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Abstract
This paper analyses the effects of disease and war on the accumulation of human and physical capital. We
employ an overlapping generation framework in which young adults, motivated by old-age provision and
possibly altruism, make decisions about investments in schooling and capital. A poverty trap exists for a
wide range of constant war losses and premature adult mortality. If parents are altruistic and the sub-utility
function for own consumption is more concave than that for their evaluation of their children’s full income
in adulthood, the only possible steady-state growth path involves full education. Otherwise, steady-state
paths with incompletely educated children may exist. When mortality and destruction rates are stochastic,
the initial boundary conditions and agents’ beliefs have a strong influence on the paths generated by a
sequence of shocks. Calibrating the model to Kenya, simulations for stochastic settings yield the finding
that a trap exists and is always avoided, but the chances of a slow recovery are substantial.
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1. Introduction
Dürer’s woodcut, “The Four Horsemen of the Apocalypse”, is a terrifying vision of the great
scourges of humanity from time immemorial. This paper deals with three of them—pestilence,
war, and death—and with their accompanying destruction of human and physical capital. Its
particular concern is how these calamities affect the accumulation of both kinds of capital,
with special reference to the existence of growth paths and poverty traps. Its treatment of these
questions is necessarily stylized, simple, and, in contrast to Dürer’s masterpiece, desiccated.

The distinction between human and physical capital is vital. Not only are they complementary
in production but they are also subject to different, albeit not fully independent, hazard rates. The
attendant risks are not, moreover, equally insurable. These considerations weigh heavily in the
decision of how much to invest and in what form, with all the ensuing consequences for material
prosperity in the long run.

A few examples of such calamities will convey some flavor of the historical dimensions of
what is involved. The Black Death carried off about one-third of the entire European population
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between 1347 and 1352. The so-called “Spanish influenza” pandemic is estimated to have caused
at least 50 million deaths globally between 1918 and 1920, with exceptionally high mortality
among young adults. In recent times, the AIDS pandemic, far slower in its course like the disease
itself, still threatens to rival that figure, despite the improved availability of antiretroviral thera-
pies. Pestilence and war also ride together. Half a million died in an outbreak of smallpox in the
Franco-PrussianWar of 1870–1871 [Morgan (2002)]. For every British soldier killed in combat in
the CrimeanWar (1854–1856), another six died of disease, and in the Boer War (1899–1902), the
ratio was still one to three.

War losses in the 20th Century make for especially grim reading. Between 15 and 20 million
people died in the First World War, the great majority of them young men. Almost two million
French soldiers fell, including nearly 30% of the conscript classes of 1912–1915. Joining this com-
panionship of death were over 2 million Germans, including almost two of every five boys born
between 1892 and 1895 [Keegan (1998: 6–7)], almost a million members of the British Empire’s
armed forces, and many millions more in those of Imperial Austria, Russia, and Turkey. Its con-
tinuation, the Second World War, was conducted, in every respect, on a much vaster scale. Most
estimates suggest that it resulted in at least 50 million deaths, directly and indirectly. Among them
were 15 million or more Soviet soldiers and civilians, 6 million Poles (20% of the pre-war popula-
tion), and at least 4 million Germans [Keegan (1990: 590–1)]. With these staggering human losses
went the razing of German and Japanese cities and massive destruction in the western part of the
Soviet Union as well as the states of Eastern Europe. The catalog of conflicts in the second half of
the 20th Century is also unbearably long, with particularly appalling casualties in Southeast Asia
and Rwanda.

Great epidemics and wars capture the headlines and grip the imagination, but the majority of
those adults who die prematurely fall victim to low-level, “everyday” causes, especially in poor
countries: notable killers are infectious diseases, accidents, violence, and childbirth. These are
competing risks—one dies only once; but even in O.E.C.D. countries, their combined effect is
not wholly negligible, and in many poorer ones, it is quite dismaying. According to the WHO
(2007), those who had reached the age of 20 in the O.E.C.D. group could expect to live, on aver-
age, another 60 years or so, their counterparts in China and India another 50–55 years, and those
in sub-Saharan Africa but 30–40. The odds that 20 years old in the O.E.C.D. group would not
live to see his or her 40th birthday were 1 or 2 in a 100, for the 50th, 2.5–5 in a 100. These odds
were a little worse for young Chinese, decidedly worse for young Indians, and for young Africans
less favorable than one in five—in some countries where the AIDS epidemic was raging, indeed,
scarcely better than even.

At the time of writing, the world is beset by the SARS-CoV-2 pandemic. The current global
tally is about 630 million reported cases, scores of millions of them involving moderate or severe
morbidity, and 6.6 million deaths, to say nothing of the ensuing short- and long-term burden of
mental health problems and the disruption of children’s education. The frequent emergence of
new, viable variants threatens a continuation of the pandemic for years to come. In that event, it
will cease to be a high-frequency shock like the Spanish influenza, becoming instead endemic. A
salient feature of Covid-19 cases is the very high level of mortality among the old; the young, in
contrast, rarely experience more than mild symptoms and very few die. This mortality profile is
naturally accommodated in the theoretical structure developed in this paper, but we do not pursue
it further.

Whether caused by great epidemics and wars, or by endemic communicable diseases and
low-level conflicts, the resulting human and material losses have long-run as well as immediate
economic consequences. Taking as given the technologies for producing output and human cap-
ital in the presence of these hazards, we address two questions, the answer to the first of which is
the basis for investigating the second.
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1. If mortality and destruction rates do not vary over time, are both secular, low-level stag-
nation and steady-state growth possible outcomes? If so, are both locally stable equilibria,
thus establishing the existence of a poverty trap?

2. If mortality and destruction rates are stochastic, under what conditions would the economy
fall into, and remain in, such a trap when it would otherwise grow, albeit not steadily?

The overlapping generation model (OLG) offers a natural framework within which to address
these questions. In the variant adopted here, there are children, young (working) adults, and the
old. Young adults decide how much schooling their children will receive and how much to put
aside to yield a stock of physical capital in the next period. In doing so, they are bound by cer-
tain social norms, which govern the distribution of aggregate current consumption among the
three generations. Untimely destruction can undo these plans. Children may die prematurely at
some point in young adulthood, and war can wreak havoc on the newly formed capital stock: the
lottery of such deaths and the destruction of physical capital involve two objects, not one. These
losses, if they occur, will reduce the resources available to satisfy claims on consumption in old
age in the following period. In making their decisions, parents may also be motivated by altruism
toward their children, so that their premature deaths will be felt as a distinct loss quite indepen-
dently of the ensuing reduction in old-age consumption under the prevailing social norms—and
arguably all the more keenly if the children have been well educated. That is to say, providingmore
amply for old age through the accumulation of human and physical capital necessarily enlarges
the children’s opportunity set, and this consideration will normally promote accumulation.

The institutional form is assumed to be a very large extended family, in which the surviving
young adults raise all surviving children. Given such pooling, the law of large numbers makes
the level of consumption in old age—for those who survive to enjoy it—virtually certain when
mortality and war loss rates are forecast unerringly. Yet even then, the idiosyncratic risk of
dying earlier remains. War losses are uninsurable and operate much like cohort-specific mortal-
ity. When these rates are stochastic, they constitute unavoidable systemic risks, with consequent
effects on investment in both forms of capital.

Our main insights are as follows. Balanced growth paths with endogenous physical and human
capital may not exist [Uzawa (1961)], so we first establish conditions for the existence of two
extreme steady states, namely, permanent “backwardness”, wherein there is no schooling, and
unbounded growth with a fully educated population, which we term “progress”. Backwardness
and progress can coexist as equilibria under various technologies and for a wide range of mortality
and destruction rates, but neither need be an equilibrium.

Parents’ altruism influences the set of equilibrium paths in two ways. First, if sufficiently strong,
it can rule out backwardness. Yet a robust numerical example shows that a poverty trap can exist
even with quite strong altruism. Second, progress is the only steady-state growth path if the sub-
utility function for parents’ own consumption is more concave than that for the evaluation of
their children’s full income. Under the converse of the latter condition, other steady-state paths
with incompletely educated childrenmay exist, some of them stationary, even if altruism is strong.
These results stem from the fact that, with two objects entering the lottery, weaker concavity with
respect to one also weakens diminishing returns to the realized pay-offs.

Turning to the second question, and using the answers to the first as foundation, we explore
whether an economy can grow despite unforeseen outbreaks of war and epidemics. Such events,
even if temporary and rare, may pitch a growing economy into backwardness. We establish that
these risks depress investment in both physical and human capital, and only extreme destruc-
tion of physical capital could induce an increase in schooling. We also establish thresholds for
human and physical capital above which an economy can withstand a particular configuration
of shocks: large endowments confer robustness. We show with simulations that the duration of
a specific sequence of adverse events is often decisive in determining whether an economy can
regain growth. In other simulations, we explore the random development paths of economies in
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a common, stationary, stochastic environment, but with different starting capital stocks. We also
apply the model to Kenya, whose AIDS epidemic is among the world’s worst. Based on a calibra-
tion for the period 1920–1990, corresponding simulation analyses are undertaken for 1990–2070.
A trap exists and is always avoided, but the chances of a slow recovery are substantial.

There is an extensive literature on the relationship between the health of populations and eco-
nomic activity. Notable is the general empirical observation that good health has a positive and
statistically significant effect on aggregate output [Barro and Sala-I-Martin (1995); Bloom and
Canning (2000); Bloom et al. (2001); Bloom et al. (2019)]. Especially relevant for present purposes
is a body of work on the macroeconomic effects of AIDS, in which there are varying points of
emphasis. Corrigan et al. (2005a, 2005b) adopt a two-generation OLG framework in which the
epidemic can affect schooling and the accumulation of physical capital, but expectations about
future losses play no role. In two contrasting studies of South Africa, Young (2005) uses a Solovian
model to estimate the epidemic’s impact on living standards through its effects on schooling and
fertility, with a constant savings rate. Bell et al. (2006b) apply a two-generation OLG model with
pooling through extended families and a vital role for expectations, but no role for physical capital.

Closely related theoretical contributions include Chakraborty (2004), in whose OLG frame-
work endogenous mortality is at center stage. Better health promotes growth by improving
longevity, and investment in health emerges as a prerequisite for sustained growth. Individual
investment in health is also the prime mechanism in Augier and Yaly (2013).1 Young adults, who
have only wage income, pay a fixed fraction thereof as taxes into a fund managed by the gov-
ernment. This fund provides all capital for the next period, with the gross returns going to the
survivors. In Boucekkine and Laffargue’s (2010) two-period framework with heterogeneous lev-
els of human capital, a rise in mortality among adults in the first period reduces the proportion
of young adults with low human capital in the second period because the mortality rate among
children at the end of the first rises more sharply in poor families. The number of orphans in the
first period increases, so that the proportion of young adults with low human capital in the sec-
ond period will increase if orphans get little education. Bell and Gersbach (2013) analyze growth
paths and poverty traps when epidemics take the form of two-period shocks to mortality, paying
particular attention to their effects on inequality in nuclear family systems.

In an earlier study of the impact of mortality shocks on long-run development, Lagerlöf (2003)
employs a model without physical capital wherein the escape from Malthusian stagnation arises
due to a sequence of mild epidemic shocks. The probability of survival improves with the stock
of human capital. A larger population reduces that probability, but allows for a faster transmis-
sion of human capital. A sequence of sufficiently favorable shocks can lead to a stock of human
capital that renders the economy less susceptible to further shocks. Drawing on a unified growth-
theory model à la Galor (2005), Aksan and Chakraborty (2014) demonstrate that an escape from
Malthusian stagnation cannot occur due to a reduction in child mortality alone, but also requires
lower adult morbidity; for otherwise the incentives to invest in human capital are insufficient.
Other important contributions to the development-disease nexus are Chakraborty et al. (2010,
2016), wherein the authors present a dynamic law for the prevalence rate of transmissible diseases
that depends on epidemiological parameters such as the number of contacts and the probability
of being infected. In both papers, there are multiple steady states. The former paper focuses on the
macroeconomic impact of Malaria and HIV in sub-Saharan Africa (SSA), while the latter more
broadly investigates the overall disease burden in SSA and compares different types of policies to
lift an economy out of a poverty trap. Building on this work, Gori et al. (2021) analyze optimal
policies for mitigating the HIV/AIDS epidemic in SSA when public policies are the only means to
reduce the spread of the virus.

A salient feature of many of these studies is the central importance of premature adult mortal-
ity. The current stock of physical capital, when it does appear, is not subject to similar, exogenous
hazards. Voigtländer and Voth (2009, 2013) espouse a Malthusian explanation of the rise of
growth in early modern Europe. Disease and war rode together, but “[war] destroyed human
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life quickly while not wreaking havoc on infrastructure on a scale comparable to modern wars”.
[Voigtländer and Voth (2013: 175)]. In contrast, the possibility of destruction on such a scale is
an essential element of the present paper, in which there are no fixed factors like land. In this
regard, exponential depreciation at a constant rate in Solovian models does not lend itself to the
task of representing the shocks of war losses. To our knowledge, no other contribution addresses
the possibilities of long-term stagnation and growth when both forms of premature destruction
are salient features of the environment wherein agents make decisions about accumulation.

Accumulation in the broad sense also involves fertility decisions, which are a central feature of
Young’s (2005) analysis. He found that the HIV/AIDS epidemic was inducing lower fertility and
hence, through the usual Solovian mechanism, higher per capita income in the longer run. He
arrived at the same conclusion in a follow-up study of 27 countries in sub-Saharan Africa [Young
(2007)]. This did not go uncontested. Kalemli-Ozcan and Turan (2011) and Kalemli-Ozcan (2012)
found that Young’s results are not robust with respect to specification. More importantly, indi-
cators of the strength of the epidemic had a positive effect on fertility in between-country and
between-region specifications, though the effect was ambiguous for within-country ones. Such a
positive effect is a troubling development when the demographic transition is already tardy and
slow. Gori et al. (2020) provide theoretical underpinnings for this effect when parents are faced
with a pressing tradeoff between the quality and quantity of their offspring. Fertility is indeed a
central element in decisions about accumulation. In treating it as exogenous, we plead that dealing
with education and savings involves difficulties enough. More generally, agents are denied oppor-
tunities to change their behavior in ways that reduce individual mortality, nor are there public
health measures, which require collective action and taxation.

The paper’s theme is also broadly related to the existence and relevance of balanced growth
paths. The classic problem examined by Uzawa (1961) is whether such paths exist in neo-
classical growth models with capital accumulation, population growth, and labor- or capital-
augmenting technological progress. Wan (1971) and Schlicht (2006), with clarifications by Jones
and Srcimgeour (2008), completed Uzawa’s argument that, with constant rates of population
growth and technological progress, the existence of such paths requires either a unitary elastic-
ity of substitution between capital and labor, or purely labor-augmenting technological progress.
Grossman et al. (2017) present a class of production functions for which balanced growth in a
neoclassical growth model with capital-augmenting technological progress is possible. This pos-
sibility arises when education is endogenous and capital is more complementary with schooling
than with raw labor. In this connection, we explore a complementary balanced growth problem:
Does balanced growth exist in an OLG framework with endogenous physical and human capital
accumulation, with or without altruism?We establish conditions on the sub-utility functions with
respect to altruism and own consumption that allow balanced growth, but without imposing very
strong restrictions on the production technology.

The paper is organized as follows: Section 2 lays out the model’s structure, Section 3 the fam-
ily’s decision problem under perfect foresight. Section 4 analyzes steady states, which necessarily
involve unchanging mortality and destruction rates. It begins by establishing the conditions for
stable backwardness. It then demonstrates that both these conditions and those under which
steady-state growth is also an equilibrium can be satisfied simultaneously. Settings in which the
destruction rates are stochastic are analyzed theoretically in Sections 5 and 6. Section 7 is devoted
to a variety of illustrative numerical simulations. The application to Kenya is treated in Section 8.
It is followed in Section 9 by a discussion of Europe’s experience in the 19th century and the
historical role of human capital. Section 10 draws together the chief conclusions.

2. The model
There are three overlapping generations: children, who split their time between schooling and
work; young adults, who work full time; and the old, who are inactive. The timing of events within
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Figure 1. Sequence of events for the generation born in period t− 1.

period t relates to those individuals born in period t − 1, who become young adults at the start of
period t. It is displayed in Figure 1. Those individuals who survive early old age in the following
period t + 1 therefore live for the three periods t − 1 to t + 1.

All individuals belong to numerous, identical, and very large extended families. The number of
young adults in each family at the beginning of period t is N2

t . They marry and have children at
once. Each couple within the extended family has 2nt children, all of whom survive into adulthood
in the next period. Thus, nt is the net reproduction rate (NRR). Death then claims some young
adults and some of those who have just entered old age. The surviving young adults rear all chil-
dren collectively and decide how to allocate the children’s time between schooling and work, as
well as the resulting aggregate output between consumption and savings. The numbers of young
adults and their offspring who reach maturity are N2

t = nt−1N2
t−1 and N1

t = ntN2
t , respectively.

Let qat denote the mortality rate among age group a(=2, 3). Then, the numbers of young and old
adults who make claims on output in period t are as follows:(

1− q2t
)
N2
t young adults survive to raise all children, and(

1− q3t
)
N3
t old adults live for three full periods, where N3

t = (
1− q2t−1

)
N2
t−1.

Two social rules govern consumption-sharing in the extended family:

1. When each surviving young adult consumes c2t , each child consumes βc2t (β < 1).
2. All surviving old adults receive the share ρ of the family’s current “full income”, Ȳt , which

is the level of output that would result if all children were to work full time.2 Since the
extended family is very large, each surviving old adult will consume

c3t = ρȲt(
1− q3t

)
N3
t
. (1)

Output is produced under constant returns to scale by means of labor augmented by human
capital (i.e., labor is measured in efficiency units) and physical capital, which is made of the same
stuff as output. All individuals are endowed with one unit of time. The time a child spends in
school in period t is denoted by et ∈ [0, 1]. Each young adult possesses λt (≥1) efficiency units of
labor, each child γ ∈ (0, 1) units. Each fully educated child (et = 1) requiresw ∈ (0, 1) young adults
as teachers, so that the direct cost of providing each child with schooling in the amount et iswλtet ,
measured in units of human capital. The total endowment of the surviving young adults’ human
capital is �t ≡

(
1− q2t

)
N2
t λt ; L̄t ≡�t + γN1

t is the household’s endowment of labor (measured
in efficiency units) at time t. The amount of labor supplied to the production of the aggregate
good is

Lt ≡
[(
1− q2t −wntet

)
λt + ntγ (1− et)

]
N2
t .
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The aggregate savings of the previous period, St−1, are also subject to losses early in t; what remains
has a lifetime of one period. The capital stock available for current production is Kt = σtSt−1,
where σt ∈ (0, 1] is the survival rate of savings. The distinction between aggregate output and full
income is important, the former reflecting the choice of et . The level of aggregate output, Yt , is

Yt = F(Lt , σtSt−1),

where the function F is assumed to be monotonically increasing and strictly concave in both argu-
ments, continuously differentiable and homogeneous of degree 1, with both inputs necessary in
production. Putting et = 0 to yield output when the whole endowment is engaged in production,
we obtain full income:

Ȳt ≡ Yt(et = 0)= F
(
�t + γN1

t , σtSt−1
)
.

Current aggregate output finances the consumption of all three generations in keeping with the
social rules and savings to provide the capital stock in the next period:

Ptc2t + St + ρȲt = Yt , (2)

where Pt ≡
(
1− q2t + βnt

)
N2
t is the price of one unit of a young adult’s consumption in terms of

output, the numéraire.
The formation of human capital involves the contributions of parents’ human capital as well as

formal education. The human capital attained by a child just before reaching adulthood is assumed
to be given by

λt+1 = zth(et)λt + 1. (3)

The positive multiplier zt represents the strength with which capacity is transmitted across gener-
ations; it may depend on the number of children each surviving young adult raises. The function
h(et) may be thought of as representing the educational technology, with a fixed pupil-teacher
ratio of 1/w. Let h be increasing and differentiable on (0, 1), with h(0)= 0. The property h(0)= 0
implies that unschooled children attain, on reaching adulthood, only some basic level of human
capital, which has been normalized to unity. In view of the fact that the early stages of educa-
tion involve laying the foundations to develop skills, it is further assumed that h′(e) is bounded as
e→ 0+.

2.1. Preferences and choices
Young adults, who make all allocative decisions, have preferences over lotteries involving current
consumption, consumption in old age and, if they are altruistic, the level of (net) full income
accruing to each of the children in their care upon reaching adulthood in t + 1, denoted by
(1− ρ)ȳt+1 ≡ (1− ρ)Ȳt+1/N2

t+1. The latter is the central measure of the size of the children’s
opportunity set on reaching young adulthood and hence exercises a heavy influence on the level
of well-being they can attain. When choosing an allocation (c2t , et , St), young adults must forecast
mortality and destruction rates in the coming period, higher levels of which weaken the effect of
current investments in human and physical capital on ȳt+1. If these forecasts are unerring, those
who survive through old age will obtain c3t+1, as given by (1), which the law of large numbers ren-
ders virtually non-stochastic. The stochastic element in the lotteries in question therefore arises
only from the individual risks of failing to reach old age and, where altruism toward the children
is concerned, that the latter will suffer the misfortune to die prematurely in young adulthood. If,
in contrast, the outbreaks of war and disease in the future are viewed as stochastic events, there
will be systemic risks, which are analyzed in Sections 5–8.
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3. Perfect foresight
The current levels of

(
nt , zt ,N1

t ,N2
t ,N3

t , q2t , q3t , λt ,Kt
)
and those in the next period are known

with certainty. The surviving young adults’ preferences are assumed to be additively separable in(
c2t , c3t+1, ȳt+1

)
:

Vt = u
(
c2t
)+ δ

(
1− q3t+1

)
u
(
c3t+1

)+ b
(
1− q2t+1

)
(
1− q2t

) ntv
[
(1− ρ)ȳt+1

]
, (4)

where 1− δ ≥ 0 is the pure impatience rate and b≥ 0 is the taste parameter for altruism. The term
1/
(
1− q2t

)
accounts for the children in the extended family whose parents have died.3 The sub-

utility functions u and v are assumed to be strictly concave. Although lim
c→0

u′(c)→ ∞, the same
restriction need not be imposed on v, its argument being always positive. In view of the consid-
erations they represent, there are good reasons to suppose that these functions are not the same;
for own consumption in old age is a quite different object from the provision of opportunities for
one’s children. The intrusion of the term (1− ρ) in v reflects the fact that the social norm govern-
ing the claims of those in old age is effectively a flat tax at the rate (1− ρ) on the full income that
results from their investment decisions when they were young. The yield of these investments
accrues to the children on reaching adulthood, and they are bound by the same norm. In the
absence of altruism (b= 0), only the retained part ρȲt+1 counts.

The adults’ decision problem is

max
(c2t ,et ,St)

Vt s.t. (1), (2), (3), c2t ≥ 0, et ∈ [0, 1], St ≥ 0. (5)

Let
(
c2,0t , e0t , S0t

)
solve (5), where it should be noted that the adults’ decisions in period t are not

influenced by their successors’ in subsequent periods.
A preliminary step is to normalize the system by the size of the cohort N2

t , exploiting the
assumption that F is homogeneous of degree one. Let lt ≡ Lt/N2

t and st ≡ St/N2
t , so that (1) and

(2) can be written respectively as

c3t+1 = ρnt(
1− q3t+1

) (
1− q2t

) · F
[(
1− q2t+1

)
λt+1(et)+ nt+1γ ,

σt+1st
nt

]
(6)

and
[(
1− q2t

)+ βnt
]
c2t + st + ρF

[ (
1− q2t

)
λt + ntγ ,

σtst−1
nt−1

]
= F

(
lt ,
σtst−1
nt−1

)
. (7)

Recalling that Lt/N2
t = (1− q2t −wntet)λt + ntγ (1− et), normalized output is

yt ≡ F
[(
1− q2t −wntet

)
λt + ntγ (1− et), σtst−1/nt−1

]
.

The analogous definition of normalized full income is ȳt ≡ F
(
l̄t , σtst−1/nt−1

)
, where l̄t ≡ L̄t/N2

t
denotes the normalized endowment of labor at time t. Closely associated with these normaliza-
tions is the ratio of human to physical capital at the start of period t, ζt ≡ λt/st−1, which depends
on investment decisions in the previous period.

Together with the constraints c2t ≥ 0, et ∈ [0, 1] and st ≥ 0, the budget identity (7) defines the
set of all feasible allocations

(
c2t , et , st

)
. Upon substitution for c3t+1 from (6) into (4), it is seen that

Vt is likewise defined in the same space. In order to ensure that Vt is concave over the feasible set,
some restrictions are needed. Although ȳt+1 is concave in �t+1 and St , �t+1 is concave in et if
and only if h is concave in et .4 Yet u and v are strictly concave, so that h can be weakly convex and
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still satisfy the requirement that Vt be concave. We therefore impose the following, less restrictive
conditions:

u
[
ȳt+1

(
zh(et)λt + 1, st

)]
and v

[
(1− ρ)ȳt+1

(
zh(et)λt + 1, st

)]
are concave ∀et ∈ [0, 1] and ∀st ≥ 0.

4. Steady states
In a steady state, the levels of inputs, output, and (dated) consumption change at a constant rate.
Thus, fertility, mortality, and destruction rates (nt , qt , σt) must be constant, as well as the trans-
mission parameter zt ; and since λt+1 = zth(et)λt + 1, the level of education must be constant, too.
In such environments, foresight will indeed be perfect.

If all per capita levels are growing at the same, positive rate, the economy is said to be on a
steady-state growth path. In a slight abuse of terminology, a path along which all per capita levels
are constant will be called stationary, even if the population is changing. Two notable steady states
involve the extreme values of education. If all children go uneducated in period t, so that λt+1 = 1,
the state of “backwardness” is said to rule in period t + 1. If, once reached, such a state persists,
that stationary path implies the existence of a poverty trap. If, at the other extreme, all children
born in period t are fully educated (et = 1), and all generations that follow them are likewise, this
path will be called “progress”.

Given stationary (nt , qt , σt), output per capita can increase only if there is some form of tech-
nical progress. If time t does not appear as an explicit argument of F, the only possible form of
technical progress in the present framework is the labor-augmenting kind, which is expressed by
an increase in the average level of human capital. This much will be assumed. The first question
is whether backwardness can be equilibrium. The second question is whether backwardness is
locally stable. If it is, there is a poverty trap.

A technical preliminary, on which the following analysis draws, is consigned to Appendix A. It
yields the condition, for all interior solutions et ∈ (0, 1),
(
1− q2t+1

)
zh′(et) · F1

(
lt+1,

σt+1st
nt

)
= (w+ γ /λt)F1

(
lt ,
σtst−1
nt−1

)
· σt+1F2

(
l̄t+1,

σt+1st
nt

)
, (8)

where Fi denotes the partial derivative of F w.r.t. its ith argument. Multiplying both sides by λt ,
the l.h.s. is the product of the yield of a marginal increase in education in period t, in the form of
the surviving children’s human capital in period t + 1, and the marginal yield of human capital,
in the form of full income, in that period. The r.h.s. is the product of the cost of this investment
in education in period t and the marginal yield of physical capital, adjusted by the corresponding
survival rate σt+1. Since fixed shares of ȳt+1 are the arguments of u

(
c3t+1

)
and v, altruism has no

influence on the choice between the two forms of investment if e0t < 1, and so does not appear
in (8).

4.1. Backwardness
We seek to establish conditions that yield e0t = 0 ∀t. Along such a path,

ȳt
(
e0t = 0

)= yt
(
e0t = 0

)= F
(
1− q2t + ntγ ,

σtst−1
nt−1

)
∀t,

since λt = zth(0)λt−1 + 1= 1 ∀t. As defined above, the path is stationary, so the index t can be
dropped. From the f.o.c. (see Appendix A), we have

u′(c2)= σ
(
1− q2 + βn

)
F2
(
1− q2 + nγ ,

σ s
n

)

(e0t = 0),
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where νt ≡ b (1−q2t+1)nt
(1−q2t )

and

nt
t ≡ ρδnt
1− q2t

· u′
(

ntρȳt+1(
1− q2t

) (
1− q3t+1

)
)

+ (1− ρ)νtv′[(1− ρ)ȳt+1].

Since lt = 1− q2 + γn, the budget constraint (7) specializes to(
1− q2 + βn

)
c2 + s= (1− ρ)F

(
1− q2 + γn, σ s/n

)
,

and (6) to

c3 = nρ(
1− q2

)
(1− q3)

· F(1− q2 + γn, σ s/n
)
.

Remark: F(1− q2 + γn, σ s/n) is the output per person entering young adulthood at the start of
each period. Each young adult has n children, but only the fraction

(
1− q2

)
of such adults survive

early adulthood thereafter.

Substituting for c2 and c3 in the first-order conditions, we obtain an equation in s, which
features the constellation (n, q2, q3, σ ), the preference parameters (b, δ) and the generational
parameters (ρ, β , γ ). The smallest positive value of s that satisfies this equation is denoted by
sb = sb

(
n, q2, q3, σ , . . .

)
.

The final step is to examine the counterpart of (8) when e0t = 0 ∀t. Rearranging terms, we
obtain

(w+ γ )σF2
(
1− q2 + γn, σ sb/n

)
≥ (

1− q2
)
zh′(0). (9)

A marginal investment in a child’s education will yield zh′(0) units of human capital in the next
period, with the fraction 1− q2 of all children later surviving early adulthood, and so contributing
to output. The cost of this investment involves the sum of the opportunity and direct costs of
education at the margin, measured in units of human capital. When λt = 1, this combined direct
cost is (γ +w) for each child. The latter is surely less than the basic endowment of unity, for
a child is much less productive than an uneducated adult and w is the teacher-pupil ratio, with
some allowance for an administrative overhead.

The alternative is to invest in physical capital. The marginal product thereof, F2, is a pure num-
ber, since capital is made of the same stuff as output. When adjusted by the survival rate σ , it
measures the marginal yield of investing in physical capital, the proportional claim on future full
income being ρ for both forms of investment. Hence, σF2 is the opportunity cost of a marginal
investment in education.

The existence of a poverty trap in this model depends heavily on the steepness of h at e= 0,
as seen from the right-hand side of (9). Since we assume that h′(0) is finite, it is possible that
the marginal pay-off to investment in physical capital is larger than that of investment in human
capital, even in the absence of schooling. If this be the case, parents would invest only in physical
capital, and to such degree as merely to maintain the (normalized) stock of capital, keeping the
economy in a perpetual poverty trap.

It is arguable that h′(0) is at most h(1) (footnote 4). Since sb < (1− ρ)F
(
1− q2 + γn, σ sb/n

)
,

condition (9) is not an exacting requirement, even though γ +w< 1. If (9) indeed holds as a strict
inequality, then by continuity, it will be preserved when there are sufficiently small changes in q
and σ . This establishes:

Proposition 1. If condition (9) holds as a strict inequality, then there exists a locally stable, steady-
state equilibrium in which children work full time and output per head is stationary.
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4.2. Steady-state growth
The (asymptotic) rate of growth of λt and st at any fixed e, denoted by g(e), is given by g(e)=
zh(e)− 1. A growth path with et = e is feasible if and only if zh(e)> 1. Each such path is effectively
defined by the value of e and the initial values of s and λ, where c2t , c3t , st , yt and ȳt also grow
at the asymptotic rate g(e) and the potential contribution of child labor can be neglected for all
sufficiently large t.

Since the first derivatives of F are homogeneous of degree zero,

u′(c2t ) /
t = σ
(
1− q2 + βn

) · F2
[(
1− q2

)
ζ (e), σ/n

]
, (10)

where qt and F2 are constant, and ∀et ∈ [0, 1]


t = ρδ

1− q2
· u′

[
nρȳt+1(

1− q2
) (

1− q3
)
]

+ (1− ρ)bv′[(1− ρ)ȳt+1
]
. (11)

It is seen that 
t cannot be changing at the same rate as u′(c2t ) unless either u and v are iden-
tical, or there is no altruism (b= 0). In the latter case, u′(c3t+1

)
/u′(c2t ) must also be constant.

That is to say, steady-state growth is possible only with some restrictions on preferences beyond
those underpinning (4). The requirement that u′(c3t+1

)
/u′(c2t ) be constant motivates a standard

assumption:

Assumption 1. u(ct)= c1−ξt /(1− ξ ).

Independently of restrictions on preferences, the f.o.c. yield, along such a path,

F1
[(
1− q2

)
ζ (e), σ/n

]
F2
[(
1− q2

)
ζ (e), σ/n

] · [(1− q2
)
zh′(e)

]≥ σwF1
[(
1− q2 −wne

)
ζ (e), σ/n

]
, e≤ 1. (12)

The ratio F1/F2 is the (constant) |MRTS|5 in producing full income, F1 on the r.h.s. is the marginal
product of human capital, and both are evaluated at ζ (e) and σ/n.

4.2.1. No altruism
Since v plays no role, (10) may be written as

F2
[ (
1− q2

)
ζ (e), σ/n

]=
(
1− q2

) [
(1+ g(e))

(
c3t /c2t

)]ξ
δρσ (1− q2 + βn)

. (13)

Lemma 1. Let e vary parametrically to yield steady-state growth paths. Then, ζ is increasing in e for
all F that are:

(i) sufficiently close to Cobb-Douglas in form, provided ξ ≤ 1; or
(ii) members of the CES family whose absolute value of the elasticity of substitution, |1/(ε − 1)|,

is at most 1, provided ξ + ε ≤ 1.

Proof. See Appendix A.

Remark: The condition ξ ≤ 1 in part (i) can be weakened to include values exceeding, but
sufficiently close to, 1. Regarding part (ii), if ε = −1, the result holds for all ξ ≤ 2.

Under what conditions are steady-state paths possible? Let ep denote the smallest value of e
satisfying zh(e)= 1, where ep > 0 in virtue of h(0)= 0. If ep ≥ 1, there exists no steady-state growth
path.

Suppose, therefore, that ep < 1. Under the conditions of Lemma 1, ζ (1)> ζ (e) ∀e< 1. Hence,
if the optimality condition (12) is violated at e= 1, then, by definition, progress is ruled out. If,
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with progress ruled out, the l.h.s. of (12) exceeds the r.h.s. at ep, then by continuity, there exists at
least one value of e ∈ (ep, 1) such that (12) holds as an equality. This establishes:

Proposition 2. In the absence of altruism, there are three possibilities when e is parametric.
(i) If ep ≥ 1, there exists no steady-state growth path.

If ep < 1 and F satisfies the conditions in Lemma 1, then:
(ii) if (12) is violated at e= 1 and the l.h.s. exceeds the r.h.s. at ep, there exists at least one steady-

state growth path such that e ∈ (ep, 1);
(iii) if (12) holds at e= 1, the progressive state is a possible path, and if it holds as a strict

inequality, then that path is also locally stable.

The direct costs of education, which arise from the teacher-pupil ratio w, exert a strong influ-
ence on which of these possibilities holds. If w is sufficiently close to zero, it follows from (12)
that progress is the only possible outcome, which accords with intuition. In fact, the educational
system is a fairly heavy user of its own output, so that the other outcomes cannot be ruled out.

In view of the role played by condition (12), we have established

Corollary 1. The parametric growth paths defined by parts (ii) and (iii) will be sustained by families’
optimal choices.

4.2.2. Altruism
If v differs from u in the degree of concavity, it follows at once from (11) that 
t cannot be
changing at a constant rate along a steady-state growth path.

Assumption 2. Let v also be iso-elastic: v
[
(1− ρ)ȳt+1

]= [
(1− ρ)ȳt+1

]1−η
/(1− η).

With v in play in this form, (10) becomes:

F2
[(
1− q2

)
ζ (e), σ/n

]=
[
(1+ g(e))c3t /c2t

]ξ
σ
(
1− q2 + βn

)
(

ρδ

1− q2
+ (1− ρ)1−ηb

[
c3t (1+ g(e))

]−η+ξ ( ρn
(1− q3)

(
1− q2

)
)η)−1

,

so that Lemma 1 continues to hold.
This equation may also be expressed as

u′(c2t ) /
t =
⎡
⎣ ρδ

1− q2
·
(

nρ(
1− q2

)
(1− q3)

)−ξ
+ (1− ρ)1−ηb · ȳ(ξ−η)t+1

⎤
⎦

−1 (
ȳt+1

c2t

)ξ

= σ
(
1− q2 + βn

) · F2
[(
1− q2

)
ζ (e), σ/n

]
. (14)

Given that the economy is on a steady-state growth path, the r.h.s. is constant, attaining its upper
limit when e= 1, since ζ is increasing in e. The expression in brackets is constant if, and only if,
ξ = η; so that we distinguish among three cases. First, it is seen that if v is less concave than u, that
is, η < ξ , then the terms involving ȳt+1 will grow without bound, which implies from (34) that
e0t = 1, and hence that the path is locally stable. Second, in the borderline case ξ = η, u′(c2t ) /
t
is indeed constant. Altruism introduces the additional, constant term (1− ρ)1−ηb into the said
expression, thus inducing an increase in ζ (e) if e< 1. Attaining the state of progress is then more
likely than in the absence of altruism. Third, if η > ξ , the said expression approaches a limit as t
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becomes very large. In effect, altruism ceases and the results of Section 4.2.1 apply. This argument
establishes:

Proposition 3. With altruism and iso-elastic preferences, and given zh(1)> 1, the possible steady-
state growth paths are as follows.

(i) If u and v differ, with η < ξ , then progress is the sole steady-state path that can be supported
by families’ optimizing decisions. It is also locally stable.

(ii) If η= ξ , there may exist steady-state growth paths with incompletely educated populations,
but the state of progress is also possible as a limiting case.

(iii) If η > ξ , Proposition 2 applies.

What is the intuition for these findings? A necessary and sufficient condition for 
t to fall at
the same rate as u′(c2t ) in the presence of altruism is ξ = η. Relaxing that restriction, consider the
path et = 1, along which 
t can fall at a rate less than g(1) without violating the conditions for
optimality. Investing yields old-age provision and fosters the children’s well-being in adulthood.
Since ȳt+1 is the argument of both u

(
c3t+1

)
and v, it suffices that v be less strongly concave than u

in order to maintain steady-state growth. If parents are perfectly selfish, the concavity of u rules
alone, so that e0t < 1 is possible.

If u is less strongly concave than v, then along any steady growth path, v′ is falling faster than
u′(c2t ) and u′(c3t+1

)
. The relative contribution of altruism goes asymptotically to zero as t becomes

arbitrarily large, and with it, e0t may slip below 1.

4.2.3. A special case: Log-land
In light of the foregoing results and its ubiquity in applications, the logarithmic case warrants
further examination.

Proposition 4. Suppose u= ln c, v= ln[(1− ρ)ȳt+1]. If

n(
1− q2

) [
δ
(
1− q3

)+ bn
]
(1− ρ)

≥ zh′(0)
γ +w

(15)

and, when F is Cobb-Douglas
(
yt =A · l1−αt kαt

)
,

zh′(1)≥ ασαn1−αwA · [ζ (1)]1−α

(1− q2 −wn)α
,

then the economy possesses at least three steady-state equilibria: backwardness, progress, and one or
more (stationary) states with constant values of e0t ∈ (0, 1). Backwardness and progress are locally
stable. Among the third type, that having the smallest value of et is unstable.

Proof. See Appendix A. Condition (15) is independent of F. The l.h.s. depends only on fertility
and mortality rates, and the social norm and preference parameters ρ, b and δ; the r.h.s. depends
only on those representing the costs of education and the associated marginal yield of human
capital at et = 0.

5. War and pestilence as stochastic events
In reality, mortality and destruction rates are stochastic. This fact rules out steady-state growth
paths, but not necessarily bumpy ones. If there is a poverty trap, a more extreme hazard arises: the
outbreak of a war or a severe epidemic, especially if sustained for two or more periods, may pitch
a hitherto growing economy into backwardness. We formulate the shock as the actual outbreak,
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coupled with the (prior) probability of its occurrence. This prior is assumed to be sharp, in the
sense that beliefs about probabilities are certain.6

Let It ∈ {0, 1} denote the states of peace and war, respectively, in period t; πt+1 = Pr(It+1 = 0)
denotes the probability of peace in period t + 1. The survival rate of physical capital is σt(It),
where σt(1)<σt(0)≤ 1. Mortality rates qt are likewise dependent on It . It is almost surely
the case that qat (1)> qat (0) (a= 2, 3). By assumption, It is known when decisions are made in
period t. Full income in the following period, ȳt+1(It+1), for those who survive to enjoy it, depends
on the state then ruling, as well as on current investment. The extended family cannot provide
insurance against this particular risk.

Young adults’ preferences now involve not only the compound lottery arising from the future
state It+1, but also the current realization of It if this affects q2t .

Vt(It)= u
(
c2t
)+ δ

[
πt+1

(
1− q3t+1(0)

)
u
(
c3t+1(0)

)+ (1− πt+1)
(
1− q3t+1(1)

)
u
(
c3t+1(1)

)]
+ bnt

1− q2t (It)
[
πt+1

(
1− q2t+1(0)

)
v
[
(1− ρ)ȳt+1(0)

]
+ (1− πt+1)

(
1− q2t+1(1)

)
v
[
(1− ρ)ȳt+1(1)

]]
,

It = {0, 1}. (16)

Exploiting the assumption that F is homogeneous of degree one, we have, from (6),

c3t+1(It+1; It)= ρnt · ȳt+1(It+1)(
1− q2t (It)

) (
1− q3t+1(It+1)

) (17)

= ρnt · F
[(
1− q2t+1(It+1)

)
λt+1(et)+ ntγ , σt+1(It+1)st/nt

]
(
1− q2t (It)

) (
1− q3t+1 (It+1)

) .

Not only does the realized state in period t + 1 affect full income in that period, but mortality in
period t also affects both the weight of u

(
c3t+1

)
relative to v(ȳt+1) and the share in ȳt+1 of those

who do survive throughout old age. The weight on future outcomes relative to (certain) current
consumption, c2t , also changes in a complicated way.

The budget constraint (7) becomes

[
1− q2t (It)+ βnt

]
c2t + st + ρF

[ (
1− q2t (It)

)
λt + ntγ ,

σt(It)st−1
nt

]

≤ F
[(
1− q2t (It)−wntet

)
λt + ntγ (1− et),

σt(It)st−1
nt

]
, It = {0, 1}, (18)

where the dependence of current decision variables on the current realized state can be (notation-
ally) suppressed without ambiguity.

It should be noted that two steady-state, non-stochastic settings arise as special cases. The state
of perpetual peace is the realized sequence {It = 0}t=∞

t=0 expected with certainty; that of perpetual
war is {It = 1}t=∞

t=0 expected with certainty; and associated with each are the constant destruction
rates (qt(0), σt(0)) and (qt(1), σt(1)), respectively.

To analyze the economy’s behavior in the face of systemic shocks, we proceed essentially
as before, noting that the choices of st and et determine the productive endowments in the
next period and hence ζt+1. The logarithmic forms u= ln ct , v= ln(1− ρ)ȳt+1 and F Cobb-
Douglas

(
yt =A · l1−αt kαt

)
yield relatively tractable closed-form expressions from the f.o.c. (see

Appendix C). These difference equations will be used in Sections 7.2 and 7.3. Otherwise, u, v, and
F are not thus restricted to yield Log-land.
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Figure 2. Feasible sets of consumption and investment.

5.1. The occurrence of war
The first step is to examine how It and q2t affect the set of feasible current choices, which are
independent of πt+1. In state It , the budget set is denoted by

S(It)=
{
c2t , et , st : (19), c

2
t ≥ 0, et ∈ [0, 1], st ≥ 0

}
, It = {0, 1}.

It is seen from condition (39) in Appendix B that if the ratio of survival rates, σt(It)/
(
1− q2t (It)

)
,

is independent of the current state, then the outer frontier of the feasible set is affected only by
the mortality rate q2t (It). If the said ratio is indeed independent of It , an increase in q2t , whether
associated with war or not, also makes c2t cheaper relative to st .

The extreme allocations of S(It = 0)’s outer frontier, which involve positive outlays on at most
two of savings, education, and consumption, are depicted as the points A, B, C, andD, respectively,
in Figure 2. The corresponding allocations in the state of war (It = 1) are A′, B′, C′, and D′. The
allocations on the whole of the frontier are examined in Appendix B. To summarize: A sufficient
condition for

(
dc2t /dq2t (It)

)
et=st=0 < 0 ∀λt is β > γ , which is not a very strong requirement. If the

ratio of survival rates, σt(It)/
(
1− q2t (It)

)
, is fixed for each current state It and β > γ , the outer

frontier of the feasible set S(It) will contract inwards everywhere as the mortality rate q2t (It) rises.
If the said ratio is the same for both states, the contraction from S(0) to S(1) represents the effects
of an outbreak of war.

To complete the argument, consider the case where et = 1 is infeasible for sufficiently large
values of q2t (It). Suppose that when q2t (It)= 0, the maximal values of c2t and st , respectively, are
both positive, as depicted in the figure when ABCD (or A′B′C′D′ when It = 1) corresponds to a
zero level of such premature mortality. As q2t (It) progressively increases, BD will shift toward G
until the allocations B and D coincide at G (et = 1, c2t = st = 0). Further increases in q2t (It) will
reduce the maximal feasible level of et below one, with the associated allocation moving down-
wards along the et-axis toward the origin O. Since AC also shifts progressively inwards toward O,
the outer frontier of S(It) contracts everywhere as q2t (It) increases.

The contraction of the feasible set established above points to unambiguous income effects,
for horizontal lines on the frontier move inwards in parallel and c2t and ȳt+1 are normal goods,
with ȳt+1 increasing in et and st . Changes in survival rates also imply changes in marginal rates of
transformation. As noted above, given the current state It , an increase in q2t (It) makes c2t cheaper
relative to st , as does an outbreak of war if this event leaves the ratio of survival rates unchanged.

https://doi.org/10.1017/S1365100523000536 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100523000536


1466 C. Bell et al.

Turning to the marginal rate of transformation between st and et , we obtain from (18), on
fixing ct ,

MRTse(It)= −
(
nt(wλt + γ )F1

[
(1− q2t (It)−wntet)λt + ntγ (1− et), σt(It) · st−1

nt−1

])−1
.

For any given It and et , an increase in q2t (It) will increase F1 and so reduce |MRTse(It)|: st will
become cheaper relative to et , as intuition suggests.

An outbreak of war has ambiguous effects on MRTse(It). Since F1 is homogeneous of degree
zero, MRTse(It) can be expressed in the form

MRTse(It)= −
(
nt(wλt + γ )F1

[
λt + nt[γ − (wλt + γ )et]

1− q2t (It)
,

σt(It)
1− q2t (It)

· st−1
nt−1

])−1
.

Suppose, as before, that the ratio of survival rates is independent of It , but with q2t (1)> q2t (0).
It is seen that the associated increase in mortality reduces, leaves unchanged, or increases, the
(normalized) input of human capital according to et ≤

> γ/(γ +wλt). For sufficiently large val-
ues of λt , the expression on the r.h.s. will be very small, so that war in the current period
will make st cheaper relative to et for all values of et . The converse holds when λt is close
to one; for γ /(γ +wλt) is then close to one, and the nt/

(
1− q2t (It)

)
children cared for by

each surviving young adult constitute a potentially large pool of labor, relatively speaking.
The outbreak of war reduces the opportunity cost of their labor and so makes investment in
their education more attractive relative to investment in physical capital. We summarize these
findings as

Proposition 5. The contraction of the feasible set caused by war in the current period reduces both
current consumption and investment in both forms of capital. Consumption also becomes cheaper
relative to investment in physical capital. Investment in education is likely to suffer especially when
λt is large, but not when λt is small.

It seems rather unlikely that the associated changes in the marginal rates of transformation will
offset the reduction in investment arising from the adverse income effect.

5.2. The probability of war
Intuition suggests that an increase in the prior probability of war in the future will depress invest-
ment in the present. It will now be demonstrated that this is indeed so in our framework provided
an additional condition holds.

The feasible set in period t, as defined by (18), is independent of πt+1, so that changes in the
latter will affect decisions only through V(It). Inspection of (16) reveals that the weight on the
altruism term v is increasing in πt+1, since q2t+1(1)> q2t+1(0). Where the terms involving old age
are concerned, the probability of surviving into full old age is increasing in the probability of
peace, πt+1. Weighing against this, the pay-off received by each of the survivors depends on the
number of claimants as well as the size of the common pot. It is seen from (17) that for any given
(et , st , It), c3t+1(It ;0) ≥

< c3t+1(It ;1) according as

F
[(
1− q2t+1(0)

)
λt+1(et)+ nt+1γ , σt+1(0)st/nt

]
F
[(
1− q2t+1(1)

)
λt+1(et)+ nt+1γ , σt+1(1)st/nt

] ≥
<

1− q3t+1(0)
1− q3t+1(1)

.

The numerator on the l.h.s. is the level of full income in period t + 1 when peace prevails, and the
denominator is the corresponding level when war does so. The r.h.s. is the corresponding ratio
of survival rates into old age. Both ratios exceed 1, but it is very likely that the former ratio is
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the larger; for war is likely to take a proportionally heavier toll on young adults, and it will surely
destroy some of the capital stock. It is plausible, therefore, that

F
[(
1− q2t+1(0)

)
λt+1(et)+ nt+1γ , σt+1(0)st/nt

]
F
[(
1− q2t+1(1)

)
λt+1(et)+ nt+1γ , σt+1(1)st/nt

] ≥ 1− q3t+1(0)
1− q3t+1(1)

(19)

holds. This suffices to ensure that the second term on the r.h.s. of (16), which may be expressed as
EIt+1u

[
c3t+1(It ;It+1)

]
, is increasing in πt+1(It = 0, 1), and so establishes

Proposition 6. If (19) holds, an increase in the (prior) probability that war will occur in the next
period will depress investment in favor of consumption in the current one.

The argument in Section 5.1 indicates how the balance between et and st is affected by the
probability of war in the following period depends in a complicated way on the differences in
survival rates between the two states. The weight on the altruism term v in Vt is decreasing in the
future mortality rate among young adults, and the stronger the degree of altruism, as represented
by b, the larger will be the absolute size of the reduction in the said weight. Yet u and v share
the argument ȳt+1 in the same way, so that even the strong prospect of a rather destructive war is
unlikely to inducemuch substitution between the two forms of investment beyond any differential
effect on survival rates.

5.3. Pestilence
An unexpected outbreak of pestilence, such as the Black Death, is an asymmetric shock of a dif-
ferent kind, carrying off much of the population, but leaving the current capital stock untouched.
This will be a windfall for the survivors, but it will profit them little if physical and human cap-
ital are poor substitutes in production—indeed, not at all if they are strict complements. If, in
contrast, they are perfect substitutes, then the windfall will yield a correspondingly large income
effect, which may be sufficiently strong to propel an economy out of backwardness onto a growth
path, even with perpetual, but not unduly destructive warfare.7

A belief that adult mortality will fall in the future will make current investment, especially in
schooling, more attractive, thus promoting growth. An outbreak of heavy hostilities or disease that
shocks the population into pessimism will therefore have ambiguous effects on accumulation.

6. Stability
When there is perfect foresight, backwardness

(
e0t = 0

)
and progress

(
e0t = 1

)
are both locally

stable under the conditions established in Section 4. Sufficiently small, favorable, and foreseen
changes in mortality and destruction rates will not yield an escape from backwardness, nor will
sufficiently small, unfavorable ones upset full schooling or the growth rate, g(1), when progress
rules. These findings yield results for stochastic settings in which agents have beliefs, however
sharp, but lack foresight.

If backwardness is a locally stable equilibriumwhen peace always reigns
(
e0t = 0, It = 0 ∀t), then

once in backwardness, and failing a sufficiently favorable change in its environment, the economy
will be perpetually trapped in that state, be there war or peace thereafter, even when families form
the unshakeable belief that peace will reign.

Suppose there also exists, when peace always reigns, a set of stationary states with e0t ∈ (0, 1).
Let e∗(0) denote the smallest such value of e0t , so that λt is stationary, at λ∗(0), where λ∗(0)=
zh(e∗(0))λ∗(0)+ 1. Associated with e∗(0) there is a stationary level of kt , denoted by k∗(0). Since
the state of backwardness is locally stable, this neighboring equilibrium (λ∗(0), k∗(0)) is unstable.
If, at time t, the state variables are such that (λt , kt)<< (λ∗(0), k∗(0)),8 a descent into permanent
backwardness will follow. This conclusion holds a fortiori if there is some chance of war. For it is
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established in Section 5.1 that an outbreak of war in the current period will almost surely reduce
current investment relative to its level in the state of peace, and in Section 5.2 that an increase in
the hazard rate 1− πt+1 will do likewise.

Consider, therefore, a stationary stochastic environment wherein πt is constant and firmly
believed to be so, whatever episodes of war and peace actually materialize. Then if, at any time t in
the economy’s development, (λt , kt)<< (λ∗(0), k∗(0)), backwardness will ultimately follow. Yet
this condition is not necessary for such an outcome; for physical and human capital are (imper-
fect) substitutes in various ways, so that exceeding k∗(0) might not compensate for falling short of
λ∗(0), and conversely.

Turning to growth, a growing economy’s capacity to withstand shocks must be made precise.
A robust economy can be defined as one in which growth can occur even in a state of perpetual
war: e0t = e∗∗(1), It = 1, πt = 0 ∀t, where λt+1 = zh(e∗∗(1))λt + 1>λt ∀t. This requires, inter alia,
that (12) hold at qt = q(1), σt = σ (1) when e0t = e∗∗(1) ∀t. In particular, if e0t = e∗∗(1)= 1 ∀t, then
progress, once attained, is robust and locally stable. More generally, if steady growth is possible in
a state of perpetual war, growth will also be possible when peace sometimes rules, but it will not
be steady, since ζt will vary, even if et does not.

The starting values of the state variables must be sufficiently favorable for a growth path to be
attained. These values depend on the economy’s particular history of war and peace. If, at time t′,
the state variables (λt , kt) are such that, should war become permanent, e0t ≥ e∗∗(1) ∀t ≥ t′, then a
sustained growth path will be attained for all π . If (λ0, k0) lies in a certain interval, the economy’s
ultimate fate—sustained growth or backwardness—becomes a matter of chance (see Appendix E).

7. Simulations
The results of Section 6 pertain to rather restrictive initial conditions. Extending them to cover
economies that are initially close neither to backwardness nor to progress involves some resort
to simulations. For in the presence of a poverty trap, whether an economy will withstand one
or a whole series of shocks involves complicated transitional dynamics. The first step is briefly
to treat a non-stochastic setting. This lays the foundation for simulations wherein mortality and
destruction rates are stochastic, in Sections 7.2 and 7.3.

The constellation of parameter values employed in this section is set out in Table 1. For its
provenance and the fulfillment of the conditions in Section 7.1, see Appendix D.

7.1. Backwardness and progress: constant destruction rates
The following conditions must be satisfied for both states to be equilibria:

(i) condition (9) must hold as a strict inequality for backwardness
(
e0t = 0 ∀t) to be a locally

stable equilibrium;
(ii) zh(1)> 1, so that unbounded growth results when et = 1 ∀t; and
(iii) condition (12) yields e0t = 1 along the steady-state path et = 1 ∀t.
Let u(ct)= ln ct and v[(1− ρ)ȳt+1)]= ln[(1− ρ)ȳt+1)].

Condition (i). A sufficient condition for (9) to hold is (15). It is seen that there exists a measurable
subset of the parameters involved such that (9) will indeed hold.

Condition (ii). Let h(e)= d1 · e− d2 · ed3 , so that h(1)= d1 − d2. To illustrate, if h= e, then h′(e)=
h(1)= 1, and z> 1 yields g(1)> 0.

Condition (iii). Let F be Cobb-Douglas: yt =Al1−αt kαt . It is proved in Appendix C that progress
(e0t = 1 ∀t, g(1)> 0) will be an equilibrium path if, and only if,
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Table 1. Log-land: parameter values

Parameter Value Variable

n 1.2 Net reproduction rate
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q2 0.1 Mortality rate at the start of young adulthood
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q3 0.3 Mortality rate at the start of old age
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 0.75 Survival rate of physical capital
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ 0.6 A child’s endowment of human capital
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d1 1 A parameter of h(e)a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d2 0.2 A parameter of h(e)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d3 1.5 A parameter of h(e)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

z 1.5 Transmission factor for human capital formation
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w 0.075 Teacher-pupil ratio
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A 1 TFP parameter
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α 1/3 Elasticity of output w.r.t. physical capital
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ 0.85 Discount factor
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b (0, 0.1) Taste parameter for altruism
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 0.35 Share of current full income accruing to the old
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β 0.325 Share parameter for a child’s consumption

ah(e)= d1 · e− d2 · ed3 .

h′(1)
h(1)

≥ nw
(1− q2 −wn)

· 1+ α
[
δ
(
1− q3

)+ bn
]

[
δ
(
1− q3

)+ bn
] · 1

1− ρ
[(
1− q2

)
/(1− q2 −wn)

]1−α , (20)

where h′(1)/h(1) will be close to 1 if h is weakly concave.

7.2. Transitions to permanent peace or war
We augment the analysis of the stochastic setting of Section 6 by examining the transition to peace
or war when these are ultimately established as permanent states. Changing expectations play a
central role along these paths.

Suppose war breaks out in period t. Agents form some sharp prior, 1− πt+1 > 0, that war will
also occur in the next period, and make their investment decisions in t accordingly. Given the
resulting normalized endowments and the prior πt+1, households choose (e0t , s0t ). If war occurs
again in period t + 1, the resulting normalized endowments, suppressing the time subscripts for
nt , σt and q2t , will be

l̄t+1 = (
1− q2(1)

)
λt+1

(
e0t
)+ nγ and kt+1 = σ (1)s0t /

[(
1− q2(1)

)
n
]
.

Two wars in a row may not be out of the ordinary, so it is quite possible that π is not revised.
Indeed, in an environment wherein the discrete variate It is i.i.d. and memories are sufficiently
long, πt+1 will be fixed, a state of affairs analyzed in Section 7.3.

Now suppose that, for some reason or other, peace is confidently expected in period t + 2
and

(
e0t+1, s

0
t+1

)
are chosen accordingly. Suppose peace also actually rules, so that the resulting

normalized endowments in period t + 2 are

l̄t+2 = (
1− q2(0)

)
λt+2

(
e0t+1

)+ nγ and kt+2 = σ (0)s0t+1/
[(
1− q2(0)

)
n
]
. (21)
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There is the alternative, happier possibility that peace rules in period t + 1. In that event, the
normalized endowments will be

l̄t+1 = (
1− q2(0)

)
λt+1

(
e0t
)+ nγ and kt+1 = σ (0)s0t /

[(
1− q2(0)

)
n
]

and the calculations for period t + 2 then proceed as before.
Turning from the transition to the long run, suppose peace reigns thereafter and is confidently

expected to do so. Given the values of the state variables in period t,
(
λt
(
e0t−1

)
, s0t−1

)
, it can be

checked whether the economy will recover from one or two wars, or fail to do so, whereby the
starting endowments at t + 2 after two wars are given by (21). The same holds,mutatis mutandis,
for a transition to the regime of perpetual war.

A particular limitation of the two-period phase t and t + 1 during which war can occur is that
its influence on decisions ex ante is confined to period t. Two consecutive adverse shocks are
possible, but the (exogenous) change in beliefs to the certainty of peace from t + 2 onwards makes
ultimate recovery more likely. Suppose the said phase is extended to three periods, thus yielding
an ex ante influence on decisions in both periods t and t + 1. The possible sequences are

{1, 1, 1}, {1, 1, 0}, {1, 0, 1}, {1, 0, 0}, {0, 1, 1}, {0, 1, 0}, {0, 0, 1}, {0, 0, 0}.

We concentrate on the grimmest outcome, namely, three consecutive periods of war.
The constellation of parameter values must be extended to cover war and peace. Let the values

in Table 1 hold in the state of peace, so there is a poverty trap, even with unbroken peace, {0,0,0}, as
the actual outcome in the first three periods. The associated long-run value of ζt+1 along the path
of progress, ζt+1(It = 0; et = 1), is 49.26, as yielded by (42), with It = 0 ∀t. Let the prior probability
that war occurs in periods 1 and 2, 1− πt+1 (t = 0, 1), be 0.5, and let the mortality rates in that
state be q2t (1)= 0.25, q3t (1)= 0.35, with σt(1)= 0.4.

If the state variables λt and kt are very large, extremely heavy losses will have to occur in order to
reduce the normalized endowments to levels such that even et = 1 will not be optimal, let alone set
in train a certain collapse into backwardness. Suppose, therefore, that the initial values of human
and physical capital, λ0 and k0, which are inherited from period t = −1, are sufficiently small for
a sequence of shocks as severe as {1,1,1} to rule out any path to progress. Recalling the results in
Section 6, the stationary (critical) values of λ∗ are now in play. Under perpetual peace, expected
as well as realized, λ∗(0)= 3.1988. With πt+1 = 0.5, the critical value of λ0 when the realized
sequence is indeed {0, 0, 0} is 3.3856; but when the outcome is three periods of war, {1, 1, 1}, the
said value is 3.9976. To complete the initial conditions, let ζ0 = 20.

The trajectories of λt and ζt for each of the values λ0 = 3, 3.6, 4, 4.2 and 10 are depicted in
Figure 3. With the attendant heavy destruction of physical capital, three periods of war generate
an immediate and sharp upward spike in ζt , regardless of the ultimate outcome. If λ0 is close to
the critical value 3.9976, the trajectories of ζt have more than one local extremum. The trajec-
tory for λ0 = 3.6 follows a spike at t = 2 by first undershooting, and then converging from below
to the value under permanent backwardness. That for λ0 = 4 also attains a local maximum at
t = 3, before ultimately and slowly converging from below to the value under progress. That for
λ0 = 4.2 possesses three extrema and converges from above. These oscillations indicate compli-
cated and long-drawn-out transitional dynamics near critical values of the boundary conditions.
These dynamics are less apparent in the trajectories of λt . The trajectory for λ0 = 4 recovers only
extremely slowly, despite the favorable change in beliefs, from the three episodes of war. In con-
trast, the recovery of the trajectory for the slightly more favorable λ0 = 4.2 is complete by t = 4,
and rapid growth sets in from t = 6 onwards, indicating the sensitivity of the long-run path to
small changes in λ0 in the range between 3.6 and 4.2. As for λ0 = 10, its trajectory is little affected
at any point.
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Figure 3. Trajectories of ζt and ln λt : three consecutive periods of war before peace reigns.

7.3. A stationary stochastic environment
We examine the varying fortunes of these five initial configurations as events subsequently unfold
in a different setting, namely, one wherein πt = 0.5 in all periods, with the associated unchanging,
rational belief that πt+1 = 0.5. For each value of λ0, a draw is made from the binomial distribution
Pr(It = 0)= 0.5 and the resulting values of all relevant outcomes are calculated for period t = 0
and the start of t = 1. At the latter point in time, a new draw is made, and so on and so forth, up to
the start of period t = n, thus yielding the realized path {λt}t=n

t=0. Since the process is i.i.d., there are
2k distinct, equi-probable sequences {It}t=k−1

t=0 up to the start of period k, yielding a distribution of
the n-vector variate {λt(It)}t=n

t=1, whose k-th element is λ
(
{It}t=k−1

t=0 , λ0, πt+1 = 0.5
)
, ∀k≥ 1. More

than one of these sequences may have landed up in backwardness by the start of period k, in
which event, the number of distinct values of λk would be correspondingly smaller than 2k. At all
events, the distributions’ upper and lower limits are generated by the sequences {It = 0}t=n−1

t=0 and
{It = 1}t=n−1

t=0 , respectively.
The resulting distributions of λt are depicted in Figure 4. The courses of the upper and lower

limits are shown in the left-hand panel; the frequency distributions of λ14 are shown in the right-
hand panel. Recall from Section 7.2 that when πt+1 = 0.5 (t = 0, 1), the initial realized sequence is
{0, 0, 0} and there is also peace forever after, the critical value of λ0 is 3.3856. It follows that when
πt+1 = 0.5 ∀t, all sequences that ever involve λt ≤ 3.3856 for some t are doomed to backwardness.
This sufficient condition is not, however, necessary for that outcome. When λ0 = 3, all sequences
will end up in that state by t = 8, though ζt will continue to fluctuate thereafter with the states
of war and peace. The distribution of ζ14 comprises four, separate dense clusters, the lowest with
values of about 19, the highest with values of about 27.

For values of λ0 lying in the range 3.6 to 4.2, Ecclesiastes, 9:11 sums up the ensuing trajectories
aptly: “[. . .] fortune and chance happeneth to them all.”—albeit the chances of ultimately attaining
progress are slimwhen λ0 is even a little less than 4.When λ0 = 3.6, the sequence {It = 1}t=5

t=0 yields
backwardness for good from period t = 6 onwards. At that point in time, about 70% of all the
possible 128 sequences yield λ6 < 3.3856, rising to 94% of all possible 16,384 sequences at t = 14.
When λ0 = 4, the sequence {It = 1}t=6

t=0 yields backwardness for good from period t = 7 onwards,
and 38% of all possible 16,384 sequences yield λ14 < 3.3856. When λ0 = 4.2, that fraction is still
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Figure 4. The distributions of trajectories of ln λt in a stationary stochastic environment.

12.5%; but about 7 out of 9 attain λ14 > 4.004, the critical value under perpetual war, and hence
the assurance of ultimately enjoying progress indefinitely.

Far removed from such starting values, λ0 = 10 provides a springboard for robust, but
unsteady, growth. Progress is maintained whatever events come to pass

(
e0t = 1 ∀t); but sincemor-

tality and destruction rates fluctuate, so do the growth rates of output and investment in physical
capital, and hence the level of ζt . The distribution of the latter in period t = 14 comprises six sep-
arate, dense clusters, the lowest with values of about 53, the highest with values of about 87. In
the worst possible outcome, war reigns perpetually, and if expectations are revised accordingly,
the associated path is classed among those in Section 4.2. The same holds, mutatis mutandis, for
perpetual peace (see Figure 3 from t = 3 onwards.)

8. Kenya, 1910–2070: calibration and simulations
Early in the 20th century, virtually the only formally educated adults in Kenya were colonial
administrators, settlers, andmissionaries. At Independence in 1964, some progress toward educat-
ing the population had beenmade, and its pace accelerated thereafter. TheMauMau insurgency in
the 1950s was not very destructive—except, ultimately, of colonial rule—andKenya then remained
untouched by war until Islamic State insurgents became active a decade or so ago, albeit always
on a limited scale. What did not spare Kenya was the AIDS epidemic, which had broken out in
the population at large by 1990 and whose course to date exemplifies a long-drawn-out episode of
pestilence.

8.1. Calibration: 1910–1990
The data sources and the series constructed from them are discussed in detail in Bell et al. (2004).
The GDP series was taken from the Penn World Tables (hereinafter, PWT), with starting year
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Table 2. Calibration for Kenya, 1920–1990

1920 1930 1940 1950 1960 1970 1980 1990

First stage:

Exogenous

et 0.042 0.071 0.119 0.179 0.326 0.407 0.462 0.507


GDPt(107) 436 642 1089 2014 3076


yt 1286 1506 1930 2567 2716


Kt(107) 32.2 47.9 80.4 148.6 226.7


α γ σ

1/3 0.7 0.75

Solution 1

λt 1 1.25 1.42 1.87 2.48 3.68 2.46 3.45


At 224.6 224.6 224.6 254.2 254.2


zt 5.85 5.85 5.85 5.85 4.39 4.39 1.44 1.44


Solution 2

λt 1 1.69 2.18 4.34 2.52 6.51 2.79 6.26


At 170.71 170.71 170.71 197.48 197.48


zt 16.53 16.53 16.53 3.90 3.90 3.90 1.75 1.75

Second stage:

Exogenous

q2t 0.175 0.163 0.154 0.141 0.127


q3t 0.319 0.305 0.290 0.270 0.248


nt 2.0 2.0 2.0 1.92


δ 0.85 0.85 0.85 0.85

b w ρ η

Solution 1 0.092 0.071 0.249 1

Solution 2 0.024 0.120 0.342 1

Exogenous values: Bell et al. (2004, 2006a), and text.

1950 (see Table 2). In view of the fairly strong annual fluctuations in GDP, 5-year average levels
were employed. The first population census was conducted in 1948, followed by others in 1962,
1969, and then decennially. After some minor smoothing and interpolation, the census data yield
fertility and mortality rates, as reported in Table 2. The series for et was constructed from the
census tables dealing with years of completed education by age cohort. For the present calibration,
a series for the physical capital stock, Kt , is also needed. This, too, is taken from the PWT.9

8.1.1. First stage
This stage involves only the technologies for producing output and human capital. It holds for all
values of et , however chosen. The input of human capital employed in producing the aggregate
good is

Lt =
(
0.9N1

t + 0.5N2
t
)
(1− et)γ +

(
0.5N2

t λt +
5∑

a=3
Na
t λt+10(2−a)

)
−wλt−10

(
0.9N1

t + 0.5N2
t
)
et ,

(22)
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where, in connection with this step only, Na
t denotes the number of people in the age cohort

a (a= 0, ages 0–4; a= 1, ages 5–14; a= 2, ages 25–34; . . . ; a= 7, ages 75+). The resulting level
of output of the composite good is

Yt =AtL2/3t K1/3
t , (23)

whereby it should be remarked that Kenya is an open economy exporting primary products, so
that fluctuations in world markets surely affect the TFP parameter At .

Turning to the educational technology, there is some evidence that the school system became
overburdened from about 1970 [Bell et al. (2006a)], so that zt , too, may have varied. We choose
the simple form h(et)= et and allow zt , as well as At , to shift over time. Thus,

λt+10 = ztetλt−10 + 1. (24)

Given λ1900 = λ1910 = λ1920 = 1 [Bell et al. (2006a)] and the values of et for 1920–1980, (24) yields
the values of λ1930, λ1940, . . . , λ1990 given any values of z1920, z1930, . . . , z1980.

GDP comprises the output of the composite good and investment in education. Valuing teach-
ers’ input of human capital at the latter’s marginal product, measured in units of the composite
good, we have

GDPt =AtL2/3t K1/3
t + (2/3)At (Kt/Lt)1/3

[
wλt−10

(
0.9N1

t + 0.5N2
t
)
et
]
. (25)

Table 2 reports two solutions. The large values of zt up to 1970 reflect the fact that the education
of the population began earlier, so that, by definition, Kenya had not remainedmired in the state of
“backwardness”. In both solutions, the second break occurs in 1980, with zt taking the values 1.44
and 1.75 from then onwards, values implying long-run annual growth rates of 1.84 and 2.84%,
respectively.10

O’Connell and Ndulu (2000), using entirely different methods and sources in their investiga-
tion of the experience of growth in sub-Saharan Africa, also arrive at an estimated long-run annual
growth rate for Kenya of 2%. Virtually identical is Sachs and Warner’s (1997) estimate of 1.9%.
That these estimates lie comfortably in the interval [1.84, 2.84] provides independent support for
the values derived here, where solution 2 should be viewed as a somewhat optimistic springboard
for developments after 1990.

8.1.2. Second stage
Associated with each of solutions 1 and 2 in the first stage are the parameters (b,w, δ, ρ, η). The
method of estimating them rests on the household’s f.o.c., which are set out in Appendix A. Those
w.r.t. et and st do not involve the current term u′(c2t ); instead, there is a weighted pair of derivatives
pertaining to the next period:

Wt+1 ≡ δρu′(c3t+1
)+ b

(
1− q2t+1

)
(1− ρ)v′[(1− ρ)ȳt+1],

whereby v= [
(1− ρ)ȳt+1

]1−η
/(1− η). Since et ∈ (0, 1) in the period of calibration, (30) holds as

an equality, as does (29), St being always positive.
In Log-land (η= 1),Wt+1 specializes to

Wt+1 =
[
δ
(
1− q3t+1

) N3
t+1

N2
t+1

+ b
(
1− q2t+1

)] 1
ȳt+1

,

which is independent of ρ, and Vt takes the special form

Vt = ln
(
c2t
)+

[
δ
(
1− q3t+1

)+ b
(
1− q2t+1

)
(
1− q2t

) nt

]
ln ȳt+1 + R,
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where R denotes various terms involving parameters, exogenous variables, and logs thereof, terms
that have no influence on the optimum. It is seen that the taste parameters δ and b are essentially
perfect substitutes; for given fertility andmortality rates, their values can be varied arbitrarily while
preserving the value of the expression in brackets, subject only to the requirements δ ∈ (0, 1) and
b≥ 0. We therefore choose the “standard” value δ= 0.85.

It remains to determine the Lagrange multiplier μt associated with the budget constraint—
see (27). Noting that we have data for yt and st for the period 1950–1990, and so can derive ȳt
from the parameters estimated in the first stage, the assumption that u= ln c2t and (28) yield μt =
1/
[(
1− q2t + βnt

)
c2t
]
. The normalized form of the family’s budget identity is

(
1− q2t + βnt

)
c2t +

st + ρȳt = yt . Substituting for c2t , we obtain μt = 1/(yt − st − ρȳt), which can then be employed
in (30). Rearranging, we obtain

∂�t
∂et

=W · nt(
1− q2t

) ∂ ȳt+1
∂λt+1

∂λt+1
∂et

+ ȳt+1(
yt − st − ρȳt

) ∂yt
∂et

= 0. (26)

In Log-land, the second term marks the sole appearance of ρ in the system to be estimated.
Observe also that the social norm parameter β appears nowhere in the above scheme of equations,
and so cannot be estimated.

In 1980, Kenya’s people could have had no inkling of the AIDS epidemic that was to befall them
later in that decade. Their decisions about education in 1980 were therefore based on expectations
about future mortality derived from the experience of falling rates over the previous three or four
decades. For this reason, we apply the above procedure using only the 4 years 1950, 1960, 1970,
and 1980, and the counterfactual values of q2t and q3t for 1990 estimated by Bell et al. (2006a), as
reported in Table 3.

In Log-land, there are just the three parameters b,w, and ρ, whereby w exerts a weak influence
on stage 1, which is taken into account. Proceeding from solution 1 in stage 1, the pair of years
(1960, 1980) in stage 2 yields one solution wherein ρ is fairly close to α, there is modest altruism
(b= 0.092) and w= 0.0710; this solution is reported in the final panel of Table 2. All the other
second-stage solutions from this pair of years involve implausibly small values of ρ or b< 0. Of all
the other pairs of years, only (1950, 1980) bears examination, and its solutions are marked by
b< 0. Proceeding from solution 2 in stage 1, the pair of years (1950, 1980) yields the sub-
constellation ρ = 0.342, b= 0.024 and w= 0.120 in stage 2, as reported in Table 2. All other
sub-constellations arising from this pair involve either b< 0 or implausible values of ρ. Other
pairs of years fail in one way or another, often yielding implausibly large values of ρ or w.

There remain the variants wherein η is free. It turns out that this additional flexibility is not
needed for the purposes of this particular calibration (see Appendix D).

8.2. Transitions to an end of the epidemic
Proceeding as in Section 7.2, we posit a definite end of the epidemic after three 20-year periods,
that is, in 2050. We also assume that Kenya will be spared war or a serious insurgency. The full-
scale outbreak is revealed in 1990. All agents then form some prior that it will continue in the
period starting in 2010, perhaps somewhat attenuated, or mercifully end altogether. In the latter
event, the falling course of mortality over the period 1950–1980 would be restored. The agents
make their investment decisions accordingly. By assumption, the worst happens again in 2010,
and a prior is formed; and once more in 2030, but then with the certainty of full, permanent
relief in 2050. The associated mortality rates for each of these two possible states are set out in
Table 3. Given what must have been great uncertainty in the minds of Kenya’s people in the early
1990s about the course of the epidemic and the likelihood of effective and available antiretroviral
therapies, we set the prior probability of a continuation in 2010 and 2030 at 0.5.

Solutions 1 and 2 yield the trajectories of ζt and ln λt over the period 1990–2070 depicted in
Figures 5 and 6, respectively. Although zth(1)> 1 from 1990 onwards in both solutions, thus
satisfying the central necessary condition for long-run growth, zth(1)> 1 does not suffice to bring
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Table 3. Premature adult mortality rates and fertility: with and without AIDS

1990 2010 2030 2050

No AIDS q2t 0.127 0.099 0.070 0.041
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q3t 0.248 0.193 0.157 0.114
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AIDS q2t 0.353 0.270 0.154 0.111
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q3t 0.373 0.355 0.249 0.175
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nt 1.7 1.40 1.15 1.0

Source: Bell et al. (2006a).

Figure 5. Trajectories of ζt and ln λt for Solution 1: three realized waves of AIDS.

Figure 6. Trajectories of ζt and ln λt for Solution 2: three realized waves of AIDS.

about that state: the initial conditions must also be sufficiently favorable. Both solutions involve an
initial setback: λ2010 <λ1990. In 2030, moreover, recovery of the initial level is still incomplete in
solution 1 and scarcely fulsome in solution 2.More encouraging is the attainment of full education
for that cohort in both solutions, with λt growing at the steady rate zth(1)− 1 thereafter. Despite
the severity of the outbreak early on, a fall into backwardness is not threatened.
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0=3.45 0=3.45

Figure 7. Kenya: trajectories of ln λt and the distribution of ln λ2070, solution 1.

It must be emphasized that these trajectories stem from forecasts of mortality that rest on
the available evidence and demographic modeling in the period 2002–2004, together with the
admittedly speculative prior πt+1 = 0.5. In fact, Kenya’s epidemic has indeed continued into the
present, with an estimated prevalence rate of 4.9% in 2018 [Kenya (2020)]. Yet changes in behav-
ior and the extensive provision of antiretroviral treatment have held mortality rates in check,
at levels well below those in Table 3. As for an early setback, GDP per capita actually fell by
about 6% between 1990 and 2001, and gross primary school enrollments also declined in that
decade [Kimalu et al. (2001)]. The sharp setback in Figures 5 and 6 is admittedly a rather strong
amplification of actual early outcomes, but it captures their essence.

8.3. A permanently stochastic environment
To complete this exploration of Kenya’s development in the time of AIDS up to 2070, we proceed
as in Section 7.3, treating the stochastic environment as the values taken by the mortality rates
described in Table 3. As before, it is assumed that, whereas q1990 was revealed to the population
at that time as a fact, their beliefs about q2010 put the respective probabilities of occurrence at
one half—a Solomonic judgment in such circumstances. The same is assumed for each of the
succeeding periods 2010, 2030, and 2050. As in Section 8.2, war is ruled out, leaving pestilence as
the only hazard. We provide the respective trajectories in Figures 7 and 8.

When governed by solution 1, Kenya’s immediate prospects were rather poor, even with the
counterfactual, no-AIDS mortality profile as the actual outcome in 2010. Yet in all of the 16(=24)
binary sequences, all cohorts of children enjoy a full education from 2030 onwards. In eight of
those sequences, λ2070 is at least 3.4 times greater than its value in 1990 (see Figure 7). In the two
worst, it is just 2.4 times greater—a decidedly modest achievement after 80 years of development.
In solution 2, the corresponding ratios are 4.8 and 2.9, respectively (see Figure 8).

In fact, the widespread provision of antiretroviral therapies and changes in behavior have
resulted in a course of the epidemic less dire than that forecast in Table 3. If supported by improve-
ments in the conduct of economic policy, and with more sanguine beliefs, the long-term outlook
will be a deal better than that portrayed in Figure 8.

9. Discussion
Expectations, the formation of human capital, and their interplay take on leading roles in the
framework developed in this paper. Their prominence merits some discussion.
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0=6.26 0=6.26

Figure 8. Kenya: trajectories of ln λt and the distribution of ln λ2070, solution 2.

Where expectations are concerned, it is instructive to consider Europe’s course of development
in the 19th century. The battle of Waterloo in 1815 was the final act in the French Revolutionary
and Napoleonic Wars, which had been prosecuted with scarcely a break since 1792. Marauding
armies had exacted a punishing toll on life and property in Italy, the Iberian Peninsular, much of
Western and Central Europe, and the central corridor to Moscow. Only at the close did France
suffer the visitation of foreign armies, and then not grievously. The final human reckoning was
grim: about 5 million lives—in proportion to population, at least as many as in WWI [Blanning
(2008: 670)]. Some 1.4 million of them were French, leaving 857 males to every 1,000 females in
1815 (ibid.: 672), and surely a lower ratio still among young and prime-age adults. Other wars
had raged, off and on, for the previous 200 years. The Thirty Years’ War (1618–1648) had rav-
aged much of what is now Holland and Belgium, most of Germany and part of northern Italy,
and claimed some 5 million German lives,11 It was succeeded by the series of dynastic wars that
followed the Treaty of Westphalia until 1789. With perhaps dim collective memories of the for-
mer and fresher memories of the latter, Europe’s peoples might, quite rationally, have expected
the future to hold more of the same, Waterloo being just the latest bloody event.

Yet things turned out quite differently. Interrupted only by the Crimean War on its periph-
ery and the three brief wars of German Unification, Europe enjoyed peace until the Balkan wars
shortly before 1914. Industrialization had already begun in Britain and was stirring in some
parts of Western Europe. By 1870, the process of structural transformation was well advanced
in Denmark, France, Germany, the Lowlands, and Switzerland, soon to be followed by Austria,
Norway, and Sweden [Crafts (1984)]. Despite urbanization, mortality had also declined, albeit
rather slowly. Improved public health measures, which owed much to the discoveries of Pasteur
and Koch, led to a fairly marked decline thereafter. It is against this backdrop that the outbreak of
WWI12—and still more its long and murderous course—must have come as a profound shock to
Europe’s people.

Since our model posits human capital as the engine of long-run growth, it is arguably bet-
ter applicable to the time from 1870 onwards. Galor (2005) describes how the importance of
human capital as an input in production increased rapidly in the second phase of the industrial
revolution in the second half of the 19th century, when increasing wages for skilled labor led
even capitalists to lobby the government for measures promoting public education. With ongoing
adoption of new technologies, workers were required to have more than just manual skills. This
complementarity between technology and human capital has continued into the present, as docu-
mented by Benhabib and Spiegel (2005). Moreover, there is an extensive empirical literature that
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demonstrates the relevance of human capital for growth in the 20th century [see Pelinescu (2015)
and Becker et al. (1990) for overviews].

The impact of human capital before 1870 is empirically unclear, as demonstrated by the debate
between Acemoglu et al. (2001) and Glaeser et al. (2004). Using settler mortality as an instrument
for institutional quality, the former demonstrates that differences in that quality across colonial
settlements can explain long-run differences in countries’ wealth. Acemoglu et al. (2005) argue
that the accumulation of human capital does not drive growth, but rather that growth follows
from good institutions. Glaeser et al. (2004) propose an alternative hypothesis, namely, that the
quality of institutions is determined by the abundance of human capital and that initial differences
in human capital lead to differences in institutions. While this hypothesis was empirically rejected
by Acemoglu et al. (2014), the matter is not settled. Bhattacharyya (2009), for instance, finds a
positive effect for institutions and human capital in the 20th century.

10. Conclusions
Unremitting warfare and pervasive communicable diseases, with the privation and destruction
that accompany them, would seem sufficient to bring about a Hobbesian existence, even when
productive technologies are available. Yet we have established that there are wide-ranging constel-
lations of unchanging war losses and premature adult mortality such that both “backwardness”,
a state in which there is no investment in human capital through schooling, and “progress”,
a state in which there is unbounded growth and a fully educated population, are possible
equilibria.

Parents’ altruism, if sufficiently strong, can rule out backwardness in environments so endur-
ingly hazardous as to keep a selfish population in that condition for good. That is no great surprise.
Where attaining—and maintaining—growth is concerned, parents’ altruism comes into play in
a particular way. If their preferences are such that the sub-utility functions for their own con-
sumption and their children’s well-being in adulthood differ—which is highly likely—and the
former is more concave than the latter, then the only steady-state path other than backwardness
is progress. If, however, the sub-utility function for own consumption is less concave than that for
the children’s full income net of payments to the surviving members of the older generation, then
steady-state growth paths with an incompletely educated population may exist. The same holds if
parents are perfectly selfish, so that provision for old age is the sole motive for investment. Thus,
altruism may lead to permanently faster growth.

The fact that outbreaks of war and pestilence are stochastic events introduces a central role for
expectations. It also raises the question of whether a growing economy can withstand a series of
adverse shocks. Mature economies that have experienced growth for long periods will have large
per capita stocks of human and physical capital. They will be correspondingly robust, unless the
environment itself is destroyed. Economies at an earlier stage of development are more vulner-
able. Numerical simulations in which the realized outcome is three consecutive periods of war
followed by a confidently expected era of perpetual peace reveal how the initial boundary con-
ditions have a decisive influence on whether this series of shocks will pitch the economy into
permanent backwardness or, somewhat less drastically, condemn it to a slow and perhaps enfee-
bled recovery. Calibrated to Kenya, which continues to experience a severe AIDS epidemic, the
model yields results that illustrate how painfully slow such a recovery could be.

To close, we must draw attention to certain important limitations of our analysis. Fertility is
treated as exogenous, the old make no current contributions of any kind, and the extended family
structure rules out a variety of risks. Individuals are also denied anymeasures, in the form of either
personal or collective action, to mitigate the hazards of disease, endemic, or epidemic. There is
ample scope for future work, in various directions.
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Notes
1 It should be noted that without efficacious vaccines, individual investment in health may do little to ward off the infectious
diseases in question.
2 The determination of β and ρ is discussed in Appendix D. One variant of the rule governing old-age provision is that each
of those surviving through old age receives a fixed proportion of the full income of each surviving young adult. This variant
is discussed in Appendix E.
3 If only natural children count, the “adjustment” for adopted children 1/

(
1− q2t

)
drops out.

4 This analytically convenient restriction on h is not easy to square with the fact that there is the need to lay secure foundations
early on in schooling in order to enable the rapid development of wider abilities later on. It is therefore arguable that h′(0) is
significantly smaller than the average slope, h(1).
5 The marginal rate of technical substitution between human and physical capital.
6 For a vigorous argument that rational actors must have sharp priors, see Elga (2010).
7 For an analysis of this potentially liberating stroke, see Bell and Gersbach (2013), who assume there is only human capital.
The assumption that both inputs are necessary for production leaves the matter open.
8 The inequality x<< y indicates that each component of the vector y exceeds its counterpart in x.
9 See, in this connection, Feenstra et al. (2015).
10 In view of fluctuations in trading conditions and the performance of the educational system, a strictly monotonic, decadal
course of λt is hardly to be expected.
11 "[..] die Verlustrate liegt mit Sicherheit dichter an 40 als an 15 Prozent." [Schmidt (2002: 89)]. (".. the rate of loss lies with
certainty closer to 40 than 15 per cent.")
12 Clark (2013) provides a compelling account of its origins.
13 Background paper for World Bank (2007).
14 Bell et al. (2006a) assume the iso-elastic form h= eεt . They arrive at the estimate ε = 0.57, which, in view of the Inada
condition, rules out backwardness.
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Appendix A: Proofs
A.1. Steady states: a technical preliminary
Rewrite Vt as a function of the decision variables:

Vt = u
(
c2t
)+ χtu

(
ρntȳt+1(et , st)(

1− q3t+1
) (

1− q2t
)
)

+ νtv[(1− ρ)ȳt+1(et , st)],

whereby (6) is used, and

χt ≡ δ
(
1− q3t+1

)
and νt ≡

b
(
1− q2t+1

)
nt(

1− q2t
) .

The budget constraint (7) can be expressed as yt =
[(
1− q2t

)+ βnt
]
c2t + st + ρȳt . Hence, the

associated Lagrangian is

�t =Vt +μt
[
yt −

(
1− q2t + βnt

)
c2t − st − ρȳt

]
. (27)

Note that yt depends on the amount of child labor, nt(1− et)γ . The assumptions on u (the Inada
condition at c2t = 0) ensure that c2,0t > 0. By assumption, physical capital is necessary for produc-
tion. Hence, if some young adults survive through three full periods

(
q3t+1 < 1

)
, so that χt > 0,

then s 0t > 0.
The associated first-order conditions (hereinafter f.o.c.) are, noting that 0≤ et ≤ 1,

∂�t

∂c2t
=u′(c2t )−μt[1− q2t + βnt]= 0, (28)

∂�t
∂st

= (
δρu′(c3t+1

)+ b
(
1− q2t+1

)
(1− ρ)v′[(1− ρ)ȳt+1]

) nt
1− q2t

· ∂ ȳt+1
∂st

−μt = 0, (29)

∂�t
∂et

= (
δρu′(c3t+1

)+ b
(
1− q2t+1

)
(1− ρ)v′[(1− ρ)ȳt+1]

) nt
1− q2t

∂ ȳt+1
∂λt+1

∂λt+1
∂et

+

μt
∂yt
∂et

≤ 0, et ≥ 0, (30)

∂�t
∂et

= (
δρu′(c3t+1

)+ b
(
1− q2t+1

)
(1− ρ)v′[(1− ρ)ȳt+1]

) nt
1− q2t

∂ ȳt+1
∂λt+1

∂λt+1
∂et

+

μt
∂yt
∂et

≥ 0, et ≤ 1, (31)

where, recalling that F is homogeneous of degree 1, �t+1 = (
1− q2t+1

)
N2
t+1λt+1 + γN1

t+1 and
ζt = λt/st−1,

∂λt+1
∂et

= zth′(et)λt ,

∂yt
∂et

= −(γ +wλt)nt · F1
[
(1− q2t −wntet)ζt + ntγ (1− et)

st−1
,
σt
nt−1

]
,

∂ ȳt+1
∂st

= σt+1
nt

· F2
[(
1− q2t+1

)
ζt+1 + nt+1γ

st
,
σt+1
nt

]
, and

∂ ȳt+1
∂λt+1

= (
1− q2t+1

)
F1
[(
1− q2t+1

)
ζt+1 + nt+1γ

st
,
σt+1
nt

]
.

https://doi.org/10.1017/S1365100523000536 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100523000536


Macroeconomic Dynamics 1483

A weighted sum of the marginal utilities u′(c3t+1
)
and v′[(1− ρ)ȳt+1

]
plays a central role:

∂Vt
∂ ȳt+1

= ρδnt
1− q2t

· u′
(

ntρȳt+1(
1− q2t

) (
1− q3t+1

)
)

+ (1− ρ)νtv′[(1− ρ)ȳt+1]≡ nt
t .

Using μt from (28) in (29) and (30) yields, respectively,

u′(c2t )= σt+1(1− q2t + βnt)
t · F2
(
l̄t+1,

σt+1st
nt

)
, (32)

which holds for all et ∈ [0, 1], and


t
(
1− q2t+1

) · F1
(
lt+1,

σt+1st
nt

)
zh′(et)≥ u′(c2t ) (w+ γ /λt)

(1− q2t + βnt)
F1
(
lt ,
σtst−1
nt−1

)
, et ≤ 1, (33)

where the inequalities are reversed for et ≥ 0. Substituting from the first-order conditions (32) in
(33), we obtain, for all interior solutions et ∈ (0, 1),(
1− q2t+1

)
zh′(et) · F1

(
lt+1,

σt+1st
nt

)
= (w+ γ /λt)F1

(
lt ,
σtst−1
nt−1

)
· σt+1F2

(
l̄t+1,

σt+1st
nt

)
.

A.2. Proof of Lemma 1
Since st and λt are growing at the steady rate g(e)= zh(e)− 1> 0, nt and qt being constant, we
have, from the definitions of c2t and c3t ,

c2t
c3t+1

=
(
1− q2

)
(1− q3)

ρn
((
1− q2

)+ βn
) ·

(
yt − st
ȳt+1

− ρ

zh(e)

)
,

where
yt − st
ȳt+1

− ρ

zh(e)
= 1

zh(e)

(
F[(1− q2 −wne)ζ , σ/n]− zh(e)

F
[(
1− q2

)
ζ , σ/n

] − ρ

)
,

which is a constant for any given e. Substituting for c2t /c3t+1 from (13), we obtain

ρδσ
(
1− q2 + βn

)
F2
[(
1− q2

)
ζ , σ/n

]
1− q2

=
(

ρn
((
1− q2

)+ βn
)
zh(e)F

[(
1− q2 −wne

)
ζ , σ/n

]
(
1− q2

) (
1− q3

) [
F
[(
1− q2 −wne

)
ζ , σ/n

]− ρF
[(
1− q2

)
ζ , σ/n

]− zh(e)
]
)ξ

,

which may be rearranged as

F[(1− q2 −wne)ζ , σ/n]− ρF
[(
1− q2

)
ζ , σ/n

]=
(
1+ B′ F

[(
1− q2

)
ζ , σ/n

]
(
F2
[(
1− q2

)
ζ , σ/n

])1/ξ
)
zh(e),

(34)
where

B′ ≡ n
(1− q3)(δσ )1/ξ

(
ρ(1− q2 + βn)

1− q2

)1−1/ξ

is a positive constant.
The assumption that F is homogeneous of degree 1, with both inputs necessary in produc-

tion, implies that ζ is differentiable in e when e is varied parametrically. For continuous changes
in e produce continuous changes in the feasible set and Vt , and the isoquant map is smooth
everywhere and strictly convex to the origin, and no isoquant intersects either axis.
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A.2.1. Part (i)
By assumption, F is Cobb-Douglas: yt =Al1−αt kαt . Substituting into (34) and collecting terms, we
have

A
(σ
n

)α
[(1− q2 −wne)1−α − ρ

(
1− q2

)1−α ]ζ 1−α
=
(
1+

( n
ασ

)1/ξ
B′ · (F[(1− q2

)
ζ , σ/n

])1−1/ξ
)
zh(e). (35)

Differentiating (35) totally, noting that ∂F/∂ζ = (1− α)F/ζ , and collecting terms, we obtain[
A
(σ
n

)α[
(1− q2 −wne)1−α − ρ

(
1− q2

)1−α] (1− α)ζ−α

− (1− 1/ξ)
( n
ασ

)1/ξ (1− α)B′

ζ
· (F[(1− q2

)
ζ , σ/n

])1−1/ξ · zh(e)
]

· dζ

=
[ (

1+
( n
ασ

)1/ξ
B′ · (F[(1− q2

)
ζ , σ/n

])1−1/ξ
)
zh′(e)

+A
(σ
n

)α [(
1− q2 −wne

)−α]wn(1− α)ζ 1−α
]

· de.

Now, the condition F[(1− q2 −wn)ζ , σ/n]>ρF
[(
1− q2

)
ζ , σ/n

]
implies that (1− q2 −

wn)1−α > ρ
(
1− q2

)1−α , so that ζ is increasing in e if ξ ≤ 1. By continuity, this result also holds
for all F sufficiently close to Cobb-Douglas in form and for all ξ exceeding, but sufficiently close
to, 1.

A.2.2. Part (ii)
By assumption, yt =A[b1lεt + b2kεt ]1/ε =A{b1

[(
1− q2 −wne

)
λt
]ε + b2(σ st−1/n)ε]}1/ε , ε ≤ 1:

the elasticity of substitution is (ε − 1)−1, where ε = 0 is Cobb-Douglas. Proceeding as before, the
term in (34)

F
[(
1− q2

)
ζ , σ/n

]
(
F2
[(
1− q2

)
ζ , σ/n

])1/ξ = A
[
b1
((
1− q2

)
ζ
)ε + b2(σ/n)ε

]1/ε
[
b2(σ/n)ε−1A

[
b1
((
1− q2

)
ζ
)ε + b2(σ/n)ε

]1/ε−1]1/ξ
= B1

[
b1(

(
1− q2

)
ζ )ε + b2(σ/n)ε

]ψ ,

where ψ = (1/ε)+ (1− 1/ε)/ξ and B1 = (σ/n)1−ε/b2 is a positive constant. Substituting into
(34), noting the derivative of

[
b1
((
1− q2

)
ζ
)ε + b2(σ/n)ε

]1/ψ w.r.t. ζ and rearranging as before
in part (i), there are two terms on the l.h.s. The first is the partial derivative of {F[(1−
q2 −wne)ζ , σ/n]− ρF

[(
1− q2

)
ζ , σ/n

]} w.r.t. ζ , which is positive if ε ≤ 0 and F[(1− q2 −
wn)ζ , σ/n]>ρF

[(
1− q2

)
ζ , σ/n

]
. The second term has the sign of ψ · ε. Now, ψ · ε ≤ 0 if and

only if ε + ξ ≤ 1. Since both inputs are assumed to be necessary in production, ε ≤ 0, which yields
the required result.

A.3. Proof of Proposition 4
Concerning backwardness (e0t = 0), u(ct)= ln ct and v[(1− ρ)ȳt+1)]= ln[(1− ρ)ȳt+1)] yield the
simple forms

n
t
(
e0t = 0

)= [
δ
(
1− q3

)+ bn
]
/ȳt+1, u′(c2)= 1/c2 = 1− q2 + βn

(1− ρ)ȳ
(
e0t = 0

)− sb
(
e0t = 0

) .
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Recalling (32), it is seen that (9) will hold if, and only if,

n(
1− q2

) [
δ
(
1− q3

)+ bn
]
[(1− ρ)− sb

(
e0t = 0

)
/ȳ

(
e0t = 0

)
]
≥ zh′(0)
γ +w

.

Since sb > 0, a sufficient condition for (9) to hold is (15).
Concerning progress, if F is Cobb-Douglas, condition (12) specializes to

zh′(e)≥ ασαn1−αwA · [ζ (e)]1−α(
1− q2 −wne

)α , e≤ 1. (36)

The l.h.s. is positive and independent of F. If h is concave, zh′(e) is non-increasing in e. (In the
limiting case, h= e, so that h′ = 1.) Now, Lemma 1 establishes that, along any steady growth path
in Log-land, ζ (e) is increasing in e, so that the r.h.s. is also positive, but increasing in e, and without
bound if e is unrestricted. It follows that the equation

zh′(e)= ασαn1−αwA · [ζ (e)]1−α(
1− q2 −wne

)α (37)

has a unique, positive solution, denoted by e∗. If e∗ ≥ 1, progress will be the only steady-state
growth path; otherwise, progress will not be attainable. If e∗ < 1 and zh(e∗)> 1, there is also a
unique such path, but exhibiting slower growth. If zh(e∗)≤ 1, no such path exists. In the limiting
case zh(e∗)= 1, λt+1 − λt = 1 ∀t, so that λt grows without bound and (37) still holds, but the
growth rate tends to zero.

If zh(e∗)< 1, there remains only the possibility that there exists one or more stationary states
in addition to backwardness. Since backwardness is a locally stable equilibrium if (15) holds, and
any steady-state growth path, if there exist such, is unique, then by continuity, there exists an
e′ ∈ (0, min [e∗, 1]) such that λt+1 = zh(e′)λt + 1= λt , that is, λt is stationary at the level 1/(1−
zh(e′)) ∀t. Substituting into (8) yields, for any stationary path of λt ,

zh′(e)= ασαn1−α

1− q2
[w+ γ (1− zh(e))]A · [1− q2 + nγ (1− zh(e))]ζ (e)1−α[(

1− q2 −wne
)+ nγ (1− e)(1− zh(e))

]α , (38)

whereby the behavior of ζ (e) cannot be inferred from Proposition 4. However, in a derivation that
is analogous to that of (20), we obtain the expression

ζ (e)= AQ
1+Q

(σ
n

)α
× [

(1− q2 −wne+ nγ (1− e)(1− zh(e)))1−α − ρ(1− q2 + nγ (1− zh(e)))1−α
]−1 .

Since the first expression in brackets is falling faster than the second, ∂ζ/∂e> 0. Yet, it is seen that
the r.h.s. of (38) is not necessarily increasing in e everywhere in the interval (0, e∗), so that there
can exist more than one e′ ∈ (0, min [e∗, 1]) that yields a stationary equilibrium path.

Appendix B: The extreme allocations of St(It)
In what follows, it will be useful to rewrite (18) in the form[

1+ βnt
1− q2t (It)

]
c2t + st

1− q2t (It)
+ ρF

[
λt + γnt

1− q2t (It)
,

σt(It)
1− q2t (It)

· st−1
nt−1

]

≤ F
[(

1− wntet
1− q2t (It)

)
λt + γnt(1− et)

1− q2t (It)
,

σt(It)
1− q2t (It)

· st−1
nt−1

]
, It = {0, 1}. (39)
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Allocation A: c2t = et = 0. Given It , st is maximal:

st = (1− ρ)F
[(
1− q2t (It)

)
λt + ntγ ,

σt(It)st−1
nt−1

]
, It = {0, 1}.

An increase in q2t (It) will induce A to shift toward the origin O, as depicted by the point A′.
Given that q2t (1)> q2t (0), the allocations A and A′ also represent those ruling under peace and
war, respectively, in period t.

Allocation B: c2t = 0, et = 1. Given It and maximum (full time) investment in education, st is
maximal. We have

st = F
[
(1− q2t (It)−wnt)λt ,

σt(It)st−1
nt−1

]
− ρF

[(
1− q2t (It)

)
λt + ntγ ,

σt(It)st−1
nt−1

]
, It = {0, 1}.

We note that the outer boundary of S(It) in the plane defined by c2t = 0, AB, is strictly concave in
virtue of the strict concavity of F in each argument.

We next establish conditions under which st is positive when c2t = 0, that is, B lies to the right
of G on the plane defined by et = 1. Since F is homogenous of degree 1,

(1− q2t (It)−wnt)−1st = F
[
λt ,

σt(It)
1− q2t (It)−wnt

· st−1
nt−1

]

− ρF
[
λt + nt(wλt + γ )

1− q2t (It)−wnt
,

σt(It)
1− q2t (It)−wnt

· st−1
nt−1

]
, It = 0, 1.

The input of human capital in the second expression on the r.h.s. is larger in the proportion
nt(w+ γ /λt)/(1− q2t (It)−wnt). This proportion is maximal when λt = 1, so that backwardness
will therefore yield the best chance that st < 0, as intuition suggests.

Whether st would be positive, conditional on c2t = 0 and et = 1, in that state depends on the
numerical values of various parameters. In practice, w is fairly small, say about 1/20, and γ would
be about 0.6. In a state of backwardness, n= 3/2 and q2t = 0.2 are broadly plausible, so that the
said proportion of inputs of human capital would be about 4/3. Hence,

λt + nt(wλt + γ )
1− q2t (It)−wnt

≤ 7λt/3, ∀λt .

Observe, however, that F is strictly concave in each argument alone and ρ is unlikely to exceed 1/3.
Comparing the two expressions on the r.h.s., inputs of human capital in the second are slightly
more than double those in the first, but the share in the resulting output is at most one-third. It
follows that, for plausible values of parameters and demographic variables, st(c2t = 0, et = 1)> 0
for all values of λt , and points B and B′ are correspondingly depicted in the diagram.

An increase in q2t (It) induces a larger movement in B than in A; for the said difference in st is

F
[(
1− q2t (It)

)
λt + ntγ ,

σt(It)st−1
nt−1

]
− F

[
(1− q2t (It)−wnt)λt ,

σt(It)st−1
nt−1

]
, It = 0, 1,

which is increasing in q2t (It) in virtue of the strict concavity of F in each argument.
If the cross-derivative F12 is sufficiently small, it is seen that the same claimwill hold concerning

a comparison of peace and war, respectively.
Allocation C: et = st = 0. Given It , c2t is maximal. From (39), we have

c2t = 1− q2t (It)
1− q2t (It)+ βnt

· (1− ρ)F
[
λt + ntγ

1− q2t (It)
,

σt(It)
1− q2t (It)

· st−1
nt−1

]
, It = {0, 1}.
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Suppose the ratio of survival rates, σt(It)/[1− q2t (It)], is fixed for each It . Then,

dc2t
dq2t (It)

= (1− ρ)nt
(1− q2t (It)+ βnt)2

·
[
−βF + γ (1− q2t (It)+ βnt)F1

1− q2t (It)

]
, It = {0, 1},

and
(
dc2t /dq2t (It)

)
et=st=0 < 0 if and only if

β >
γ (1− q2t (It)+ βnt)F1(

1− q2t (It)
)
F

.

The input of human capital is λt + ntγ /
(
1− q2t (It)

)
. Its imputed share in output is 1− α ≡ (λt +

ntγ
(
1− q2t (It)

)−1 F1)/F, so that the foregoing inequality can be written

β >
(1− α)γ (1− q2t (It)+ βnt)

(1− q2t (It))λt + γnt
,

which certainly holds for all sufficiently large λt . The denominator takes its minimum value under
backwardness (λt = 1), when the inequality becomes

(β − (1− α)γ )
(
1− q2t (It)

)+ αβγnt > 0.
Since both inputs are necessary in production, F is strictly concave in both arguments and α ∈
(0, 1). It is plausible that α < 0.5, but n≥ 1, so that the inequality may hold even if β < γ , as in
Table 1, for which constellation the inequality holds.

Under the assumption that the ratio of survival rates is fixed for each It , we have established
that the points C and C′ relate to each other as depicted in the figure, which reveals that, given It ,
there is damage even under a mild mortality shock. If the ratio of survival rates is the same in both
states, the points C and C′ also represent the respective allocations in peace and war.

Allocation D: et = 1, st = 0. Given It and maximum investment in (full time) education, c2t is
maximal. Analogously to AB, the outer boundary of S in the plane defined by s2t = 0, CD, is strictly
concave in virtue of the strict concavity of F in each argument.

Given et and It , all pairs (c2t , st) on the outer frontier of S are linearly related and independent
of et : dst = −(1− q2t (It)+ βnt) dc2t . Hence, AC is parallel to BD, and A′ C′ to B′ D′. An increase
in q2t (It) makes c2t cheaper relative to st ; but since C′ lies closer to O than does C, it follows that D′
lies closer to G than does D. The same holds when the ratio of survival rates is the same in both
states.

Appendix C: Analysis for the simulations
The optimization problem under uncertainty is specified by (16)–(18). The term u

(
c2t
)
in the

objective function is unchanged, but its derivatives with respect to st and et require close attention.
We have

∂u
(
c3t+1(It+1)

)
∂st

= u′(c3t+1(It+1)
)
ρnt(

1− q2t (It)
) (
1− q3t+1(It+1)

) σt+1(It+1)
nt

· F2
[
lt+1, σt+1(It+1)st/nt

]
∂u
(
c3t+1(It+1)

)
∂et

= u′(c3t+1(It+1)
)
ρnt(

1− q2t (It)
) (
1− q3t+1(It+1)

) (1− q2t+1(It+1)
)

· zh′(et)λtF1
[
lt+1, σt+1(It+1)st/nt

]
.
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After defining Et[xt+1]= πt+1xt+1(0)+ (1− πt+1)xt+1(1) for some variable x and using these
expressions in the maximization of (16), we obtain

Et
[

t(It+1)σt+1(It+1)F2

[
l̄t+1, σt+1(It+1)st/nt

]]
= u′(c2t )

1− q2t (It)+ βnt
(40)

and

Et
[

t(It+1)

(
1− q2t+1(It+1)

)
zh′(et)λtF1

[
l̄t+1, σt+1(It+1)st/nt

]]

= u′(c2t ) (wλt + γ )
(1− q2t (It)+ βnt)

F1[lt , σt(It)st−1/nt−1], (41)

with


t(It+1)=
(
δρu′(c3t+1

)+ b(1− q2t+1(It+1))(1− ρ)v′[(1− ρ)ȳt+1(It+1)]
) 1
1− q2t (It)

.

Hence, (40) and (41) are the stochastic versions of (32) and (33) and are derived analogously.
Since u= ln ct , (18) and (17) yield

u′(c2t (It))=
⎛
⎜⎝A

(
l1−αt − ρl1−αt

) (
σt(It)st−1

nt−1

)α − st
1− q2t (It)+ βnt

⎞
⎟⎠

−1

, and

u′(c3t+1(It+1)
)=

(
ρnt(

1− q2t (It)
) (

1− q3t+1(It+1)
)F[lt+1, σt+1(It+1)st/nt

])−1

.

With

v′[(1− ρ)ȳt+1]= 1

(1− ρ)F
[
lt+1, σt+1(It+1)st/nt

] ,
we have

nt
t =
δ
(
1− q2t (It)

) (
1− q3t+1(It+1)

)+ bnt
(
1− q2t+1(It+1)

)
(
1− q2t (It)

)
Al̄1−αt+1

(
σt+1(It+1)st

nt

)α ,

where the production function is Cobb-Douglas. Substituting the above expression for u′(c2t (It))
and
t in (40) yields

Et[Qt+1]= st
A
(
l1−αt − ρ l̄1−αt

) (
σt(It)st−1

nt−1

)α − st
,

where altruism is operative through Et[Qt+1]= αEt
[
δ
(
1− q3t+1(It+1)

)+ bnt(1− q2t+1(It+1))/(
1− q2t (It)

)]
. Hence, we arrive at

ζt+1(It)
ζ αt

=
[(

1− q2t (It)−wntet + ntγ (1− et)
λt

)1−α
− ρ

(
1− q2t (It)+

ntγ
λt

)1−α]−1

·
(
nt−1
σt(It)

)α (
zh(et)+ 1

λt

)
1+ Et[Qt+1]
AEt[Qt+1]

≡ψ(et , It ; ·), It = {0, 1},
(42)

where we factor out λt from lt and l̄t , use the definition of ζt and ζt+1, and rearrange.
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In the final step, we substitute from (40) in (41) so as to eliminate u′(c2t ), which yields

Et
[

t(It+1)

(
1− q2t+1(It+1)

)
zh′(et)λtF1

[
l̄t+1, σt+1(It+1)st/nt

]]
=

Et
[

t(It+1)σt+1(It+1)F2

[
l̄t+1, σt+1(It+1)st/nt

]]
· F1[lt , σt(It)st−1/nt−1](wλt + γ ).

Again, we use our expression for
t and the production function to obtain

Et
[
Qt+1

(
1− q2t+1

)
l̄−1
t+1

]
zh′(et)st = Et[Qt+1]l−αt

(
σt(It)st−1
nt−1

)α
Ant

(
w+ γ

λt

)
,

which, if et ∈ (0, 1), can be rearranged to yield

ζt+1(It)
ζ αt

=
(
1− q2t (It)−wntet + ntγ (1− et)

λt

)α
·
Et[Qt+1

(
1− q2t+1

)
(1− q2t+1 + nt+1γ

λt+1
)−1]

Et[Qt+1]
·

zh′(et)
(

nt−1
σt(It)

)α
αAnt

(
w+ γ

λt

) ≡ φ(et , It ;·), It = {0, 1}. (43)

The forms ofψ and φ are highly complicated, even under the assumption that F is Cobb-Douglas,
so it would be as well to untangle their elements, relying rather on intuition. We therefore discuss
how the various factors in play influence decisions, but without the said restriction on F.

C.1. Derivation of condition (20)
In a steady state, (32) specializes to

nF[l̄t+1, σ st/n]
c2t
[
δ
(
1− q3

)+ bn
] = σ (1− q2 + βn)F2

[(
1− q2

)
λt+1 + γn, σ st/n

]
.

If F is Cobb-Douglas, then st = α
(
1− q2 + βn

) [
δ
(
1− q3

)+ bn
]
c2t . Hence, from (34),

st = α
[
δ
(
1− q3

)+ bn
]
[F(lt , σ st−1/n)− ρF(l̄t , σ st−1/n)− st],

thus yielding

st = QA
1+Q

(σ st−1
n

)α {[
(1− q2 −wn)λt

]1−α − ρ
[(
1− q2

)
λt
]1−α} , (44)

where Q≡ α
[
δ
(
1− q3

)+ bn
]
.

In the state of progress,

λt/st = λt
[1+ g(1)]st−1

= ζ (1)
zh(1)

; st−1/st = 1/zh(1).

Substituting for λt/st in (44), we obtain

1= QA
1+Q

(σ
n

)α {[
(1− q2 −wn)

]1−α − ρ
[(
1− q2

)]1−α} ζ (1)1−α
zh(1)

.

Substituting for ζ (1) and st−1/st in (8), noting that λt is large, and rearranging yields (20):

h′(1)
h(1)

≥ wn
(1− q2 −wn)

· 1+ α
[
δ
(
1− q3

)+ bn
]

[
δ
(
1− q3

)+ bn
] · 1

1− ρ
[(
1− q2

)
/(1− q2 −wn)

]1−α .
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Appendix D: Parameter values
D.1. Section 7
We draw on some results from a related, but far simpler model, which was calibrated to Kenya for
the period 1920–2000, thus covering the first phase of its HIV/AIDS epidemic [Bell et al. (2006a)].
That model lacks physical capital, but it possesses a finer demographic structure (the unit period
is a decade), with a distinction between primary and secondary-tertiary education, in keeping
with the purposes for which the study was undertaken.13 Our use of its results in constructing an
example for present purposes is therefore selective.

Given the choice u= ln c in that earlier study, the social norms, as represented by the values
of the parameters β and ρ, have no influence on schooling, which is the only form of investment.
Since these parameters do exert such an influence in the present paper, they merit discussion.
In the state of backwardness, λt = 1, and although a child’s endowment γ is smaller, his or her
potential contribution to output will be relatively important. If β < γ , the (relative) claim on the
common pot is, in a sense, less than the child’s potential contribution, thus favoring child labor
over education. The values of γ that emerged from the procedure in Bell et al. (2006a) clustered
closely around 0.7. Here, β is set at about half that level, which rather favors backwardness as
an equilibrium, n being exogenous. Its absence in (20) implies that β has no influence on the
existence of progress as an equilibrium.

The old-age generation’s claim to the fraction ρ of current full income can be regarded as
stemming from its investments in the previous period. Under pure individualism, with no fam-
ily considerations other than pooling for insurance purposes, this claim comprises the imputed
share of physical capital in current output and the return to investments in educating their chil-
dren. In the state of backwardness, there are no investments in education, so that ρ would then
be the said imputed share. In the state of progress, the direct cost of educating each child is wλt
and full income exceeds output, the actual input of human capital being (1− q2 −wn)λt . Thus,
ρ is a weighted average of physical capital’s imputed share in current output and the combined
imputed share of physical capital and, neglecting the opportunity cost of the children’s endow-
ment, wnλt units of human capital. Since wn is unlikely to be much greater than 0.1 and altruism
enters through v, this way of regarding the norm expressed by ρ argues for keeping its value
fairly close to physical capital’s imputed share of output in the state of progress; when F is Cobb-
Douglas, that share is α. In a well-known empirical study, Mankiw et al. (1992) settle on α = 1/3,
a value which we adopt here.

Turning to the educational technology, let h(e)= d1 · e− d2 · ed3 , so that h(1)= d1 − d2.14 Let
d3 = 1.5, so that h is weakly concave. Since progress is to be a possible equilibrium, we set z = 1.5,
which implies moderate intergenerational transmission of capacities and lies in the range that
emerges in Section 8.1. The estimated discount factor δ in Bell et al. (2006a) is almost 0.8; we
adopt the “standard” value 0.85.

Continuing with Kenya where mortality and destruction rates are concerned, q2 was 0.154 in
1970, and then, reversing a steady earlier decline, it spiked to 0.353 in 1990, before finally peaking
at 0.395 in 2000. In the counterfactual of no outbreak of HIV/AIDS, the earlier decline was pro-
jected to continue, reaching the value 0.113 in 2000. The latter is taken as the benchmark. Many
forms of physical capital have a lifetime much shorter than a human generation. We therefore
set σ = 0.75, which implies fairly substantial longevity. Table 1 sets out the whole constellation of
parameter values.

The parameter values for h yield h(1)= 0.8, h′(0)= 1 and h′(1)= 0.7. Progress is feasible:
zh(1)= 1+ g(1)= 1.2. Backwardness is an equilibrium; for

zh′(0)= 1.5<
n(γ +w)

δ
(
1− q2

)
(1− q3)(1− ρ)

= 1.2(0.6+ 0.075)
0.85(1− 0.1)(1− 0.3)(1− 0.35)

= 2.327.
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Progress will also be an equilibrium in the absence of altruism if, and only if, from (20),

h′(1)
h(1)

= 7
8
>

1.2 · 0.075
(1− 0.1− 0.09)

1+ (0.85 · 0.7)/3
(0.85 · 0.7)

1
1− 0.35[(1− 0.1)/(1− 0.1− 0.09)]2/3

= 0.3583.

When b= 0.1, the said condition is more strongly satisfied, in keeping with intuition: h′(1)/h(1)=
7/8> 0.2569. In view of the size of the two intervals [1.5, 2.327] and [0.3583, 0.875], the scope for
making substantial changes to the constellation of values in Table 1, while satisfying the conditions
in question, is evidently large.

This example confirms that a poverty trap, coupled with steady-state growth as an alterna-
tive equilibrium, will exist for other functional forms. The function h(e), for example, may be
weakly convex. If it is strictly convex for all e close to zero, but weakly concave thereafter, it will
restrict h′(0) without necessarily making h′(1) too small. Technologies close to Cobb-Douglas will
also serve, as will sub-utility functions close to the logarithmic form. The set of admissible val-
ues of parameters associated with these functions, together with those of fertility, destruction, and
discount rates, also emerges as substantial.

D.2. Section 8
D.2.1. First stage
The seven equations from (24) are joined by the five equations for GDPt for the years 1950–1990.
To save a degree of freedom, we borrow a result from Bell et al. (2006a): let γ = 0.7, which yields 5
degrees of freedom when setting z1920, z1930, . . . , z1980 and A1950,A1960, . . . ,A1990. In the light of
the increasing economic problems that set in during the turbulent decade of the 1970s, we allow
two values of At , with a single break, either in 1980 or 1990. That leaves three values of zt , the
timing of whose two breaks can be varied in search for solutions that exhibit a plausible course
of λt and a value after the second break that yields a tenable value of the long-run growth rate
g = zh(1)− 1= z − 1. It should be noted that the educational parameter w appears in (25). Its
value is allowed to vary in the second stage of the calibration and is then entered recursively into
the first stage. The interdependence between these steps is very small.

D.2.2. Second stage
Departing from Log-land, if η �= 1, then

Wt+1 =
[
δ(1− q3t+1)

N3
t+1

N2
t+1

+ b
(
1− q2t+1

)
[(1− ρ)ȳt+1]1−η

]
1

ȳt+1
.

Not only does ρ now appear, but it also interacts with b, accompanied by additional non-linearity
through η and the intrusion of ȳt+1 within the expression in brackets.

Proceeding from solution 1 in stage 1, the pair of years (1960, 1980) in stage 2 yields solutions
close to that for Log-land, as reported in Table 2, when η ∈ [0.80, 1.04]; outside this range, b is
either non-positive or implausibly large. For other pairs of years, b< 0. Proceeding from solution
2 in stage 1, the corresponding interval is η ∈ [0.80, 1.14]. For other pairs of years, b< 0. We
conclude that, despite good, a priori grounds for supposing otherwise, there is a strong case for
treating Kenya in the period 1950–1990 as an example of Log-land. We attribute this finding to a
plethora of parameters in comparison with the count of data points.
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Appendix E: Miscellaneous
E.1. Provision for old age: a variant
One consequence of the sharing rule for old-age provision, as specified by (6), is that although the
aggregate payment to the old will fall, an outbreak of war will also exact an additional toll on the
numbers of those making a claim on it. Consider, therefore, the variation in which all those who
survive throughout old age are allocated, not a fixed share of total full income at that time, but
each one of them a fixed proportion ρ′ of the full income of each surviving young adult. Thus,
instead of (6),

c3t+1 = ρ′Ȳt/
[(
1− q2t

)
N2
t
]= ρ′(

1− q2t+1
) · F[(1− q2t+1

)
λt+1(et)+ nγ , σt+1st/nt

]
.

The arguments of F are formally identical, embodying the decision (et , st) in the previous period.
It is seen that if mortality rates vary over time and are sharply forecast, the difference in the
multiplicand of ȳt can yield a different incentive to invest.

An unexpected outbreak of war in period t after an uninterrupted state of peace will leave
each of the surviving young adults endowed with less full income than their elders had intended
when making decisions in period t − 1, thus producing an adverse income effect on both forms
of investment in period t. The alternative sharing rule will relieve the current loss by reducing the
payment to each of the old-age survivors. If, however, war takes a heavier toll on young adults than
on their elders, that rule will not necessarily make the economy more robust to such asymmetric
shocks.

E.2. Long-run outcomes and chance
Analogously to (λ∗(0), k∗(0)), suppose there is also a pair (λ∗(1), k∗(1)) in the state of perpetual
war. Since survival rates are higher in peace, (λ∗(0), k∗(0))= (λ∗(1), k∗(1)) cannot hold, and it is
natural to conjecture that (λ∗(0), k∗(0))<< (λ∗(1), k∗(1)). If war and peace are both possible, this
conjecture introduces chance into the final outcome in the long run if the initial conditions satisfy

(λ∗(0), k∗(0))<< (λ0, k0)<< (λ∗(1), k∗(1)).
To establish this claim, suppose (λ0, k0) exceeds, but lies close to, (λ∗(0), k∗(0)). With some pos-
itive probability, the economy will enjoy an uninterrupted run of peace; and if long enough, this
run could yield state variables exceeding (λ∗(1), k∗(1)), and hence ultimately, if the next stationary
value of e0t is such that zh

(
e0t
)
> 1, sustained growth. Then again, there is the grim possibility that

(λ0, k0) falls short of, but lies close to, (λ∗(1), k∗(1)), and that this initially tantalizing prospect
progressively recedes as the economy endures an unbroken run of wars, an event whose proba-
bility of occurrence is also strictly positive. If long enough, such a run could yield state variables
short of (λ∗(0), k∗(0)) and hence, ultimately, backwardness.
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