
1J. Plasma Phys. (2025), vol. 91, E55 © The Author(s), 2025. Published by Cambridge University Press.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited. doi:10.1017/S0022377825000091

Quantum simulation of nonlinear dynamical
systems using repeated measurement

Joseph Andress1 , Alexander Engel1, Yuan Shi1 and Scott Parker1,2

1Department of Physics, Center for Integrated Plasma Studies, University of Colorado Boulder, Boulder,
CO 80309, USA

2Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80309, USA
Corresponding author: Joseph Andress, joan1465@colorado.edu

(Received 23 September 2024; revision received 21 January 2025; accepted 22 January 2025)

We present a quantum algorithm based on repeated measurement to solve initial-value
problems for nonlinear ordinary differential equations (ODEs), which may be generated
from partial differential equations in plasma physics. We map a dynamical system to a
Hamiltonian form, where the Hamiltonian matrix is a function of dynamical variables. To
advance in time, we measure expectation values from the previous time step and evaluate
the Hamiltonian function classically, which introduces stochasticity into the dynamics.
We then perform standard quantum Hamiltonian simulation over a short time, using the
evaluated constant Hamiltonian matrix. This approach requires evolving an ensemble of
quantum states, which are consumed each step to measure the required observables. We
apply this approach to the classic logistic and Lorenz systems, in both integrable and
chaotic regimes. Our analysis shows that the solutions’ accuracy is influenced by both the
stochastic sampling rate and the nature of the dynamical system.
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1. Introduction

As modern quantum computers move closer to true utility, increasing focus has
come onto the various tasks a hypothetical error-corrected quantum computer might
be able to perform. The existence of an efficient quantum algorithm for solving
general dynamical systems of the form

ẋ = G(x) (1.1)

is an open question, which has attracted significant attention (Leyton & Osborne
2008; Joseph 2020; Lubasch et al. 2020; Lloyd et al. 2020; Engel, Smith & Parker
2021; Liu et al. 2021; Xue, Wu & Guo 2021; Shi et al. 2021; Joseph et al. 2023;
Shi et al., 2024b). While previous approaches, which include variational meth-
ods (Lubasch et al. 2020), Carleman linearisation (Liu et al. 2021) and homotopy
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perturbation methods (Xue et al. 2021), have shown promise in specific cases, none
has yet achieved general efficiency, in the sense of a large quantum speedup with
respect to the system size for general or polynomial dynamical systems without
a complexity that is exponential in simulation time. For instance, the approach
proposed by Leyton & Osborne (2008) achieves a speedup with respect to system
size for a large class of polynomial dynamical systems through a non-deterministic
method based on Euler’s method, but has complexity exponential in simulation time.
The algorithm of Liu et al. (2021) can scale polynomially with the simulation time,
but requires that the dynamical system has dissipation with strength above a certain
threshold, which unfortunately excludes many systems of interest such as collisionless
plasma systems.

In the special case that G(x) is linear and norm-preserving, (1.1) may be mapped
to Schrödinger’s equation

d
dt

|ψ〉 = −iH|ψ〉 (1.2)

and thus solutions may be extracted from established Hamiltonian simulation algo-
rithms (Childs & Wiebe 2012). These algorithms are themselves not always efficient,
but extensive research into Hamiltonian simulation has uncovered efficient algo-
rithms for a number of classes of H (Berry et al. 2014, 2015). In fact, many
linearised plasma problems can be converted into the Schrödinger form (Engel,
Smith & Parker 2019; Dodin & Startsev 2021).

However, what makes many plasma problems challenging are nonlinearities.
For example, in the Vlasov–Maxwell system, nonlinearity arises from the coupling
between the particle distribution function and the electromagnetic fields. The non-
linearity of this equation, central to plasma physics, is a major hurdle in applying
quantum computing to the field. The Vlasov–Maxwell system is a set of partial
differential equations, but methods for ordinary differential equations would be
applicable after discretising the equation. For example, using finite difference in
phase space (McLachlan 2003), the solution is specified only at a set of grid points,
and derivatives are approximated as functions of the solution. After discretisation,
the remaining task is to perform time advance.

In this paper, we present a quantum algorithm for advancing nonlinear ordinary
differential equations (ODEs), whose only requirements are that the dynami-
cal system is real and the nonlinearities are polynomial. Our algorithm uses a
measurement-based approach on an ensemble of quantum states. We evolve each
realisation of the ensemble separately and measure it to determine a snapshot of
the nonlinear Hamiltonian. We then use Hamiltonian simulation to advance the sys-
tem forward a short period, before again measuring the system to determine a new
Hamiltonian. We demonstrate our algorithm by solving the logistic equation and
the widely studied Lorentz system (Lorenz 1963). Even though the algorithm pre-
sented here is relatively simple, it can solve nonlinear problems for which previous
quantum algorithms fail (Sanavio et al. 2024). Our goal is to demonstrate how an
easy-to-understand quantum algorithm can solve a real problem, building a founda-
tion for problems of practical interest in plasma science, such as particle dynamics
in non-uniform magnetic fields (Kabin 2021), in the future. Although not generally
efficient, our measurement-based approach may efficiently solve classes of problems
not covered by existing quantum algorithms.

This paper is organised as follows. In § 2, we outline the basic algorithm and
present a mapping which takes a real, polynomial system to Hamiltonian form.
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In § 3, we demonstrate the algorithm using two dynamical systems, the logistic system
and the Lorenz system, and we examine the algorithm’s performance under the lens
of quantum entropy and error. Finally, in § 4, we summarize our findings. Additional
details on the mapping in § 2 can be found in Appendix A.

2. Approach

In this paper, we attempt to generalise established methods of Hamiltonian simula-
tion to real, polynomial systems of ODEs. Existing Hamiltonian simulation methods
evolve a quantum state under a constant Hamiltonian, but by dividing the total sim-
ulation into many short times steps, we can use a different Hamiltonian for each
step. Thus, the requirement of a constant Hamiltonian can be relaxed. In this paper,
we generalise a constant Hamiltonian to a sum of constant Hamiltonians weighted
by dynamical observables. Because the observables depend quadratically on quan-
tum states, the Schrödinger equation has a cubic nonlinearity. A system of ODEs
can be mapped directly to cubic, nonlinear Hamiltonian form if the ODEs are cubic
and norm-preserving. More generally, we present a method of mapping any real,
polynomial system to cubic, norm-preserving form.

The non-deterministic nature of quantum measurements causes uncertainties in
the measured quadratic observables, resulting in a stochastic spreading of the pos-
sible simulated trajectories. Using many measurements to reduce the variance, the
ensemble of many such trajectories converges to the deterministic solution, and we
use von Neumann entropy as a measure of this spreading.

2.1. Piecewise linear dynamics via measurements
For dynamical systems of the form (1.1), we encode elements of the vector x using

amplitudes of a multi-level quantum system ψ :

|xi|2 ∝ |〈i|ψ〉|2. (2.1)

This amplitude encoding scheme allows 2N real scalar dynamical variables to be
stored on N qubits. We use an approach akin to the classical forward Euler method.
For the nth time step, we evolve the quantum state forward by �t via (1.2) using a
constant Hamiltonian:

|ψ〉n = exp
(
−iH(|ψ〉n−1)�t

)
|ψ〉n−1. (2.2)

In this unitary map, we allow H to be a function of |ψ〉n−1, which we evaluate using
measurements before evolving the state. Since the Hamiltonian is a constant over
the time step, we can make use of linear Hamiltonian simulation algorithms. These
algorithms are most efficient for sparse Hamiltonians (Berry et al. 2014, 2015). For
more general Hamiltonians, one may use Trotter–Suzuki methods (Suzuki 1991) to
partition the Hamiltonian into the sum of multiple sub-Hamiltonians.

2.2. Observable Hamiltonian pairs for cubic nonlinear systems
For (2.2) to be applicable for a nonlinear dynamical system, the system must

be expressible in a Hamiltonian form. The simplest nonlinear example is perhaps
the cubic system, for which H(|ψ〉n−1) can be written as the sum of multiple sub-
Hamiltonians, weighted by the expectation values of the corresponding observables:
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H(|ψ〉) =
M∑

k=1

〈ψ |Ok|ψ〉Hk. (2.3)

Because the observables are quadratic in |ψ〉, the dynamics i∂t|ψ〉 = H(|ψ〉)|ψ〉 is
cubic in |ψ〉. For a given system, the observable-Hamiltonian pairs {Ok,Hk} are
constant. In other words, the pair does not depend on the quantum state, which
means that they need be calculated only once before actual evolution begins. As
an example, (3.6) gives the observable Hamiltonian pair associated for the logistic
system.

Because measurement collapses the state, evaluating H before each time step
requires many separate copies of |ψ〉n−1. By the no-cloning theorem, a specific
quantum state cannot be copied, but if the initial state and consequent evolution are
stored classically, then the state can be recreated. In other words, it is impossible
to directly copy |ψ〉n−1 before evaluating H; each copy of |ψ〉n−1 must be evolved
from |ψ〉0.

Simulating to final time T with time steps of �t requires T/�t separate time
steps, and with m measurements for each of the M observables, a total of mMT/�t
states will be consumed to evaluate H throughout the full simulation. However, it is
possible to avoid storing more than one quantum state at a time by evolving each
of the states separately and using classical memory to store the sampled expectation
values required to recreate H. This approach would require classical communication
channels and classical memory to store and transfer the results of quantum measure-
ment (Yepz 2001). This scheme is efficient if the dimension of Hk is large, but the
number of observables M is small.

2.3. Generalising to polynomial nonlinearities: enforcing homogeneity
The requirement that the dynamical system be of the cubic Hamiltonian form can

be relaxed, because any real system with polynomial nonlinearity can be mapped
to the cubic Hamiltonian form. The first step of the mapping is to express the
polynomial system in the tensor form

ẋ ≡ Ax⊗q. (2.4)

In index notation, the above equation can be written more explicitly as

ẋj =
∑
α

δjα1Aα
q+1∏
k=2

xαk, (2.5)

where each α is a multi-index containing q + 1 indices. In (2.5), the Kronecker delta
ensures that the only terms contributing to the derivative of xj have the index j as
the first entry of α, while the remaining terms in (2.5) account for the coefficient Aα
and factors in x for this specific monomial term in the degree-q polynomial. By this
definition, all entries of A are labelled by q + 1 indices and any entry with first index
α1 contributes a monomial term to the polynomial derivative of xα1 . The coefficients
for these monomials are stored in A and the remaining q indices correspond to the
q factors of x entries in the degree-q monomial.

The form of (2.4) describes polynomial systems with homogeneous degree q.
For non-homogeneous systems, we can homogenise (1.1) by adding a constant
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coordinate x0 as the first component of x:

x0 = c. (2.6)

We multiply this constant term into lower-degree terms to raise them to degree q.
To keep the constant term unchanged during time evolution, we add a trivial term
to the dynamical system:

ẋ0 = G0(x) = 0. (2.7)

For example, in (3.2), the logistic system is raised to an homogeneous degree 3.
The exact value chosen for x0 = c is arbitrary, but it should be chosen to match the
general scale of the other components of x. In other words, it should be comparable
to the other amplitudes of the normalised quantum state.

The tensor form of a system is generally not unique, as a result of the commutativ-
ity of multiplication. For example, consider the differential equation ẋ1 = 5x1x2x3.
When encoding this equation into the tensor form ẋ = Ax⊗3, the most general state-
ment that can be made about A is then A1123 + A1132 + A1213 + A1231 + A1312 +
A1321 = 5, because the order of factors xαk in (2.5) has no effect on the underlying
dynamics.

2.4. Rescaling to unitary evolution: enforcement of norm-preservation
The second step of the mapping is to rescale the dynamical system. In general, a

solution to (1.1) cannot be encoded into a quantum state per (2.1) without losing
information on the magnitude of x, because storage within a quantum state requires
normalisation. It is therefore necessary to find a solution to the normalised problem,

˙̂x = F(x̂), (2.8)

where x̂ = x/|x|, while also storing the overall scale of the solution. The dynamics
of such a solution would be compatible with the normalisation of a quantum state
while allowing the exact classical trajectory to be reconstructed.

An homogeneous degree-q polynomial in x scales with aq when evaluated on ax.
Suppose the dynamical system (1.1) has already been converted to the homogeneous
tensor form (2.4), then

G(x) = |x|qG(x̂). (2.9)

Taking the time derivative of x̂ = x/|x|, the dynamics of the normalised solution
satisfy

˙̂x = |x|q−1(|x̂|2G(x̂) − [x̂ · G(x̂)]x̂
) = |x|q−1F(x̂). (2.10)

In the above equation, although |x̂|2 = 1, we keep this term so that F(x̂) is an
homogeneous polynomial of degree q + 2. The term in the bracket is the projec-
tion operator δij − x̂ix̂j acting on G, which removes the dynamics parallel to x so
that the norm of the vector is preserved. The above equation converts the original
system ẋ = G(x) to a norm-preserving system ˙̂x = F(x̂). A derivation of (2.10) can be
found in Appendix A. Allowing for a nonlinear mapping in time, we can write

d
dt′

x̂ = F(x̂),

dt
dt′

= |x|1−q,

(2.11)
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to hide the prefactor in (2.10). In other words, the dynamics that is parallel to x is
captured as a rescaling in time. The scaling prefactor is well defined as long as |x|
is non-zero. This is guaranteed when we add the constant variable x0 in (2.6), which
allows for the recovery of |x| from the normalised solution, and the constant serves
as a non-zero minimum on |x|. In the case of the simple linear system ẋ1 = λx1,
following the addition of constant x0, (2.10) yields ˙̂x0 = −λx̂0x̂2

1, ˙̂x1 = +λx̂2
0x̂1 with

∂tx̂ = ∂t′ x̂, because q = 1. In other words, although for the original linear system, x1
depends exponentially on time, our general procedure allows it to be embedded into
a norm-preserving system.

We can write the homogeneous, degree-(q + 2) system in (2.11) using a rank-
(q + 3) tensor:

d
dt′

x̂ ≡ Fx̂⊗(q+2). (2.12)

In other words, we introduce a tensor F corresponding to the homogeneous poly-
nomial F such that F(x̂) = Fx̂⊗(q+2). The tensor form is more easily analysed,
manipulated and mapped to matrices, such as an observable or Hamiltonian, than
the polynomial form. As an example, (3.4) gives the tensor form of the logistic
system.

2.5. Converting to Hamiltonian dynamics: enforcement of symmetry
Mapping the tensor F to Hamiltonian form requires that F be antisymmetric in

its first two indices. The entries of F must correspond to the entires of H as defined
in (2.3):

˙̂x = Fx̂⊗(q+2) = −iHx̂. (2.13)

The Hamiltonian H is Hermitian and the entries of F must be real for a real system.
Thus, all elements of H must be pure imaginary, so that the matrix −iH is an anti-
symmetric, real matrix. This antisymmetry manifests in the entries of F, specifically
in the first index and one other index, which we choose to be the second index. Thus,
we require that F be antisymmetric in its first two indices. For a general tensor, this
requirement can be enforced via (Engel 2023)

Aα = 1

q + 3

q+3∑
i=2

(
FP2iα − FP1iP2iα

)
, (2.14)

where α is a multi-index of q + 3 indices, for example, α = (1, 2, 3, 4) for q = 1.
Here, Pji denotes the permutation operator which swaps indices j and i, so that
P23(1, 2, 3, 4) = (1, 3, 2, 4). A derivation of (2.14) can be found in Appendix A. The
antisymmetry of A allows the dynamics to be written in the Hamiltonian form.

As with the original tensor form, the antisymmetric tensor is not uniquely deter-
mined. Equation (2.14) results in one of many equivalent antisymmetric tensors for
a given F, owing to the redundancy in tensor forms. Enforcing antisymmetry in the
first two indicies reduces, but does not eliminate, this redundancy.

The tensor yielded by (2.14) is not the only antisymmetric tensor which reproduces
the desired dynamics. As with the general tensor form, the coefficient in Aα may
be partitioned across or combined with the entries indexed by a permutation on the
latter indicies of α, as long as the antisymmetry is preserved. Further, although we
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have chosen A to be antisymmetric in its first two indices, in principle, a mapping
to Hamiltonian form is possible as long as A is antisymmetric under the exchange
of the first index and any of the latter indices. The choice of the second index is
arbitrary.

2.6. Mapping to standard form: enforcement of cubic degree
The standard form (1.2) and (2.3) together yield a cubic system, with two powers

of |ψ〉 coming from the expectation of the observable in (2.3) and the final power
included in (1.2). To map a general dynamical system to the standard form, the
degree-(q + 2) system encoded in the rank-(q + 3) tensor A must be reduced to a
degree-3 system in a rank-4 tensor.

For odd q, we can apply the degree-reduction technique (Engel 2023), which
evolves polynomials in x̂,

ŷα ∝
(q+1)/2∏

i=1

x̂αi, (2.15)

using a modified tensor form

d
dt′

ŷ = Mŷ⊗3
, (2.16)

which preserves the system’s dynamics. The exact form of M is not uniquely
determined, but one possible choice is

Mαβνη =
(q+1)/2∑

i=1

[ ∏
j �=i

δαjβj

]
Aαiβiνη. (2.17)

Here, the variables α, β, ν and η each denote a multi-index of (q + 1)/2 indices. In
the case of even q, an extra constant factor of x0 can be used to raise the system to
odd degree. Applying the degree-reduction technique to the antisymmetric tensor A
yields a cubic system, which maps to (2.3). As an example, (3.5) gives the reduced
tensor form of the logistic system.

2.7. Determining observable Hamiltonian pairs
Having found the rank-4 tensor Maβμν , which is antisymmetric in its first

two indices, it is possible to extract the Hermitian observables and Hamiltonians
appearing in (2.3). The real system has two equivalent forms:

d
dt′

yα =
∑
β,ν,η

Mαβνηyβyνyη,

d
dt′

yα = −i
∑
β,ν,η

( ∑
j,k

O(νη)
jk yjyk

)
H(νη)
αβ yβ .

(2.18)

In the later form, raised indices denote a specific observable Hamiltonian pair, while
lowered indices denote a position within a matrix.

We have ensured that the first two indices of the tensor M are antisymmetric,
while the order of the latter pair of indices is arbitrary. This freedom allows us to
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chose Mαβνη to be non-zero only if η� ν. The remaining requirement is that the
matrices O(νη) and H(νη) are Hermitian. A viable mapping from the first to the
second form in (2.18) is

O(νη)
jk = 1

2

(
δνjδηk + δνkδηj

)
,

H(νη)
αβ = iMαβνη.

(2.19)

It is worth pointing out that (2.19) is not necessarily the optimal mapping that
produces the least number of observable-Hamiltonian pairs. For example, as we
shall see in § 3.1, this mapping requires two pairs for the logistic system, for which
one pair would be sufficient, owing to the fact that the two pairs generated by this
algorithm share a Hamiltonian, up to a constant. Although not optimal, (2.19) is
applicable to general systems.

The proposed form of O(νη) has the additional benefit of being simple to measure.
In the case where ν = η, the matrix form of O(νν) is simply the zero matrix with a
single 1 on the diagonal, and its expectation value is simply y2

ν , which is thus the
probability of measuring the νth state during projective measurement. In the case
where ν �= η, O(νη) is mostly zero but has two off-diagonal entries equal to 1

2 . In this
case, the expectation value of O(νη) equalling yνyη can be found using projective
measurement and a relative phase-finding algorithm (Shi et al., 2024a).

2.8. Convergence to the stochastic model
Our approach uses measurements to achieve linearisation, which injects statistical

fluctuations into otherwise deterministic systems. Evaluating (2.3) at the beginning
of each time step requires finding 〈ψ |Ok|ψ〉. At the beginning of each step, m mea-
surements of Ok generate a sample mean for the expectation value 〈ψ |Ok|ψ〉. As
m increases to infinity, this sample mean converges to the exact value, but for finite
m, the sample is a multinomial random variable, with non-zero variance in its mean.
Variation in the measured values of 〈ψ |Ok|ψ〉 causes spreading in simulated trajec-
tories and divergence from the exact solution. For sufficiently large m and small �t,
the quantum algorithm converges to the solution of a stochastic differential equation,
with the system’s stochasticity quantified by the rate s = m/�t of measurements per
unit time. As s increases to infinity, either by increasing the number of measurements
or shortening time steps, the quantum simulation and its stochastic model converge
to the exact solution. However, over a total simulation time T , the quantum algo-
rithm requires MTs measurements. In this paper, we refer to a deterministic, s → ∞
solution as the exact solution. We also present finite-s, quantum trajectories. Finding
the s → ∞ solution is only possible on classical computers.

2.9. Quantifying stochasticity: ensembles and entropy
Due to its stochastic nature, the algorithm produces a different trajectory each

time, even for fixed systems, initial conditions and sampling rates. Taking the quan-
tum states |ψ〉 of K trajectories as an ensemble, we can define a density matrix ρ
for the states as

ρ = 1

K

K∑
j=1

|ψj〉〈ψj|. (2.20)
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As the trajectories spread due to the algorithm’s stochasticity, the von Neumann
entropy S (Nielsen & Chuang 2010) of N qubits,

S = −Trace[ρ log ρ] �N log 2, (2.21)

of this density matrix increases. At the beginning of the simulation, each of the tra-
jectories has the exact same initial state and thus the density matrix describes a pure
state, with zero entropy. For a deterministic simulation, the states of the ensemble
would remain identical and the entropy does not increase. However, the stochastic-
ity of the quantum simulation introduces small impurities to the ensemble, which
become more pronounced as the simulation progresses. Thus, under a stochastic
scheme, von Neumann entropy increases with the runtime.

In addition to measuring the intrinsic spread of an ensemble, we can also compare
the quantum ensemble with a pure state, which is formed by sampling the quantum
states in the deterministic trajectory on classical computers. The difference between
two ensembles encoded in ρ1 and ρ2 can be quantified by the trace distance

T (ρ1, ρ2) = 1

2
||ρ1 − ρ2||1 � 1. (2.22)

Encoding the deterministic solution as the amplitudes of a quantum state, and then
as a density matrix, allows us to use the trace distance as a measure of error between
the quantum ensemble and deterministic solution.

2.10. Algorithm scaling
Having described how to map a general nonlinear system (1.1) to the standard

cubic Hamiltonian form (2.3) that is amenable to quantum Hamiltonian simula-
tion using piece-wise linearisation (2.2), let us briefly discuss the numerical cost
of our approach. Measuring all M observables over a simulation time T , with m
measurements per observable per time step, requires O(MmT/�t) total measure-
ments and each measurement destroys one copy of the current state |ψ〉n−1. On
average, each copy of the state will be evolved for half the total runtime, meaning
the number of Hamiltonian simulation steps is O(MmT 2/2�t2). The total cost of
the measurements and Hamiltonian simulation steps are then O(g(MmT )/(�t)) and
O(h(MmT 2)/(2�t2)), respectively, where g is the cost of a single measurement and
h the cost of a single evolution step. In general, g and h depend on a number of
factors. For example, certain observables are more easily measured than others and
Hamiltonian simulation is most efficient for sparse matrices.

The scaling of the algorithm depends on the number of observable-Hamiltonian
pairs, but also the exact nature of those pairs and whether the final total Hamiltonian
can be evolved forward efficiently. For most systems, this algorithm is unlikely to
be efficient, but there may exist specific systems, potentially those which can be
realised with a few, sparse sub-Hamiltonians, for which the algorithm has a chance
of outperforming existing quantum methods. However, more research is needed to
confirm whether any systems of interest to plasma physics are of this form.

Of additional interest is the scaling of m with error and runtime. Although we
previously assumed m to be chosen arbitrarily, we expect the algorithm’s results
to improve with increasing m and we might therefore define a critical m∗(T , ε)
which, for a given system and runtime T, satisfies a maximum error bound ε. The
scaling of m∗ is system-dependent; for example, we expect m∗ to scale poorly in
chaotic systems. However, we can investigate the M = 1 case as a potential baseline.
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FIGURE 1. Trace distance between a deterministic solution and a stochastic, finite m ensemble
of 500 independent trajectories; the error ε(t/�t) scales with m−1 and is linear in time.

In figure 1, we plot the development of error for 500 trajectories in a system with a
single, randomly generated observable-Hamiltonian pair and find error to be linear
in time and inversely proportional to m. Thus, we would expect m∗ for this system
to be O(T/ε) or potentially better following amplitude amplification (Brassard et al.
2002). While systems of this type are overly simple, they are potentially relevant; the
logistic system (3.1) can be realised using a single pair (3.6).

Despite the linear scaling demonstrated for M = 1 in figure 1, we cannot expect
sub-exponential scaling to be universal for more complex, M > 1 systems. For
example, under chaotic dynamics, small perturbations between trajectories, includ-
ing the finite-m stochastic fluctuations, tend to grow exponentially. This fact is a
fundamental limit on quantum algorithms for nonlinear dynamics (Lewis et al. 2024).

3. Algorithm demonstrations

To demonstrate how to apply our approach to a general polynomial nonlinear
system, we use the logistic system and the Lorenz system as two examples. The
logistic system is used as a simple, easily verifiable test case, and the Lorenz system
is used as a chaotic model of dissipative fluid mechanics and thus as a precursor to
plasma dynamics.

3.1. Solutions to the logistic system
The logistic system is commonly used to describe populations and other systems

which grow to a maximum value (Verhulst 1838). In normalised units, the logistic
system is described by the quadratic ODE:

ẋ1 = x1(1 − x1). (3.1)
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While this system is relatively simple, previous quantum algorithms have not always
successfully reproduced the dynamics (Sanavio et al. 2024). Here, we use the logistic
system as a simple demonstration of our approach. For this system, the mapping is
simple enough to be completed by hand. As a first step, we introduce the constant
x0 = 1 to this system,

ẋ0 = 0,

ẋ1 = x2
0x1 − x0x2

1,
(3.2)

to raise it to an homogeneous degree-3 system.
Using (2.10), without the prefactor, we generate the norm-preserving system:

d
dt′

x̂0 = +x̂2
0x̂3

1 − x̂3
0x̂2

1 = A010011x̂1x̂0x̂0x̂1x̂1 + A010001x̂1x̂0x̂0x̂0x̂1,

d
dt′

x̂1 = −x̂3
0x̂2

1 + x̂4
0x̂1

1 = A100011x̂0x̂0x̂0x̂1x̂1 + A100001x̂0x̂0x̂0x̂0x̂1,

(3.3)

corresponding to four non-zero elements of A:

A100001 = −A010001 = 1,
A010011 = −A100011 = 1.

(3.4)

For this simple system, we can find M manually:

M(10)(00)μν = M(11)(01)μν = M(01)(00)μν = M(11)(10)μν = A(1)(0)μν = +1,
M(00)(10)μν = M(01)(11)μν = M(00)(01)μν = M(10)(11)μν = A(0)(1)μν = −1,
M(00)(10)μξ = M(01)(11)μξ = M(00)(01)μξ = M(10)(11)μξ = A(0)(1)μξ = +1,
M(10)(00)μξ = M(11)(01)μξ = M(01)(00)μξ = M(11)(10)μξ = A(1)(0)μξ = −1,

(3.5)

where μ= (00), ν = (01) and ξ = (11). In (3.5), parentheses have been added to the
multi-indices of A to highlight the relationship with the multi-indices of M; these
parentheses have no significance other than indicating the grouping of indices. We
then map this result to the observable-Hamiltonian form accepted by the algorithm:

O =

⎡
⎢⎢⎣

0 1
2 0 −1

2
1
2 0 0 0
0 0 0 0

−1
2 0 0 0

⎤
⎥⎥⎦ ; H =

⎡
⎢⎣

0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0

⎤
⎥⎦ . (3.6)

After encoding the system into the quantum amplitudes and evolving according
to our algorithm, we recover the final normalisation of the trajectory by finding
the value of x̂0, using this to determine the final value of |x| and thus recovering
x1. The results of the algorithm on a classical simulator are shown figure 2. For
simple and convergent dynamics like the logistic system, the underlying behaviour
dominates over any stochastic fluctuations, resulting in minimal spreading. Under
these conditions, the quantum trajectories closely follow the deterministic solution.
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FIGURE 2. Time evolution of the logistic system with initial condition x1(0) = 10−2. The deter-
ministic trajectory in panel (a) can be recovered as the average of a collection of 10 quantum
trajectories in panel (b), which use the stochastic parameter s = 5 × 105.

3.2. Solutions to the Lorenz system
As the next non-trivial example, we apply our approach to the Lorenz system

(Lorenz 1963):

ẋ1 = σ (x2 − x1),
ẋ2 = x1(ρ − x3) − x2,

ẋ3 = x1x2 − βx3.
(3.7)

Originally used to describe atmospheric flow, the Lorenz system is a classic example
of chaotic dynamics, although the system is only chaotic under certain parameters
(Hirsch, Smale & Devaney 2003): β ≈ 8/3, ρ ≈ 28, σ ≈ 10, and away from this
region, the flow is integrable. The system generally has multiple fixed points, at the
origin and the points (

± √
β(ρ − 1),±√

β(ρ − 1), ρ − 1
)

.

Outside the chaotic regime, these fixed points are attractors, with the system’s over-
all behaviour highly dependent on the behaviour around these points. The chaotic
system follows a butterfly-shaped trajectory around two of these points, with the
solution switching between the two unpredictably. The inherent chaos makes the
Lorenz system a useful bridge to plasma physics, which may also encounter chaotic
dynamics, for example, with turbulent flows.

The homogeneous Lorenz system is degree-2, but it is necessary to add an extra
constant factor to raise it to degree-3 for later degree reduction, which requires
odd degrees. For the cubic system, the norm-preserving system in (2.10) is degree-
5, per (2.12). By mapping to quadratic polynomials in the entries of x̂, we reduce
the system to degree-3 on 16 dynamic variables. The 16-variable state of the system
can be stored on 4 qubits and the final mapping requires at most 26 observable-
Hamiltonian pairs. This mapping may not be optimal. We automate the mapping
protocol using an openly available Python code (Andress 2024).

We run our algorithm for example problems. First, for a well-behaved Lorenz
system (figure 3a,b), the trajectories remain together for the entire simulation. By
the time that noticeable spread would occur, the system has converged to its steady-
state solution. Second, for a chaotic Lorenz system (figure 3c,d), stochastic spread
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FIGURE 3. Time evolution of the (a,b) well-behaved and (c,d) chaotic Lorenz system with run-
time T = 5 and parameters ρ = 28, σ = 10, β = 10 (well-behaved), β = 8/3 (chaotic) and initial
conditions x = (4.856, 7.291, 18.987). (a,c) A collection of 300 independent, stochastic quan-
tum trajectories with �t = 10−5, s = 1015 in panels (a,c) yield a mean trajectory (red) which
initially follows the �t = 10−5, s → ∞ in panels (b,d), deterministic solution (black). At the
point indicated by arrows in panels (c,d), the chaotic trajectories diverge, resulting in eventual
deviation from the deterministic solution.

in the trajectories causes significant divergence at later times. Of primary interest is
the branching point indicated by the arrow. This branching point corresponds to the
first sizeable divergence between the mean trajectory and deterministic solution, as
shown in figure 3(d).

3.3. Error and entropy of the chaotic Lorenz system
Taking the trajectories in figure 3(c) as an ensemble, the increase in trace distance

to the deterministic solution is shown in figure 4. As demonstrated in the inset,
the von Neumann entropy and the trace distance (error) between the ensemble and
deterministic trajectories are strongly correlated. The arrow in figure 4(a) corre-
sponds to the branching point in figure 3(c,d). As a comparison, no such corner
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FIGURE 4. (a) Trace distance between the ensemble of trajectories in figure 3(c) and the deter-
ministic solution increases suddenly at the indicated branching point, and closely correlates
to the von Neumann entropy (inset). (b) Trace distance between the ensemble of trajectories
in figure 2(a) remains low throughout the simulation and returns to near-zero as the system
converges.

FIGURE 5. Timing of the first branch of the quantum algorithm’s results, signalled by an
increase to 10 % of the maximum entropy, as a function of s for the (a) Lorenz and (b) logis-
tic systems; at low s, the integrable (orange) and chaotic (blue) Lorenz systems scale similarly,
but past a threshhold at s ∼ 1011, the integrable solutions converge and no longer branch. This
phenomenon does not appear for the chaotic system, in which branching is inevitable, but does
occur in the logistic system.

exists in the error data for the logistic system (figure 4b) and the error decreases
dramatically as the system converges.

Beyond the point of divergence, the quantum algorithm is no longer reliable, so if
we desire reliable results for a set runtime T , we must find some method to delay the
branching point. The most obvious method is to increase the stochastic sampling rate
s; as s increases, the algorithm should remain reliable longer. However, because the
algorithm requires MTs measurements, an incentive exists to minimise s for a given
runtime T . Figure 5(a) shows the time of divergence as a function of s. For the well-
behaved system and the logistic system (figure 5b), a threshold exists beyond which
entropy never surpasses 10 % of its maximum value, because all solutions reach the
fixed point. In other words, for the well-behaved system, there exists an upper bound
for s beyond which, error stays below a threshold for all time. In comparison, for the
chaotic system, error always exceeds a given value after some finite time. Thus, for
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the chaotic system, branching is inevitable, but its onset can be delayed by increasing
s. For the algorithm to be efficient, the dynamical system must have the property
that s, the requisite stochastic sampling rate, increases slowly with T , the targeted
runtime.

4. Summary

We have developed a method to map any real, polynomial dynamical system to
a form which could be implemented on future fault-tolerant quantum hardware.
This mapping results in a cubic, norm-preserving form which can be stored in a
quantum state and evolves via a nonlinear Hamiltonian. We defined the nonlinear
Hamiltonian as the sum of constant Hamiltonians, weighted by quadratic observ-
ables, and we approximate the nonlinear Hamiltonian as being constant over a small
time period, allowing for the use of Hamiltonian simulation methods. By applying
the algorithm to the logistic and Lorenz systems, we demonstrated that this map
recovers the classical dynamics and can detect the onset of chaos. In the non-chaotic
regime of the Lorenz system, a minimum value of the stochastic sampling rate was
found to ensure that the simulated and deterministic solutions never diverge, but no
threshold was observed in the chaotic regime.

Of future interest are systems which are neither convergent nor chaotic. Under
logistic dynamics and the well-behaved Lorenz system, early convergence to equilib-
rium prevents a deeper study of the algorithm’s long-term error. Meanwhile, under
chaotic dynamics, even classical algorithms are expected to diverge quickly. More
study is required between these two extremes to determine long-term behaviour for
non-trivial, non-chaotic dynamics.

Whether this algorithm can be implemented efficiently on quantum hardware
remains an open question. For systems that can only be realised with a large number
of observables, or that include dense sub-Hamiltonians, it is unlikely that an algo-
rithm of this form could be efficient. More research is needed to further investigate
the efficiency of a measurement-based approach. Nevertheless, variants of the algo-
rithm presented here may solve classes of problems not covered by existing quantum
algorithms.
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Appendix A.
A.1. Derivation of norm-preserving dynamics

Following Engel (2023), (2.10) may be derived using the product rule for
derivatives:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825000091
Downloaded from https://www.cambridge.org/core. IP address: 3.133.113.227, on 25 Apr 2025 at 19:31:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825000091
https://www.cambridge.org/core


16 J. Andress, A. Engel, Y. Shi and S. Parker

d
dt

(
x
|x|

)
= 1

|x|
d
dt

(x) + x
d
dt

(
1

|x|
)

= |x|−1G(x) − |x|−3[x · G(x)]x,
(A.1)

and using (2.9), when the system is homogeneous, we can pull |x| to the front:

d
dt

(
x
|x|

)
= |x|q−1(G(x̂) − [x̂ · G(x̂)]x̂

)
. (A.2)

Inserting a factor of |x̂|2 to the first term to yield (2.10) does not affect the sys-
tem’s dynamics because, by definition, |x̂| is always one. The insertion of that factor
ensures that the final expression is an homogeneous polynomial.

A.2. Derivation of anti-symmetric forms
The derivation of (2.14) requires manipulation of the norm-preserving tensors.

For a tensor system, such as in (2.12), to be norm-preserving requires that

x̂ · d
dt′

x̂ = Fx⊗(q+3) = 0, (A.3)

containing an implicit sum of products in the entries of x, and by the commutativity
of multiplication, a given set of factors in x may correspond to more than one entry
in F (Engel 2023). However, because the entries in x are independent of each other,
the only way for (A.3) to be identically zero is for entries to be cancelled. Thus, for
a multi-index α of q + 3 indices, ∑

P∈Sq+3

FPα = 0, (A.4)

where Sq+3 is the set of permutations on q + 3 elements (Engel 2023).
Because the dynamical system must eventually be mapped to a Hamiltonian, it

is necessary to enforce a certain symmetry on the tensor form. Hamiltonians are
Hermitian, but because Schrödinger’s equation (1.2) includes an extra imaginary
factor, the matrices encoded in the tensor system must be anti-Hermitian. Hence,
the tensor system must be antisymmetric in its first two indices. For a given, norm-
preserving dynamical system, the form of the tensor F is not unique and thus we
find a method of converting a general F to this antisymmetric form. To enforce
antisymmetry onto F without changing the system’s dynamics (Engel 2023) takes

F̃α ≡ 1

q + 3

(
2(q + 2)Fα − (q + 1)Fα +

q+3∑
i=2

FP1iα −
q+3∑
i=2

FP1iα

)

≡ 1

q + 3

[ q+3∑
i=2

(
Fα − FP1iα

)
+

q+3∑
i=2

(
Fα + FP1iα

)
− (q + 1)Fα

]
.

(A.5)

Again, by the commutativity of multiplication, the indices of F, with the excep-
tion of the first index, can be reordered without affecting the system’s dynamics.
Thus, (A.5) is equivalent to the sum of (1/q + 3)

∑q+3
i=2 (FP2iα − FP1iP2iα) and

(1/q + 3)[Fα + ∑q+3
i=2 FP1iα] (Engel 2023).
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The second term (1/q + 3)[Fα + ∑q+3
i=2 FP1iα] reduces to (1/q + 3)Tα ≡

1
q+3

∑q+3
i=1 FP1iα. Notably, because the order of the final q + 2 indices are arbitrary,

we can replace Tjβ with

T̃jβ ≡ 1

(q + 2)!
∑

P∈Sq+2

TjPβ (A.6)

for any multi-index β of q + 2 indices; the effect of (A.6) is to enfore symmetry in T
across the latter indices. We see then

1

(q + 2)!
∑

P′∈Sq+2

TjPβ = 1

(q + 2)!
∑

P′′∈Sq+3

FP′′[jβ];

because the permutation P′ shuffles the latter indices and the P1i swaps the first
index into any of the latter positions, all possible ordering of the multi-index jβ are
reached. Thus, by (A.4), the second term in the sum for F̃α must be zero, yielding
(2.14):

F̃α ≡ 1

q + 3

q+3∑
i=2

(
FP2iα − FP1iP2iα

)
.

The two sides of (2.14) yield equivalent dynamics, but the right side is in a form
which is antisymmetric in the first two indices.

A.2.1. A simple example
To demonstrate how (2.14) can be applied, let us first consider the following norm-
preserving system:

d
dt′

x̂1 = x̂2x̂3,

d
dt′

x̂2 = −x̂1x̂3,

d
dt′

x̂3 = 0.

(A.7)

The tensor system F123 = 1, F213 = −(1/2), F231 = −(1/2) realises the dynamics
in (A.7). Following through (2.14) yields the non-zero elements of an equivalent,
antisymmetric tensor:

A123 = 1

3

[
(F123 − F213) + (F132 − F231)

]
= +2

3
,

A132 = 1

3

[
(F132 − F312) + (F123 − F321)

]
= +1

3
,

A213 = 1

3

[
(F213 − F123) + (F231 − F132)

]
= −2

3
,

A231 = 1

3

[
(F231 − F321) + (F213 − F312)

]
= −1

3
,
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A312 = 1

3

[
(F312 − F132) + (F321 − F123)

]
= −1

3
,

A321 = 1

3

[
(F321 − F231) + (F312 − F213)

]
= +1

3
. (A.8)

Notably, this tensor has more non-zero elements than necessary. An alternative with
the minimum number of non-zero elements is A123 = +1, A213 = −1. Tensor forms
can be made more sparse by restricting the order of latter indices, namely the second
through last indices of the input tensor F and the third through last of A. Although
not optimal, the tensor in (A.8) can be mapped to a Hamiltonian.

A.3. Derivation of degree-reduced system
Equation (2.17) is one implementation of a system which satisfies fundamental

calculus rules for a product, because (Engel 2023)

d
dt′

ŷα = d
dt′

(q+1)/2∏
i=1

x̂αi

=
(q+1)/2∑

i=1

( ∏
j �=i

x̂αj

) d
dt′

x̂αi

=
(q+1)/2∑

i=1

( ∏
j �=i

x̂αj

)( ∑
β

Aαiβ

q+2∏
k=1

x̂βk

)
,

(A.9)

and using (2.17), we find

(Mŷ⊗3)α =
∑
γ,ν,η

Mαγ νηŷγ ŷν ŷη

=
∑
γ,ν,η

[ (q+1)/2∑
i=1

[ ∏
j �=i

δαjγj

]
Aαiγiνη

] ⎛
⎝(q+1)/2∏

k=1

x̂γk

⎞
⎠ ŷν ŷη

=
∑
γ,ν,η

[ (q+1)/2∑
i=1

[ ∏
j �=i

x̂αj

]
Aαiγiνη

]
(x̂γi)ŷν ŷη

=
(q+1)/2∑

i=1

( ∏
j �=i

x̂αj

)( ∑
γi,ν,η

Aαiγiνηx̂γi ŷν ŷη
)

=
(q+1)/2∑

i=1

( ∏
j �=i

x̂αj

) ⎛
⎝∑

β

Aαiβ

q+2∏
k=1

x̂βk

⎞
⎠ .

(A.10)

Under the mapping equation (2.17), entries Mαβην must be zero if α and β differ
in more than one index, and Mαβην = −Mβαην . Further, each non-zero entry of M
is exactly equal to a single corresponding entry of A, so a valid M can be reverse-
mapped back to its A.
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A.3.1. A simple example
To demonstrate the use of (2.17), let us consider the following antisymmetric, norm-
preserving tensor system:

A121111 = −1,
A211111 = +1.

(A.11)

For a rank-6 A, the corresponding M must have four multi-indices of two indices
each. In the case of only two variables, as in (A.11), this corresponds to a 4 × 4 ×
4 × 4 M tensor.

For a sparse A, as in (A.11), (2.17) determines which elements of M are non-zero.
First, the indices of A are split into four multi-indices, with the first and second
indices being part of α and β, respectively, the third and fourth indices being ν, and
the fifth and sixth indices being η. The full set of multi-indices of M are determined
then by filling out α and β with another index to create multi-indices of two indices.
By the product of Kronecker deltas, these added indices must be identical and added
in the same position of the multi-index. For example, the element A(1)(2)(11)(11) would
contribute to the elements M(11)(21)(11)(11) and M(21)(22)(11)(11), but not M(11)(22)(11)(11)
or M(12)(12)(11)(11). Thus, each of the elements in (A.11) corresponds to four elements
in the final M, corresponding to adding the index 1 (2) to the first (second) position
in α and β; these four elements may not be unique. The eight non-zero elements of
M in the system are then

M(11)(12)νη = M(11)(21)νη = M(21)(22)νη = M(12)(22)νη = A(1)(2)νη = −1,
M(12)(11)νη = M(21)(11)νη = M(22)(21)νη = M(22)(12)νη = A(2)(1)νη = +1,

(A.12)

where ν = η= (11).
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