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1. Introduction. Among the classical field theories, general relativity 
theory occupies a somewhat peculiar place. Unlike those of most other field 
theories, the field equations in relativity theory are non-linear. This implies 
that many facts, well known in linear theories, have no analogues in general 
relativity theory, and conversely. The equations of motion of the sources of 
the gravitational field are contained in the field equations, a fact which does 
not apply for the motion of an electron in the electromagnetic field. Conver­
sely, it is difficult to define the notion of a wave (familiar in electrodynamics) 
in relativity theory; for, the linear principle of superposition is crucial for the 
existence of waves (at least in the sense that the notion of a wave is normally 
used). 

In many other respects, however, close analogues between general relativity 
theory and other classical field theories exist in spite of the discrepancies men­
tioned above. I t is in part the object of this paper to investigate such analogies. 

Since the gravitational field manifests itself in the motion of its sources, the 
problem of finding the equations of motion is of fundamental importance. 
This problem was solved some time ago [1], [2]. The general method for ob­
taining the equations of motion is to introduce an approximation procedure 
when solving the field equations. Each step of this approximation can be per­
formed only if we impose upon the field certain restrictions (like adding 
dipoles). These restrictions yield, at the end of the approximation procedure, 
the differential equations of motion. We have to refer the reader for all the 
details and also the notation to the paper [2] mentioned above. 

Now, in [2] there is at every step of the procedure a certain ambiguity for 
choosing the solutions of the field equations, which is restricted by assuming 
a set of co-ordinate conditions. Changing these co-ordinate conditions alters 
the equations of motion. However, the different equations which can be ob­
tained are physically identical and are merely different mathematical repre­
sentations of the motion in different co-ordinate systems. 

This idea is already partly contained in [2]. There it is shown that rejection 
of the co-ordinate conditions at one stage of the approximation does not affect 
the differential equations of motion in the next one [2, §13]. Moreover, at every 
stage of the approximation the most general solution that can be obtained by 
rejecting the co-ordinate conditions, is given [2, (9.2) and (13.5)]. However, 
it is not shown that these solutions can also be obtained by a co-ordinate 
transformation from the old ones, and are thus equivalent to the old ones. 

Received April 19, 1950. 

195 

https://doi.org/10.4153/CJM-1951-024-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-024-8


196 L. INFELD AND A. E. SCHEIDEGGER 

Thus we are led to investigate the influence of co-ordinate transformations 
upon the equations of motion. This leads, strangely enough, to the destruction 
of analogies with linear field theories. It is seen that the analogue to the electro­
magnetic radiation of an accelerated electron exists only formally in general 
relativity theory. In the case of a gravitational radiation one can perform a 
co-ordinate transformation and then one regains the solution without radiation 
(cf. also [3]). 

The group of transformations under which the gravitational field equations 
are covariant, is very general. This implies that the form of the equations of 
motion depends on the co-ordinates used. There is no physical meaning in the 
phrase: "the equations of motion of two particles'' without reference to the 
frame in which they apply. I t is seen that one can always find a co-ordinate 
system in which the motion is simply Newtonian. In such a system, however, 
the metric is very complicated. This is in agreement with a recent statement 
of Bergmann and Brunings [4] that the co-ordinate system can be chosen so 
that the equations of motion have any form we wish. 

Furthermore, it is possible to transfer the whole approximation procedure 
of [2] into one concerning the co-ordinate system. Thus the condition of 
integrability of the field equations becomes a condition on the co-ordinate 
system. We are led to a new version of the usual approximation method: We 
can enforce integrability not only by adding dipoles but the simple procedure 
of changing the co-ordinate system. 

2. Co-ordinate transformations. We have already mentioned that the 
general solution of the field equations (by rejecting the co-ordinate conditions) 
has been calculated [2, (9.2) and (13.5)]. I t may be written in the following 
form : 

(2.1) 

and 

(2.2) 

7*oo 
fe-2 

= 7oo 
fe-2 

7 0m 
fe-1 

= 7 0 m + #0 , m 
fe-1 fe-1 

-V* / mn 
ft 

= = 7mn"T* #m,n"T" &n,m 
k k k 

àmn 0>r,r + Smn #0,0 
k fe-1 

7*00 
fe 

= 700 + &r,r 
fe fe 

7*0m — 70m + bo.m + bmtQ 
fe+1 fe+1 fe 

Y mn 
k 

= = 7mn i Om,n i On,m ~~ 
fe fe fe 

" $mn br,r 
k 

The functions a0, am and &o, bm are arbitrary. 
We shall investigate whether the general solutions 7* can be obtained from 

the particular 7*s by a co-ordinate transformation. Let the transformation be 

https://doi.org/10.4153/CJM-1951-024-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-024-8


GRAVITATIONAL EQUATIONS OF MOTION 197 

(2.3) * '=* * ( * • * ) = 7*(***) 

Then, we calculate the transformed y's. The transformation of the metric 
tensor is (assuming the summation convention) 

(2.4) g*^ = 7>1O I*„ gy9 

When applying these equations we have to be careful that we take the co­
ordinates of the same world point as arguments in all these functions. That 
is, in addition to the tensorial transformation we have to perform a substi­
tution of the variables x by x*, according to (2.3). 

We develop the tensor gap into a power series with respect to the parameter 
X, as this has been done in [2, (5.6)], but now we keep all the terms instead of 
only alternating ones. In the usual solution we assume that the lowest term 
different from zero is of the order X2 (apart from the constant ones gap= yap)-

o 
We shall confine ourselves to co-ordinate systems where this same property 
holds. This means that in every co-ordinate system that we admit for con­
sideration, we have a flat Minkowskian metric as a zero approximation of the 
gravitational field. With this assumption the expanison of the metric tensor 
becomes 

( gmn = — àmn + X2 hmn + X3 hmn + • • • 
I 2 3 

(2 .5) I ZOrn = X2 hom + X3 h0m + . . . 
2 3 

goo = 1 + X2 hoo + X3 hoo + . . . 
I 2 3 

It was assumed in the original approximation procedure that the motion is 
"slow", so that one could introduce the "comma-differentiation" [2, (5.3)] 
with respect to time. If we want to retain in the starred co-ordinate system 
the assumption that motion is "slow", then we have to assume that also the 
derivatives of T with respect to x°* are of a higher order in X than those with 
respect to xm*; in other words, we have to use the "comma-differentiation" for 
the transformation function T, too. 

Then we can write 

( g*mn = Ta,m T*\n gafi 

g*m0 = X T\m r*,o g* 
g*oo = x 2 7 \ 0 r% g* 

Equations (2.6) apply quite independently of whether a power development in 
X is used for Ty or not. 

We assume now that the transformation Ta in (2.3) is an infinitesimal co­
ordinate transformation, i.e. that it is of the type 

<i) 

(2.7) 
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Then, it is easy to see that it is possible to obtain the formulae (2.1) and (2.2) 
by an appropriate choice of Tp in (2.7). We may indicate the type of calcula­
tions involved by taking the following example 

(2-8) I *° = r> = x°*. 
If we insert this together with the expansion of the g's (2.5) into (2.6), 

we get 

g*mn = gmn + X f c ( Ô * m 7 \ n + ô8nTl,m)gl8 + 0{k + 1) 

(2.9) g*mO = gmO + T\ o gms A* + l 
) o 

+ 0(k + 2) 
(k) 0 

g*oo = goo + 0(k + 2) 

T mn 
k 

— 7mn i ùmn J- , 8 
k k k 

7*00 
k 

= 7oo — T°,8 
k k 

7 0m 
+ 1 

= 70m — T\o 
k+1 k 

In the above formulae, everything is expressed in the starred co-ordinates. 
True, one should perform the substitution of the arguments of the occurring 
functions according to (2.8). This substitution, however, cannot give a con­
tribution to the expressions in (2.9) up to the considered order. Hence we can 
write in these equations either the starred or the unstarred co-ordinates as 
arguments. This is particularly so because our zero approximation to the 
metric tensor in both co-ordinate systems is gM„ = rj^. 

o 
We can express equation (2.9) in terms of the 7's. A straightforward calcu­

lation yields 

(2.10) 

This set of equations represents the change of the variables y under a co­
ordinate transformation (2.8). Only the &th and higher approximations are 
influenced. In a similar way it is seen that the transformation (2.7) with 

(2.11) T* = - a8; T° = a0 
k k k-i k-i 

yields the expressions (2.1); whereas choosing 

(2.12) T* = - b9; T° = b. 
k k k+\ fc+i 

yields (2.2). 
These results show that co-ordinate transformations produce all the changes 

of the 7's which have been found possible in [2] by rejecting the co-ordinate 
conditions in the feth step of the approximation procedure. Thus, if we have 
the usual solution, all the different solutions which result from the arbitrariness 
in the approximation procedure, can be obtained simply by an appropriate 
co-ordinate transformation, and conversely. 
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3. Gravitational radiation. I t has been shown [5] that the terms omitted 
in the usual power series for ya$ in [2, (5.6)] (i.e. the even terms in 70m, the odd 
ones in ymni Too) are analogous to the ones representing radiation in electro­
magnetic theory. We shall adopt here, therefore, the name radiation terms for 
those terms. 

One could expect from this analogy that it is possible to deduce similar effects 
in relativity theory as corresponding to the radiation damping force in electro­
dynamics. It has been seen [5] that the term which should originate these 
effects must be of the form 

(3.1) 700 = 0; 7©m= — im - - — 4w —-— . 
3 4 dr* dr2 

Starting with this assumption, Hu [6] calculated the equations of motion up 
to the 9th order. As an illustration he considered two particles of equal mass m 
moving along circular orbits around each other. The distance r between these 
two particles may thus be considered as constant up to the order of the New­
tonian equations of motion. Then, Hu obtained the result that the total energy 
defined in Newtonian mechanics as 

(3.2) E = i (mv2 - 2Km2/r) 

is increased by the radiation ' 'damping" force. This result is rather strange 
from the point of view of Newtonian mechanics, according to which the energy 
can only be radiated out at the loss of the total energy E. 

Our remarks on co-ordinate transformations contained in the last section 
give the clue for the proper interpretation of Hu's result. I t is easily seen 
that the term (3.1) which was chosen to start the radiation expansion, can be 
obtained from the usual solution of [2] by putting in (2.8) 

(3.3) Tm= Amy™ + 4 w r \ 
3 

Thus the term starting the radiation expansion is of just such a form that it 
can be created by a co-ordinate transformation (2.8). Therefore, it also can be 
wiped out by the corresponding inverse co-ordinate transformation. But in 
this new co-ordinate system there are no radiation terms, the new metric tensor 
is that one which we had before the radiation terms were inserted, the equations 
of motion are the original ones (without the radiation) and thus, we regain 
the old solution of the relativistic field equations without radiation terms. It 
may be noted that the co-ordinate system containing the radiation terms with 
the particular assumption (3.1) does not even require a departure from the 
usual co-ordinate conditions [2, (9.8)], since 70m. m = 700.0 = 0. 

4 3 

We may investigate now whether there are other possibilities for inserting 
radiation terms. For, generalizing our argument, we are not forced to start 
radiation terms with the choice of 70™ as this was done in (3.1). We can ask 

4 
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whether it is possible to start the omitted terms in the original development 
for the Y'S at any stage of the approximation procedure, say at the 2&th one. 

The prescriptions of [2] imply that one never must add arbitrarily to a field 
variable any additional poles or higher harmonics, except when this is un­
avoidable. On the other hand, the equation giving the first radiation terms is 
one of the following: 

(3.4) Too,** = 0; or y0m, ss = 0; or 7«n,s« = 0. 
2jfe+l 2k 2fc+l 

If we want to take for one of these 7*s a solution ^ 0 which is nowhere singular 
in space (including infinity), we see that the only possibility is y equal to a 
function of T. I t is readily seen that the particular choice (3.1) suggested by 
the electromagnetic analogy is indeed of the required form, since rj, f are 
functions of r only. However, a straightforward investigation yields the result 
that all terms of this type can be created or annihilated by suitable co-ordinate 
transformations. 

One might object to this method that a co-ordinate transformation anni­
hilates the radiation terms only in the lowest approximation where they first 
appear, but nothing is known as to higher order terms. However, it is possible 
to carry out the approximation procedure in the new co-ordinate system (with­
out the radiation in the lowest approximation where it was first inserted) and 
thus to obtain by direct application of the method of [2] the terms originated by 
the preliminary insertion of the radiation terms and the subsequent co-ordinate 
transformation. These additional terms could be of two kinds: either they are 
time-functions only and thus may be got rid of by a new co-ordinate trans­
formation of higher order;—or they could be singular. If they were singular, 
this would amount to inserting arbitrarily singular terms at a certain stage 
in the approximation procedure. The solution of Einstein's field equations 
would, then, proceed without radiation up to a certain approximation in a 
suitably chosen co-ordinate system, and then suddenly an additional singular 
term would be added, which, true enough, could by no means be got rid of 
and would give a contribution to the equations of motion. However, the ap­
proximation procedure, at least as outlined in [2], stands or falls with the 
prescription that no arbitrary singular terms be inserted at any stage of the 
procedure. Therefore, if a radiation term should lead to a singular term in 
higher approximations, after it had been wiped out by a co-ordinate trans­
formation in the approximation where it had first been inserted, it has to be 
excluded for that very reason. If it leads to additional time-functions only, 
then those can be annihilated by new (regular!) co-ordinate transformations. 
Thus, if we add "radiation terms" at a certain stage of the approximation, 
they are either meaningless or make the approximation procedure inconsistent. 

As already indicated in the introduction to this paper, these results really 
should have been expected a priori. At each step the approximation to the 
gravitational field variables is only determined up to certain additional terms, 
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and for the sake of the consistency of the method, it must be that the different 
solutions are changed into each other by mere co-ordinate transformations. 
As we agreed throughout our work to introduce only such radiation terms 
which are consistent with all the requirements of the approximation procedure, 
we can really introduce no other solutions than those already found.1 

4. The equations of motion. We have shown that one can change the 
relativistic equations of motion in form by performing co-ordinate trans­
formations. In particular, we were able in the last section to create and anni­
hilate radiation terms in the equations of motion as well as in the expansions 
for the field variables. 

Now, we may ask: What is generally the influence of a co-ordinate trans­
formation of the type (2.7) upon the relativistic equations of motion? Is it 
perhaps possible to adjust the co-ordinate system at every step of the approxi­
mation procedure in such a way that the motion has always a certain standard 
form? Intuitively, one could expect that a co-ordinate transformation can 
change the equations of motion to any form we like. However, considering only 
infinitesimal transformations, we cannot a priori be sure that this is true. 

We have already seen before that radiation terms are irrelevant. Thus, we 
may as well stick to the power series [2, (5.6)]. In order to apply a co-ordinate 
transformation we assume that the field equations are solved up to the order 
2& + 1. Then we know the following quantities: 

( 4 . 1 ) 700 • . . TOO; 70m • • • 7 0 W ; Jmn • • • 7 m » 
2 2k 3 2Âr+l 4 2k 

and the equations of motion of the corresponding order are 

(4.2) X4CW(T7, f) + . . . + X'*CTO(n, f) = 0 (i = 1, 2). 
4 (2*) 

After this step we consider two cases. In the first one we go on in the usual 
manner of [2], but in the second case we perform an infinitesimal co-ordinate 
transformation. 

Thus in the first case we shall calculate the field variables in the old co­
ordinate system of [2] up to the (2k + 4)th order, and similarly we proceed 
with the equations of motion. The latter will be 

(4.3) X4Cm(r?, f) + . . .+\**+*Cm(y, f) = 0 (i = 1, 2). 
4 2fc+4 

In the second case, we proceed in a different way. We perform an infinitesimal 
transformation before going on with the approximation procedure: 

(4.4) xm= xm*+ \2kTm(x*). 
(2*) 

1 A more elaborate discussion of this subject by means of a slightly different approach has 
been given earlier [3]. 
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This changes the values of the field variables (4.1) according to (2.12), where 
everything is now expressed in x*. As was shown before, the effect of this co­
ordinate transformation (4.4) is the same as choosing different solutions of the 
field equations at the step before obtaining (4.1). Thus, in the "new" co­
ordinate system we have, up to the order 2fe, the following expressions for 
the field variables and equations of motion : 

(4.5) 

Too • • • Too , Too — Tr,r 
2 2fe-2 2k 2k 

TOw • • . T0m , TOm — T"1^ 
3 2fc-l 2JH-1 2k 

ymn • • • Tw»n » Twin J- ,n J- ,m \ Gran* 
4 2ft-2 2k 2k 2k 2k 

i i 
(4.6) x4C(^r*) + . . . + X2fcC (rj*n = 0 (i = 1, 2). 

4 (2fe) 

In the above equations it is understood that one has to replace the original 
arguments x in all the occurring functions by x* (and hence also rj, f by 77*, 
f* respectively). 

With the values (4.5) for the field variables we can go on with the approxi­
mation procedure as in the first case. After performing two more steps in the 
approximation method we obtain the equations of motion of the order 2k + 4, 
now expressed entirely in the new co-ordinates. I t is to be expected that they 
will be formally different from those obtained by the procedure performed in 
the first case above. 

To investigate this question we calculate the new equations of motion after 
taking the new solutions (4.5) for the 7*s up to the 2&th step. Since one has 
to go through two stages of the approximation method, this is quite a laborious 
undertaking. 

We can simplify the computational work involved by making s@me special 
assumptions. We may note that we need the behaviour of the transformation 
(4.4) in any case only in the neighbourhood of the world-lines of the particles. 
Thus we can develop the expression for T* around the world-lines into a 

2k 

Taylor series. Herein we assume that the first and second space derivatives 
shall vanish. Moreover, we assume that only Tm is different from zero, 

2k 

whereas 7"° vanishes. Thus we have, near the first world-line, the following 
2k 

co-ordinate transformation2 

1 

(4.7) xm= xm*+ X2fc r"1^*). 
(2*) 

Then, the only y which is influenced up to the order 2k + 1 is 70m- I t be­
comes, according to (2.10), 1 

( 4 . 8 ) 7 * 0 m = Tim ~ r - . o . 
2/H-l 2M-1 2k 

2 The index "1" above T means that this transformation is different from the identity only 
in the neighbourhood of the first world-line. 
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When proceeding to the higher approximations, we are interested only in 
terms that contain Tm; the remaining ones are just those which we would 

2k 

have got without the co-ordinate transformation. Keeping only terms that 
contain T, we obtain the difference between the equations of motion in the 
new and in the old co-ordinate systems. We may note that we can use the 
standard co-ordinate conditions [2, (9.8)] throughout; for, (4.8) satisfies these 
conditions in the neighbourhood of the first world-line and for the subsequent 
steps we are free to choose any co-ordinate conditions we like. 

Starting our calculations, we have first to compute A*on. The result is 
2*4-3 

1 

(4.9) A*0rn = A0m + \ <t>,m9 T*,o. 
2*4-3 2*+3 2* 

We may note that the expression (4.9) is obtained from calculations made in 
i 

[2J. For, we observe that in our problem Tm can only combine with terms of 
2k 

the order two so as to yield expressions of the order 2k + 3. Hence it is seen 
i 

that we obtain in A*0m the same contribution from Tm as we have in A** 
2*4-3 2k 5 

from — To»». Thus the result (4.9) is obtained immediately from [2, (A.5.2)]. 
3 

To find now yom we can, of course, use the standard co-ordinate conditions. 
2*4-3 

Then, we obtain near the first world-line 

(4.10) 7 * 0 n = 70n + * <t>.n Tl,o {Xl- fj1} - } <j> T",*. 
2*4-3 2*4-3 2k 2k 

The next step is to calculate A*mn. We obtain it in a similar way as A*om 
2*4-4 2*+3 

above from the calculations in [2]. Using [2, (A. 12.3)], we get the following 
result: 

l l 

2 A * m « = 2 A , n „ - <t>f0mn Tl
to {xl - 7J1} - 0 , m n 7 % {xl - If'} 

2£+4 2fc-H 2k 2k 

(4.11) 

1 1 1 

- 2Tl
t0 yti.mn + Tl,o y0n,ml + 7 ^ . 0 <f>t o* 

2k 3 2k 3 2k 
1 1 1 

+ <t>, OmTn,o — 2ômnT to <f>,0l + <t>,mTfQ% 
2k 2k 2k 

1 1 1 

TOm.na ~H <l>,mn T ,0 V • 
2k 2k 3 2k 

The next step is to find the surface integrals 
l 

(4.12) Cm = / A*mnnnds. 
2*+4 2*4-4 

https://doi.org/10.4153/CJM-1951-024-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-024-8


204 L. INFELD AND A. E. SCHEIDEGGER 

Only the underlined terms in (4.11) can give a contribution, since only these 
approach infinity like 1/r2 near the first particle. Evaluating these integrals 
yields the following result: 

(4.13) C*m = Cm + 4 r - , 0 0 m. 
2fc+4 2/5+4 2k 

Thus, the equations of motion have in the new co-ordinate system the following 
form: 

l i l l 
(4.14) X4 Cm + • . . + A2fc+4{ Cm + 47^,00 m} = 0. 

4 2fc+4 2k 

Our work above was referring to one world-line only. However, we can 
l 

arrange very well that our transformation term Tm is zero near the second 
2k 

world-line so as not to influence the surface integrals around the second particle. 
a 

Conversely, we can assume another transformation Tm of a type similar to 
2k 

the first one, which changes the surface integrals for the second particle only. 
Then, both transformations together yield the following equations of motion 
of the order 2k + 4: 
(4.15) X4Cm + . . . + X2fc+4[ Cm+4f"\oom] = 0 (i = 1, 2). 

4 2&+4 2k 

The old functions 77, f are functions of time only. Hence it is seen that it is 
always possible to choose transformations so that the square brackets vanish. 
This means that we can always choose a transformation T* so that the 

2k 

equations of motion of the order 2k + 4 do not contain any terms of that order 
at all. Thus we see that our restrictive assumptions for the admissible co­
ordinate transformations are still sufficiently wide to allow us to construct a 
co-ordinate system where the co-efficient of X2* in the equations of motion of 
the order 2j > 2k vanishes. 

This argument can be repeated. Let us assume that we have solved the field 
equations up to the order 2j > 2 and obtained the equations of motion of the same 

1.2 

order. Then, we can preform a co-ordinate transformation choosing Tm so that 
2 

the terms connected with the power X6 vanish in the new equations of motion. 
That will change all of the Cm's with k<j. Then, we transform the equations of 

2k 

motion again, choosing T so that the new C's in that new co-ordinate system 
4 8 

vanish, etc. Finally, we shall end up with differential equations of motion of 
the 2jth order, but containing only Cm- This means that it is always possible 

4 

to construct a co-ordinate system so that the equations of motion are just New­
tonian.3 

8 A detailed investigation of all these statements may be found in [8]. 
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This is the standard form to which the differential equations of motion can 
be reduced. We cannot go further and reduce e.g. the two particles to being 
at rest with respect to each other, because we have explicitly assumed that 
our admissible co-ordinate transformations be different from the identity trans­
formation at most by a term proportional to X2. 

It is also possible to arrive at the same result by expressing i?, f in (4.3) in 
the new system by means of (4.4) instead of calculating the equations of motion 
anew in the transformed co-ordinate system. 

5. Conclusions. We have seen that it is always possible to set up such a 
co-ordinate system that the relativistic equations of motion of any order have 
Newtonian form. We shall now investigate what conclusions can be drawn 
from this statement. 

First of all, we have to emphasize that our foregoing mathematical deduc­
tions do not imply that the motion is the same as it would be unrelativistically 
in such a specially chosen co-ordinate system. Only the form of the differential 
equations of motion is Newtonian; we must keep in mind, however, that the 
metric in this case is by no means of Newtonian character near the singularities. 
If we wish that the metric field be of Newtonian character near its sources, 
then the motion is non-Newtonian and the equations of motion are as cal­
culated in [2]. 

So far, this does not yield any new ideas. We may note, however, that the 
above statement about the possible Newtonian form of the equations of motion 
can be formulated in a slightly different way. For, we observe that it is the 
same thing as saying that, at every step of the approximation procedure, we 
can reach the vanishing of the corresponding surface integrals by choosing the 
co-ordinate system two steps before in an appropriate way. This shows that 
we really have found a new version of the method in [2] for solving Einstein's 
field equations, which is equivalent to the one introducing and annihilating 
dipoles. 

Let us formulate this conception somewhat more precisely. Assume that 
the field equations are to be solved by making the usual expansion [2, (5.6)] 
of the field variables with respect to the parameter X. Suppose the field equa­
tions have been solved up to a certain stage. Proceeding one step further, 
we are faced with the task of solving the following system of equations : 

(5.1a) $00 + 2 Aoo = 0 
2fe-2 2 * - 2 

(5.1b) $0m + 2 AQm = 0 
2 * - l 2fe-l 

(5.1c) $ m n + 2 Amn = 0 
2k 2k 

(cf. [2, (8.1)]). Because of the Bianchi identities this system is generally not 
solvable. In order to solve (5.1c) we have to add dipoles to the known solution 
7oo- For, then we can obtain that the surface integrals 
2fe-2 
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(5.2) Co = i - i Aon nn dS 
2*- l 47T J 2 * - l 

* 
1 f 

(5.3) Cm = j - Awnwn dS 
2fe 4T J 2* 

* 

vanish, which is the condition of integrability. Indeed, by inspecting (5.3) we 

note that adding dipoles Sm\(/im to 700 changes these surface integrals into 
i 2fc-2 2 * - 2 

C*m with 
2* 

i i i 

(5.4) C*m = Cm + Sm, 00 
2* 2k 2k-2 

which can be made zero by choosing 
i i 

(5 .5) o m , 00 = : C m . 
2fc-2 2k 

However, the contribution to the surface integrals obtained by adding dipoles 
to 700 is very similar to the one obtained by performing a co-ordinate trans-

2fc-2 

formation at the (2k — 4)th stage of the approximation procedure. We have 
seen that a co-ordinate-transformation 

(5.6) xm = xm*+ X2*-4 P * (**) 
(2A-4) 

causes a change in the surface integrals. This change is, if we assume that the 
space derivatives of T vanish, 

(5.7) C*m = Cm(v*, f*)+ 4m r » , oo(**= r?*) 
2ife 2& 2fe-4 

Thus, to enforce the integrability of (5.1c) we can either add dipoles or 
change the co-ordinate system according to (5.6). Furthermore, we see that 
Sm, 00 in 700 has the same effect upon the equations of motion as 4WJTTO in the 
2A-4 2fc-2 2 * - 4 

(2k — 4)th step of the approximation. 
We may emphasize once more that the form in which the equations of 

motion finally appear does not influence any of the well known results of 
general relativity theory. I t is only a matter of representation whether these 
relativistic effects are explicitly contained in the equations of motion or in the 
metric field. 

Let us illustrate this by a specific example. Robertson [7] has integrated the 
differential relativistic equations of motion of the sixth order for the two-body 
problem. His result was that one obtains the same effect as when considering 
the motion of a small body in the Schwarzschild field of a large one by applying 
the geodesic principle; i.e., the orbit of a double star in general relativity theory 
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differs in its secular behaviour from the classical orbit only in an advance of 
perihelion equal to that which an infinitesimal planet, describing the same 
relative orbit, would undergo in the field of a star whose mass is the sum of 
those of the two components of the double star. Hence it is intuitively seen 
that introducing a co-ordinate system rotating at the right speed will reduce 
the non-Newtonian orbit to a Newtonian one. This co-ordinate transformation 
needs only to take place in the immediate neighbourhood of the trajectory, a 
statement which is in agreement with the fact that we had to know Tm only 
near the world lines of the particles. A detailed investigation (in [8]) shows 
indeed that it is possible to find such a co-ordinate system and also that the 
metric in that system contains components gom 9e 0 which confirms that light 
rays no longer have a simple trajectory in that system. 

Thus we obtain either simple (Newtonian) equations of motion and a com­
plicated metric field, or a simple field (of Newtonian character near the 
singularities) but non-Newtonian equations of motion. 
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