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The environment of a light water reactor (LWR) core is a combination of high temperatures, high 
pressures, high neutron and gamma fluxes, mechanical stresses and chemical aggressive coolants. All of 
these factors combined can induce changes in the microstructure of the fuel and cladding that are very 
difficult to predict in a systematic fashion [1] and are major challenge for the safety and life extension of 
current reactors. Throughout reactor transients and accidents, the cladding may experience deterioration 
caused by a temperature increase, oxidation embrittlement [1], [2], or mechanical interaction with the 
fuel caused by stress [3]. These events may lead to cracking or rupture of the cladding, causing the 
release of fission products into the coolant. Such events have been observed at the Three Mile Island and 
Fukushima accidents.  
 
To avoid such occurrences in LWRs, the accident tolerant fuels (ATF) program was initiated to focus on 
the replacement of zirconium-based alloys with materials that exhibit slower steam oxidation kinetics. 
This project focuses on several iron-based alloys such as T91, APMT, MA956, experimental Fe-Cr 
alloys and one experimental nanofeatured alloy (NFA). Experiments have been conducted in both PWR 
primary water at 320°C and BWR normal water chemistry at 288°C, spanning a large range in 
electrochemical corrosion potential (ECP). Samples were exposed to either proton irradiation 
(University of Michigan) or electron irradiation (Notre Dame Radiation Laboratory) to independently 
assess the roles of displacement damage or radiolysis on the corrosion rate, oxide thickness, 
morphology, structure and resistivity. Post-irradiation characterization of various regions of the electron-
irradiated samples was completed by means of microscopy (Notre Dame Integrated Imaging Facility) 
and spectroscopy (Notre Dame Materials Characterization Facility) techniques to provide high-
resolution information regarding the oxide layer present on the surface of the material.  
 
Under optical microscopy, three distinctive flow regions were identified on the sample surface, 
Irradiated Region (IR), Radiolysis Affected Region (RAR) and Unirradiated Region (UR). Surface oxide 
morphology was analyzed via high definition scanning electron microscope (SEM) images. Focused ion 
beam (FIB) lift-outs from the various regions were prepared for transmission electron microscopy 
(TEM) analysis of the oxide layer thickness as well as energy-dispersive X-ray (EDX) line profiles were 
collected to reveal elemental distribution information about the oxides. Post-irradiation characterization 
images are shown in Figure 1 and Figure 2.  
 
The accelerated corrosion experiments will allow us to determine the selected material’s performance 
under the conditions of extreme radiation in either hydrogenated or oxygenated water at both high 
temperature and high pressure. 
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Figure 1.  Post-Irradiation TEM (top) and SEM images (bottom) of 24-hour electron-beam T91 steel 
sample in Hydrogen-saturated water. Representation of the three different regions, UR, IR and RAR. 
 

 
Figure 2.  Left: STEM EDX line scan results of the 24-hour electron-beam irradiated T91 steel sample 
in Hydrogen-saturated water, atomic concentration vs. position, representation of outer oxide, inner 
oxide and metal region of scan. Right: STEM bright field image of irradiated region (the thin arrow 
shows the EDX line scan direction). 
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