate lattice, thignatureof L is a pair(t,t_)
wheret,. denotes the multiplicity of the eigenvalug4 for the quadratic form on
L&R.

Let L be a nondegenerate even lattice. The bilinear forni afetermines a
canonical embedding C L* = Hom(L,Z). The factor group.*/L, which is
denoted byAy, is an Abelian group of ordetl(L)|. We extend the bilinear form
on L to the one orL*, taking value inQ, and define

qr: A, — Q/2Z, qr(x+ L) = (z,x) + 2Z (x € L*).

We callq;, thediscriminant quadratic fornof L.

We denote byH the hyperbolic lattice defined b@ é) which is an even
unimodular lattice of signature (1,1), and by;,,, D,, or E; an even negative
definite lattice associated with the Dynkin diagram of typg, D,, or E; (m > 1,
n > 4,1=6,7,8). Aroot of a lattice L is a vector in L with (r,r) = —2. For an
even negative definite lattice, we denote byR(L) the sublattice of. generated
by all roots inL which is called theoot sublatticeof . and isometric to a direct
sum of somed,,,, D,,, E;.
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Let X be aK'3 surface. Puk = H?(X, Z). ThenL admits a canonical structure
of a lattice induced from the cup product. It is an even unimodular lattice with
signature (3,19) and, hence, isometridie> H & H ® Eg® FEg (e.g., Nikulin [11],
Thm. 1.1.1). Leh be a primitive vector of. with (h, h) = 2n. Then the orthogonal
complement ofh in L is isometric toLy, = H ® H © Eg ® Eg @ (—2n). Put
Qo = {[w] € P(L2, ® C): (w,w) = 0, (w,w) > 0}. Theny, consists of two
connected components. We denotéghy, either one connected component, which
is a bounded symmetric domain of type IV and of dimension 19Ilgtbe the
group of isometries of. which fix 4 and preserve the componépy4,,. ThenI',,
acts onDy,, properly discontinuously and, hence, by Cartan’s theofenyT'2,
has a canonical structure of normal analytic space. Welzallthe period space
of K3 surfaces with a primitive polarization of degree. 2 follows from Torelli
theorem fork'3 surfaces thab,,, /T",,, is a coarse moduli space Af3 surface with
a primitive polarization of degreen2

A boundary componendf D, is a maximal connected complex analytic
subset inD,, \ D2, whereD,, is the topological closure oDy, in {[w] €
P(L2, ® C): (w,w) = 0}. A boundary component is calleational if its sta-
bilizer subgroup of QL,, ® R) is defined overQ. It is known that the set of
rational boundary components @f, bijectively corresponds to the set of all
primitive totally isotropic sublattices of.,, (Scattone [13], (2.1.7)). If£ is a
totally isotropic sublattice, then the corresponding rational boundary componentis
defined byP(E ® C) N D,,. Since the signature df,, is (2,19), the dimension of
a rational boundary component is either O or 1. For simplicity, we now assume
thatn is square-free. LeF' be a rational boundary component aBdthe cor-
responding primitive totally isotropic sublattice. If difi = 0, thenF" is unique
moduloI'y, and if dim F’ = 1, then we have an orthogonal decomposition

Loy=H®HDK,

where H @ H containsE and K ~ E*/E (Scattone [13], Thm. 4.0.1, Lemma
5.2.1). Let{es, ..., e21} be a base of,, such that

[0 0 0 0 1]
00010
({eis¢j))1<ij<n= |0 0 Q@ 0 O},
01000
10000

where {e1,e2} is a base ofF and @ is the intersection matrix of. In case
dimF = 0, F' is unigue modulal’y, and, hence, we may assume tlatis
generated by;. Denote bygo (resp.q1) the symmetric bilinear form associated
with the matrix({e;, €;))2<i.j<20 (resp.Q). Also denote by.q the sublattices /e;
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of Ly,. Letz = ¥z;e; be a homogeneous coordinate?gf.,, @ C). Then we have
the following unbounded realization &fy,,.

(1.1) In case din¥' = 0:
Doy ~ {2 = (22,...,220) € C% (Im(2)) € C(F)},

whereC(F) = {y = (2, .- ., y20) € R qo(y,y) > 0,32 > 0}.
(12.2) In case dimf’ = 1.

Dop ~ {(2z,w,T) = (22,23, ..., 219, 220)
€ H" x CY x H: Im(2) — Re(h,(w, w)) > 0},

whereh, (w,w") = {—q1(w,@") + q1(w,w")}/4Im(7) (see Kondo [6], Sect. 2).
Let f be an automorphic form offv,, with respect tal'p,. Then f has an
expansion with respect {d.1) which is called thé-ourier expansiorof f at F:

f= > coexp2rv—1-qo(p,z)),

peC(F)NLY

whereC'(F) is the closure of’(F'). Also with respect to (1.2)f has an expansion
which is called thd-ourier—Jacobi expansioaf f at F":

f= Z O, (1, w) €XP(21Y/ —1m 2).

m>0

We call f a cusp formif for any rational boundary components the initial term
of the above expansion vanishes, kg¢.= 0 if dim F = 0 andfy(7,w) = O if
dim F' = 0. Note thatdy(r, w) does not depend om. For more details, we refer
the reader to Borcherds [2], Gritsenko [5], Kondo [6].

3. Automorphic Forms on the Period Domain of K'3 Surfaces

In the following, as in Borcherdst al. [3], we identify Ly, = H ® H & Eg® Eg®
<—2n> with the SUblattiCé{@H@Eg@Eg@zv of 112725 = HeH®Eg® Egd Eg,
wherew is a primitive vector inEg with (v,v) = —2n. Let U be the orthogonal
complement ob in Eg. LetD be the 26-dimensional bounded symmetric domain
of type IV associated witli I, 6. Under the above identificatio®,,, C D. In the
paper [2], Example 2 of section 10, Borcherds constructed an automorphi@form
of weight 12 oriD with respect to the group of isometriesiab > which preserve

D. The restriction ofb onD,, is identically 0 whenevell contains a root. So first
divide ® by a product of linear functions vanishing on the divisors of each of these
roots inU, and then restrict it of®,,,. Then we have an automorphic foks,, on
D,,, With respect td',,, which has the following properties (Borcherelsal. [3],
also see Borcherds [2], Thm. 13.1 and its proof):
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(2.1) ®,, vanishes on the hyperplanes®$,, each of which is orthogonal to a
vectorr’ € L3 with —2 < (r/,7’) < 0. Herer’ is the projection of a root of
112,26-

(2.2) The weight ofd,,, is equal to the weight= 12) of ® plus half the number of
roots ofU.

Let {e; }1<i<s be a set of simple roots dg which satisfies the following:
(ei,e;) = —2,(e1,e2) = (e2,e3) = (e3,e4)
= (e3, e5) = (es,e6) = (ep,e7) = (e7,eg) =1 and
(ei,e;) =0 forotheri,j.

Let R be aroot lattice isometric td, @ A, ® A1 or A3 P A;. Note that the number
of roots inR is 14. In the case wherR = A, & A, & A;, we considel? as one
of the following sublattices of’g:

(a) <61) €2, €4, €6, 67>a (b) <61) €2, €5, €6, 68>) (C) <61) €2, €5, €7, 68>a
(d) <ela €3, €4, €6, €7>, (e) <61) €3, €4, €7, €8>'

In the case wherd? = Az & A;, we considerR as one of the following
sublattices offg:

h

(f) (e1,e2,e3,e6), (9) (e1,€2,e3,e7), (h) {e1, ez, €3, ¢€q),

(i) (e2,e3,ea,e7), (J) (ez,es,e5.e7), (K) (e2, es, es,esq),

(1) (es,es,es,e7), (M) (e1,es,e6,e7), (N) (ea,es,es,e7),

(0) (e1,es,e7,e8), (P) (e2,¢e6,€e7,e8), (Q) (ea,es,e7,€8).
If R = (eq,ep,ey,65,6x) (I€SP.R = (eq, €3, €4, €5)), then we take a vectaras
asum:

v=ce)+e,+e, (respv=e,+e+e,+ep),

where{a, 3,...,v} = {1,2,...,8} ande}, is the dual ofe, (see Bourbaki [4],
Planche VII). Sincelg is unimodulary € Eg. A direct calculation shows that the
number— (v, v)/2 is equal to
(a) 61, (b) 55, (c) 67, (d) 43, (¢) 66, (f) 57, (g) 69, (h) 83, (i) 59, (j) 42,
(k) 53,(1) 51,(m) 85, (n) 74,(0) 133,(p) 105,(q) 119.
Since(v, v)/2 is square freey is primitive in Eg. Obviously any root irfl/ (= v+
in Eg) is contained ink. Hence, the number of roots bfis 14. Thus, we have an
automorphic formb,,, of weight 19 (= 12 + 14/2) by (2.2).
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THEOREM. &5, is a cusp form of weigHt9.

Proof. It suffices to see thab,, vanishes on the top dimensional (= 1-dim.)
rational boundary components Db,,. Sincen is square free, the set of primitive
totally isotropic sublattices of rank two corresponds to the set of isomorphy classes
of even negative definite lattice& such thatlL,, ~ H & H & K (Scattone
[13], Thm. 5.0.2). Here totally isotropic sublattice is containeddinb H. Since
JK =~ q1,, ~ —qu, We have an even negative definite unimodular lathtef
rank 24 such thak’ andU are primitive sublattices oV, K+ ~ U andU+ ~ K
(Nikulin [11], Cor. 1.6.2). Thus, eacH is obtained as the orthogonal complement
of a primitive sublattice/ of someN. LetU C N be a primitive embedding.
SinceU containsk, N also contains a root. Such latticAsare classified into 23
isomorphism classes which are characterized by its root subl&itivg (Niemeier
[10]). Since rankR(N) = 24, there exists a rootof N whose projection’ into
K* has a negative norm:2 < (r’, ') < 0. Note that the totally isotropic primitive
sublattice of rank 2 corresponding&ois contained in the orthogonal complement
of r. It follows from (2.1) that®,,, vanishes the hyperplane orthogonattolLet

Dy, = 30, (1, w)- exp2ryV —1mz)

be the Fourier—Jacobi expansiond, at this boundary component. Since

Oo(r,w) = lim Py,
Im(z)—o0
anddp(r, w) does not depend an, the above implies thak(r, w) = 0. 0

Remark There are another embeddings®finto Eg. In the above, we take
embeddings such that the numberv)/2 is square free. Also we can takeas
a linear combination of3, e}, e}, (resp.ej, €}, €;,, €;) with positive coefficients.
Then &5, is a cusp form of weight 19 whenever, v)/2 is square free and

Corollaries 1, 2 hold for these.
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