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Abstract. We prove that under restrictions on the fiber, any fibered partially hyperbolic
system over a nilmanifold is leaf conjugate to a smooth model that is isometric on the fibers
and descends to a hyperbolic nilmanifold automorphism on the base. One ingredient is a
result of independent interest generalizing a result of Hiraide: an Anosov homeomorphism
of a nilmanifold is topologically conjugate to a hyperbolic nilmanifold automorphism.
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1. Introduction
This paper establishes the existence of smooth models for certain fibered partially hyper-
bolic systems. An ingredient in our proof is a classification of Anosov homeomorphisms
on nilmanifolds. We explain now through an example what some of these terms mean.

The three-dimensional Heisenberg group is given by

Heis :=
⎧⎨⎩A(x,y,z) =

⎛⎝1 x z

0 1 y

0 0 1

⎞⎠ : x, y, z ∈ R

⎫⎬⎭
with matrix multiplication as the group operation. The group Heis is a nilpotent Lie group
whose center consists of the matrices A(0,0,z), with z ∈ R. Any automorphism of Heis must
preserve this center.

Nilmanifolds are quotients of nilpotent Lie groups by discrete subgroups. For the
Heisenberg group, a compact quotient can be obtained as follows. Let

� = {(x, y, z) ∈ H : x, y, 2z ∈ Z},
where we use (x, y, z) to denote the matrix A(x,y,z). The quotient Heis /� is a compact
nilmanifold, an example of a Heisenberg nilmanifold. It is a fiber bundle over the 2-torus
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T
2 with fiber the circle T, where the fibers lie in the ‘z-direction,’ tangent to the center of

the Lie algebra of Heis.
Any automorphism of Heis that preserves � descends to a diffeomorphism of Heis /�:

since the automorphism preserves the center of Heis, the quotient diffeomorphism
preserves the bundle structure. The interesting quotient diffeomorphisms are examples
of fibered partially hyperbolic diffeomorphisms. An example is the map f0 : Heis /� →
Heis /� given by

f0(x, y, z) =
(

2x + y, x + y, z + x2 + y2

2
+ xy

)
.

Since f0 preserves the smooth fibration T ↪→ Heis /� � T
2, it induces a diffeomorphism

of the base T2, in this case the hyperbolic linear automorphism (x, y) �→ (2x + y, x + y).
This example is partially hyperbolic, meaning that the tangent bundle T N to

N = Heis /� splits as a df0-invariant direct sum T N = Es ⊕ Ec ⊕ Eu such that for
all x ∈ N and all unit vectors vs ∈ Es(x), vc ∈ Ec(x), and vu ∈ Eu(x), we have that

‖dxf (vs)‖ < ‖dxf (vc)‖ < ‖dxf (vu)‖ and ‖dxf (vs)‖ < 1 < ‖dxf (vu)‖.

That is, the center direction is dominated by the stable and unstable directions.
Hammerlindl and Potrie proved that if f : N → N is partially hyperbolic and homo-

topic to f0, then f is leaf conjugate to f0, meaning that there exists a homeomorphism h :
N → N , an f -invariant foliation Wc

f tangent to the center direction of f, and an f0-invariant
foliation Wc

f0
tangent to the center direction of f0 such that h maps center leaves of f0 to

center leaves of f (that is, h(Wc
f0

(x)) = Wc
f (h(x))) and h(f0(W

c
f0

(x))) = f (h(Wc
f0

(x)))

[19]. In this example, f0 is a smooth model, and any partially hyperbolic diffeomorphism
homotopic to it is leaf conjugate to it.

In this paper, we consider the class of fibered partially hyperbolic diffeomorphisms.
These are partially hyperbolic diffeomorphisms that, like f0 above, have an integrable
center bundle Ec, tangent to an invariant fibration by compact submanifolds. More
precisely, f : M → M , where M is a closed Riemannian manifold, is a fibered partially
hyperbolic diffeomorphism (this is also known as a fibered partially hyperbolic system with
Ck fibers) with (Ck , k ≥ 1) fiber X if there exists an f -invariant continuous fiber bundle
π : M → B (for some manifold B) with Ck fibers modeled on X, which are tangent to Ec

and such that the k-jets along fibers are continuous in M. (In other words, M is a continuous
X-bundle with structure group Diffk(X).) We say that a fibered partially hyperbolic system
(f , π , M) is Ck if the fiber bundle π : M → B is Ck . Note the distinction between a Ck

fibered partially hyperbolic system and a fibered partially hyperbolic system with Ck fibers:
in a Ck fibered partially hyperbolic system, we require that the bundle π : M → B is Ck ,
whereas in a fibered partially hyperbolic system with Ck fibers, the bundle π : M → B is
merely required to be continuous.

Fibered partially hyperbolic systems form a rich class of dynamical systems. Beyond
the relatively simple examples of skew products on trivial bundles, fibered systems
appear as automorphisms of nilmanifolds and play a role in the construction of exotic
partially hyperbolic systems (e.g. [16]). The classification of fibered partially hyperbolic

https://doi.org/10.1017/etds.2023.102 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.102


Smooth models for certain fibered partially hyperbolic systems 2175

diffeomorphisms up to leaf conjugacy is an open question in general, except in low
dimension. Such diffeomorphisms appear in several rigidity contexts (e.g. [3, 10, 36]).

Here is our main result.

THEOREM A. Let f : M → M be a fibered partially hyperbolic system with quotient a
nilmanifold B and C1 fibers F (where F is a closed manifold). Suppose that the structure
group of the F-bundle M is G ⊂ Diff1(F ) and that there exists a Riemannian metric
on F and a subgroup I of Isom(F ) ∩ G such that the inclusion I ↪→ G is a homotopy
equivalence.

Then f is leaf conjugate to a C∞ fibered partially hyperbolic system g : M̂ → M̂ such
that:
(1) the projection of the leaf conjugacy to B is a map homotopic to the identity;
(2) the F-bundles M and M̂ are isomorphic (this is implicit from the definition of leaf

conjugacy, but we state it explicitly for clarity);
(3) the structure group of M̂ is Isom(F ); and
(4) the projection of g to B is a hyperbolic nilmanifold automorphism.

Remark 1.1
• The base manifold B in Theorem A a priori might not have a smooth structure. In our

results, we assume B is a topological nilmanifold, meaning that B is homeomorphic to
a nilmanifold. This case can easily be reduced to the case where B is a nilmanifold by
replacing the projection map for the bundle with the projection map composed with
the homeomorphism. Thus, our results easily extend to a topological nilmanifold B.

• Item (3) implies that there exists a smooth Riemannian metric on M̂ adapted to g such
that g is isometric on fibers. This will be clear from the construction of g in the proof
of Theorem A.

• The fibered partially hyperbolic system g : M̂ → M̂ may act differently on the
fibers than the original fibered partially hyperbolic system f : M → M; that is, if
h : M → M̂ is the leaf conjugacy from Theorem A, then h ◦ f and g ◦ h may not be
homotopic.

The main assumption in Theorem A is that the structure group of the F-bundle contains
a homotopy equivalent subgroup of Isom(F ). We discuss the necessity of this assumption
to our proof in Remark 5.3. Finding circumstances where this assumption applies (and thus
we can apply Theorem A) comes down to studying the relationship between Diff1(F ),
Isom(F ), and their subgroups. (In the following discussion, we often replace Diff1(F )

with Diff∞(F ), which we can do since Diff∞(F ) ↪→ Diff1(F ) is a homotopy equivalence
(Proposition 2.5).) Namely, for which manifolds F and which subgroups G of Diff∞(F )

is there a subgroup H ⊂ Isom(F ) ∩ G such that the inclusion H ↪→ G is a homotopy
equivalence?

Note that even without the assumption that the structure group of the F-bundle contains
a homotopy equivalent subgroup of Isom(F ), our argument gives that the initial fibered
partially hyperbolic system f : M → M is leaf conjugate to an extension over a hyperbolic
nilmanifold automorphism. For further discussion and details, see Remark 5.3. Notably, in
the case where the F-bundle from the fibered partially hyperbolic system f : M → M is
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trivial (that is, M = B × F ), we can construct this extension over a hyperbolic nilmanifold
automorphism to be partially hyperbolic.

PROPOSITION B. Let f : M → M be a fibered partially hyperbolic system with quotient
a nilmanifold B and C1 fibers F (where F is a closed manifold). Suppose that the F-bundle
M is trivial (that is, the F-bundle M is isomorphic to B × F ).

Then f is leaf conjugate to a C∞ fibered partially hyperbolic system g : M̂ → M̂ such
that items (1), (2), and (4) from Theorem A hold.

The proof of Proposition B is given at the end of §5.
The following two corollaries come from answering the above question about subgroups

H ⊂ Isom(F ) ∩ G for specific F and G. They are by no means the only such corollaries.
(For example, the conclusion of Corollary D holds for any F such that Diff1

0(F ) is
contractible.)

COROLLARY C. Let f : M → M be a fibered partially hyperbolic system with quotient a
nilmanifold B and C1 fibers F, where F is:
(1) a n-sphere Sn for n = 1, 2, 3; or
(2) a hyperbolic 3-manifold.

Then f is leaf conjugate to a C∞ fibered partially hyperbolic system g : M̂ → M̂ , which
induces a hyperbolic nilmanifold automorphism on the base.

COROLLARY D. Let f : M → M be a fibered partially hyperbolic system with quotient a
nilmanifold B and C1 fibers F and with structure group Diff1

0(F ). Suppose that F is:
(1) the two or three torus, T2, T

3;
(2) a hyperbolic surface; or
(3) a Haken 3-manifold.

Then f is leaf conjugate to a C∞ fibered partially hyperbolic system g : M̂ → M̂ , which
induces a hyperbolic nilmanifold automorphism on the base.

Remark 1.2. As noted before, these are by no means the only cases where Theorem A can
be applied to get results analogous to the results of Corollaries C and D. Notably, the con-
clusion of Corollary C holds for any fiber F such that the inclusion Isom(F ) ↪→ Diff(F )

is a homotopy equivalence. For the sake of conciseness, we have not listed in Corollary C
more of the known examples of closed manifolds F for which Isom(F ) ↪→ Diff(F ) is
a homotopy equivalence. Other examples include lens spaces, prism and quaternionic
manifolds, tetrahedral manifolds, octahedral manifolds, and icosahedral manifolds [4].

Theorem A builds on previous work by Hirsch, Pugh, and Shub, and by Hammerlindl
and Potrie. Hirsch, Pugh, and Shub [25] proved that perturbations of fibered partially
hyperbolic systems are fibered partially hyperbolic systems, and that the perturbed system
is leaf conjugate to the original system. Hammerlindl [18] proved that a partially hyperbolic
diffeomorphism of T

3 is leaf conjugate to a linear automorphism of T
3. Hammerlindl

and Potrie [19] proved an analogous result for partially hyperbolic diffeomorphisms of
three-dimensional nilmanifolds.
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Corollaries C and D give specific examples of cases where we can apply Theorem A in
dimensions 1, 2, and 3, and Proposition B gives an analog of Theorem A in the case of a
trivial bundle. Note that Corollary C shows that the hypothesis of Theorem A holds for all
fibered partially hyperbolic systems with a one-dimensional fiber. Corollaries C and D also
show that the conclusion of Theorem A holds for surface bundles, although in the cases
of surfaces other than S2, an added assumption on the structure group of the bundle is
needed. The question remains of whether, and in what conditions, for other types of fibers
in nontrivial bundles.

Remark 1.3. If for the fibered partially hyperbolic system f : M → M , dim Es = 1 (or
dim Eu = 1), then the base space B will always be a nilmanifold [5]. This allows us
to replace the assumption that the quotient of the fibered partially hyperbolic system
f : M → M is a nilmanifold in Theorem A or in Proposition B with the assumption that
dim Es = 1 (or dim Eu = 1).

One ingredient in the proof of Theorem A, which is of independent interest, is the
following generalization of the works of Franks and Manning, and of Hiraide to Anosov
homeomorphisms of nilmanifolds.

THEOREM E. [41, Theorem 2(1)] An Anosov homeomorphism of a nilmanifold is
topologically conjugate to a hyperbolic nilmanifold automorphism via a conjugacy that
is homotopic to the identity.

This theorem was originally proved by Sumi in [41]. A proof of Theorem E, which
follows the same structure as Sumi and Hiraide’s proofs in [24, 41], is provided in §A for
the sake of completeness.

Anosov homeomorphisms are generalizations of Anosov diffeomorphisms. Many of the
important properties of Anosov diffeomorphisms come directly from the fact that Anosov
diffeomorphisms are expansive and have the shadowing property. A homeomorphism
f : X → X of a metric space is expansive if there exists a constant c > 0 such that for
all x, y ∈ X, if d(f n(x), f n(y)) < c for all n ∈ Z, then x = y. Such a constant c is called
an expansive constant for f.

The shadowing property says that we can approximate pseudo-orbits by actual
orbits. More formally, a sequence of points {xi}i∈Z ⊂ X is called a δ-pseudo-orbit if
d(f (xi), xi+1) < δ for all i ∈ Z. A point z ∈ X is said to ε-shadow a sequence of points,
{xi}i∈Z, if d(f i(z), xi) < ε for all i ∈ Z. We say that f has the shadowing property if for
any ε > 0, there exists δ > 0 such that any δ-pseudo-orbit is ε-shadowed by a point in
X. An expansive homeomorphism with the shadowing property is known as an Anosov
homeomorphism.

In contrast to some other weakenings of Anosov diffeomorphisms (e.g. hyperbolic
homeomorphisms [29, §IV.9]), Anosov homeomorphisms are not assumed to have invari-
ant foliations.

In §A, we examine some of the similarities between Anosov homeomorphisms and
Anosov diffeomorphisms and give a proof Theorem E.
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Theorem E is useful in the proof of our main theorem because given a fibered partially
hyperbolic diffeomorphism f : M → M with associated bundle π : M → B, the map
induced by f on B is an Anosov homeomorphism. (This follows from a result of Bohnet
and Bonatti [6], as we will explain in §5.)

After proving Theorem E in §A, we spend the rest of the paper proving Theorem A.
The proof is split into four parts. Due to the fact that much of the proof will take place
in the quotient leaf space B, we denote the partially hyperbolic diffeomorphism on M by
f̂ : M → M . We denote the homeomorphism that f̂ descends to on B by f : B → B.

The strategy of the proof is to first construct:
• a conjugacy h : B → B between f : B → B and a hyperbolic nilmanifold automor-

phism A : B → B; and
• a smooth F-bundle M̂ over B that is isomorphic to the original F-bundle M.
Then lift:
• the conjugacy h : B → B to a homeomorphism ĥ : M̂ → M̂; and
• the hyperbolic nilmanifold automorphism A : B → B to a partially hyperbolic diffeo-

morphism g : M̂ → M̂ .
The construction of the conjugacy h : B → B and the hyperbolic nilmanifold auto-

morphism A : B → B relies almost entirely on Theorem E. The construction of the
smooth bundle M̂ relies on tools developed in §2. Lifting the conjugacy h : B → B to a
homomorphism ĥ : M̂ → M̂ takes place in §3, and finally lifting A to a partially hyperbolic
diffeomorphism g relies on tools developed in §4. The entire proof of Theorem A is given
in §5.

2. Preliminaries about fiber bundles
The goal of this section is to provide several results about fiber bundles that are necessary
for the proof of Theorem A.

The structure of a fiber bundle is given by its transition functions. Given a continuous
fiber bundle π : E → B with fiber F and structure group G, let {(Ui , φi : π−1(Ui) →
Ui × F)} be locally trivializing charts for E. The functions τij := φi ◦ φ−1

j : Ui ∩ Uj →
G are transition functions for the bundle E.

All the data in a fiber bundle are contained in the transition functions. More precisely,
we have the following lemma.

LEMMA 2.1. (Fiber bundle construction theorem) Let F , B be Ck manifolds (0 ≤ k ≤ ∞),
and let G be a topological group with the structure of a Ck manifold that has a Ck left
action on F. Given an open cover {Ui}i∈A of B and a set of Ck functions τij : Ui ∩ Uj → G

such that the cocycle condition, τij (x)τjk(x) = τik(x) holds for all x ∈ Ui ∩ Uj ∩ Uk .
Then there exists a Ck F -bundle π : E → B with transition functions τij .

This means that any set of functions {τij : Ui ∩ Uj → G} that satisfy the cocycle
condition, τij (x)τjk(x) = τik(x) holds for all x ∈ Ui ∩ Uj ∩ Uk , are transition functions
for a fiber bundle. Additionally, the smoothness of a bundle is defined by the smoothness
of the transition functions. This is a standard result about fiber bundles (e.g. see
[27, §5.3]).
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Transition functions also classify fiber bundles up to isomorphism. Two fiber bundles
are isomorphic if they have cohomologous transition functions. Two sets of transition func-
tions (that is, two sets of functions that satisfy the cocycle condition) {τij : Ui ∩ Uj → G}
and {τ ′

ij : Ui ∩ Uj → G} are said to be cohomologous if there exist continuous functions
ti : Ui → G such that τ ′

ij (x) = ti (x)−1τij (x)tj (x) for all x ∈ Ui ∩ Uj .

COROLLARY 2.2. Let F , B be topological spaces and G a topological group that has
a continuous left action on F. Suppose π : E → B and π̃ : Ẽ → B are continuous
F-bundles with structure group G. Let {(Ui , φi : π−1(Ui) → Ui × F)} and {(Ui , φ̃i :
π̃−1(Ui) → Ui × F)} be locally trivializing charts for E and Ẽ, respectively, and let
{τij : Ui ∩ Uj → G} and {̃τij : Ui ∩ Uj → G} be the associated transition functions
for {(Ui , φi)} and {(Ui , φ̃i )}, respectively. Suppose there exist continuous functions
ti : Ui → G such that τ̃ij (x) = ti (x)−1τij (x)tj (x) for all x ∈ Ui ∩ Uj . Then, E and Ẽ

are isomorphic as F-bundles with structure group G. If, in addition, the left G action on F
is faithful, then the converse holds.

For a proof of Corollary 2.2, see [27, Ch. 5.2].
In the proof of Theorem A, we change the structure group of the fiber bundles with

which we are working. We now make the notion of changing structure group precise.
Given a continuous homomorphism α : H → G between two topological groups and a

principal H-bundle q : Q → B, we can construct a principal G-bundle from Q and α in
the following way. Consider the space

Q ×α,H G := Q × G/(x, g) ∼ {(x · h, α(h)g), h ∈ H }.
Note that Q ×α,H G has a free right G-action given by [x, g] · g′ = [x, gg′]. This makes
Q ×α,H G a principal G-bundle. Note that the projection map for this bundle Q ×α,H

G �→ B is given by [x, g] �→ q(x).
We say that the principal H-bundle q : Q → B induces the principal G-bundle

p : P → B if P ∼= Q ×α,H G. Additionally, we say that a principal G-bundle p : P → B

admits a reduction of structure group from G to H if there exists a principal H-bundle
q : Q → B that induces P.

Now, we note the relationship between the transition functions between a bundle and
a bundle it induces. Suppose that tij : Ui ∩ Uj → H are transition functions for the
principal H-bundle q : Q → B. The transition functions for the induced bundle Q ×α,H G

are given by α ◦ tij : Ui ∩ Uj → G.
Next, we give conditions under which a principal bundle admits a reduction of structure

group.

LEMMA 2.3. Suppose that α : H → G is a homomorphism that is also a homotopy
equivalence. Then any principal G-bundle admits a reduction of structure group from
G to H.

The proof of this lemma relies on the theory of classifying spaces. Let G be a topological
group. A principal G-bundle π : EG → BG is a universal principal G-bundle if for all
CW-complexes X, the map from the set of homotopy classes of maps X → BG to the set
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of isomorphism classes of principal G-bundles over X, given by the map f �→ f ∗EG is a
bijection. The base space of a universal principal G-bundle is known as a classifying space
for G.

Proof. See [27, Ch. 6].

Remark 2.4. Note that if H ⊂ G and the homomorphism α : H → G is inclusion, then
the reduction of structure group from G to H from Lemma 2.3 has transition functions that
are cohomologous to the transition functions of the original principal G bundle.

PROPOSITION 2.5. If M is a closed, smooth manifold, then the inclusion Diff∞(M) ↪→
Diff1(M) is a homotopy equivalence.

Proof. For 0 ≤ k ≤ ∞, Diffk(M) is an infinite-dimensional separable Fréchet space [17,
§I.4.3]. Since all infinite-dimensional separable Fréchet spaces are homeomorphic to
the Hilbert space 
2 [1], we see that Diffk(M) is homeomorphic to the Hilbert space

2. Since 
2 has the homotopy type of a CW-complex [40], we get that Diffk(M) is
homotopy equivalent to a CW-complex [22]. Thus, by Whitehead’s theorem, to show
that the inclusion ι : Diff∞(M) ↪→ Diff1(M) is a homotopy equivalence, it is sufficient
to show that the induced map on homotopy groups ι∗ : π∗(Diff∞(M)) → π∗(Diff1(M))

is an isomorphism.
To do this, we first recall that for any map in ϕ ∈ C1(M , M), we can find a smooth

map that is arbitrarily close to and homotopic to ϕ and that the choice of this map
depends continuously on our original map [28, Theorems 6.21 and 6.28]. This gives us a
continuous map 
 : Diff1(M) → C∞(M , M) such that for any ϕ ∈ Diff1(M), 
(ϕ) � ϕ

and d(ϕ, 
(ϕ)) < ε. Since Diff∞(M) ⊂ C∞(M , M) is open (by the inverse function
theorem), by choosing ε small enough, we get that 
(Diff1(M)) ⊂ Diff∞(M), so we can
write 
 : Diff1(M) → Diff∞(M).

Now, we show that the map induced by ι : Diff∞(M) → Diff1(M) on homotopy groups
is an isomorphism. The map ι∗ is surjective because any map φ : Sn → Diff1(M) is
homotopic to the map 
 ◦ φ : Sn → Diff∞(M). To see that ι∗ is injective, we take a map
φ : Sn → Diff1(M) that is null-homotopic. Let ht : Sn → Diff1(M) be a null-homotopy
for φ. Then the map 
 ◦ φ : Sn → Diff∞(M) is homotopic to φ in Diff1(M), and is
null-homotopic in πn(M) via the homotopy 
 ◦ ht : Sn → Diff∞(M).

3. Lifting the conjugacy on the leaf space
LEMMA 3.1. Let F , M , M̃ , B be closed Riemannian manifolds, and let π : M → B and
π̃ : M̃ → B be continuous isomorphic F-bundles. Let h : B → B be a homeomorphism
that is homotopic to the identity. Then, h : B → B lifts to a homeomorphism h̃ : M → M̃ .

Proof. First, we note that M and h∗M are isomorphic bundles. This is because, by
assumption, M and M̃ are isomorphic, and since h ∼ id, the bundle h∗M̃ is isomorphic to
the bundle id∗M̃ = M̃ . Let φ : M̃ → h∗M̃ be a bundle isomorphism, that is, the diagram
in Figure 1a commutes. From the definition of h∗M̃ , we have that the commutative diagram
in Figure 1b commutes. (Note that proj2 : h∗M̃ → M̃ is the projection onto the second
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M h∗M̃

B

φ

π

h∗π̃

(a)

h∗M̃ M̃

B B

proj2

h∗π̃ π̃

h

(b)

M h∗M̃ M̃

B B

φ

π

proj2

h∗π̃ π̃

h

(c)

FIGURE 1. Diagrams showing how h : B → B is lifted to a homeomorphism h̃ : M → M̃ in the proof of
Lemma 3.1.

coordinate from the definition of the pullback bundle h∗M̃ = {(b, x) ∈ B × M : h(b) =
π̃(x)}.) Combining these diagrams gives us the commutative diagram from Figure 1c. So
the continuous map

h̃ := proj2 ◦φ : M → M̃ (3.1)

is a lift of h. Since h̃ is a continuous injection, by invariance of domain, h̃ : M → M̃ is a
homeomorphism.

4. Lifting the Anosov automorphism on the leaf space to a partially hyperbolic system

LEMMA 4.1. Let F , E0, E1, B be closed Riemannian manifolds. Assume that p0 : E0 → B

and p1 : E1 → B are Ck F -bundles with structure group H, where H is a finite-dimensional
Lie group with smooth universal bundle, and that the left action of H on F is Ck , and that
H acts on F by isometries. Suppose that θ : E0 → E1 is a (continuous) isomorphism of
E0 and E1 as F-bundles with structure group H over B. Then, there is a Ck isomorphism
α : E0 → E1 that is an isometry on fibers.

Proof. We begin by constructing principal H-bundles with the same transition data as
E0 and E1 using Lemma 2.1. We will call these q0 : Q0 → B and q1 : Q1 → B. Let
f0 : B → BH and f1 : B → BH be classifying maps for Q0 and Q1. Note that since E0

and E1 (and therefore Q0 and Q1) are Ck bundles, the maps f0 and f1 are Ck .
Since E0 and E1 are isomorphic as continuous bundles, we get that there is a

homotopy f : B × [0, 1] → BH from f0 to f1. Since f |B×{0,1} is Ck , then by the
Whitney approximation theorem (see [28, Theorem 6.26]), ft is homotopic to a Ck

map f : B × [0, 1] → BH relative to B × {0, 1}. So, we have a Ck homotopy f : B ×
[0, 1] → BH from f0 = f0 to f1 = f1. If the classifying maps of two Ck principal
bundles are homotopic via a Ck homotopy, then the bundles are isomorphic as Ck bundles
[27, Ch. 4.9]. (The argument in [27, Ch. 4.9] is only given for continuous bundles, but
works for Ck bundles.) Thus, we get that the pullback bundles f ∗

0 EH and f ∗
1 EH are

isomorphic as Ck principal H-bundles over B. Since f0 and f1 are the classifying maps
for Q0 and Q1, respectively, this means that Q0 and Q1 are isomorphic as Ck principal
H-bundles over B. Since Q0 and Q1 have the same transition functions as E0 and E1, we
get that E0 and E1 are isomorphic as Ck bundles with structure group H.

From the definition of a Ck isomorphism of F-bundles with structure group H, we see
that this means that there is a Ck isomorphism α : E0 → E1, such that, if (U0,i , φ0,i )
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FIGURE 2. Diagrams showing how A : B → B is lifted to g : M → M in the proof of Corollary 4.2.

and {(U1,j , φ1,j )} are trivializing atlases for E0 and E1, respectively, then there exists
functions dij : U0,i ∩ V1,j → H such that for x ∈ U0,i ∩ U1,j and y ∈ F , we get that
φ1,j ◦ α ◦ φ−1

0,i (x, y) = (x, dij (x) · y). Since H acts on F by isometries, we get that α is
an isometry on fibers.

COROLLARY 4.2. Let F , M , B be closed Riemannian manifolds. Assume that
π : M → B is a smooth F-bundle with structure group H, where H is a finite-dimensional
Lie group with smooth universal bundle, and that the left action of H on F is smooth, and
that H acts on F by isometries. Suppose A : B → B is a smooth Anosov diffeomorphism,
and suppose that A lifts to a homeomorphism Â : M → M . Then A lifts to a C∞
diffeomorphism g : M → M that is an isometry on fibers of π : M → M .

Proof. Since A lifts to a homeomorphism Â : M → M , we can construct a (continuous)
isomorphism θ : M → A∗M of M and A∗M as F-bundles with structure group H given
by θ(z) = (π(z), Â(z)) (see Figure 2a). By Lemma 4.1, there is a C∞ isomorphism
α : M → A∗M that is an isometry on fibers. We can then use α : M → A∗M to define
a C∞ diffeomorphism g : M → M by g(z) = proj2 ◦α(z) (see Figure 2b). Since α is an
isometry on fibers, we get that g is an isometry on fibers.

PROPOSITION 4.3. Let F , M , and B be closed Riemannian manifolds. Assume that
π : M → B is a smooth F-bundle and that f : B → B is an Anosov diffeomorphism. If
g : M → M is a diffeomorphism that is a lift of f and such that g is an isometry on fibers
of π : M → B, then g : M → M is partially hyperbolic.

Proof. We begin by constructing a Riemannian metric on M, with respect to which g is
partially hyperbolic. This construction has three ingredients.
• A smooth family 〈·, ·〉Fx of Riemannian metrics on the fibers π−1(x) such that

Dg : T π−1(x) → T π−1(f (x)) is an isometry for all x ∈ B. (Such a family exists
because g is an isometry on fibers of π : M → B.)

• A Riemannian metric 〈·, ·〉B on B that is adapted to the Anosov diffeomorphism
f : B → B.

• An Ehresmann connection H on M, that is, H is a smooth subbundle of the tangent
bundle T M such that for all p ∈ M , TpM = Hp ⊕ ker(Dpπ). Note that from the
definition of an Ehresmann connection, we know that Dpπ |Hp : Hp ⊂ TpM →
Tπ(p)B is an isomorphism and the map p �→ Hp is smooth.
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We define a Riemannian metric 〈·, ·〉 on M by letting, for all p ∈ M:
• 〈v, v′〉 = 〈Dpπ(v), Dpπ(v′)〉B for v, v′ ∈ Hp;
• 〈v, v′〉 = 〈v, v′〉Fπ(p) for v, v′ ∈ ker(Dpπ); and
• Hp ⊥ ker(Dpπ).

Now, we need to show that g is partially hyperbolic with respect to the metric 〈·, ·〉. To
do this, we construct a dominated splitting T M = Es ⊕ Ec ⊕ Eu such that g is uniformly
contracting on Es and uniformly expanding on Eu. We begin by letting Ec = ker(Dπ).

Next, we construct the unstable bundle Eu using a graph transform argument. We begin
by lifting the unstable bundle Eu

f ⊂ T B for the Anosov diffeomorphism f : B → B

to the bundle Êu ⊂ T M given by Êu
p := Hp ∩ Dpπ−1(Eu

f (π(p))) for p ∈ M . Note

that Dpπ−1(Eu
p(π(p))) = Êu

p ⊕ ker(Dpπ), and that Dg preserves Êu ⊕ Ec because Df

preserves Eu
f and g covers f (so Dπ(p)f ◦ Dpπ = Dg(p)π ◦ Dpg).

Let

� = {σ : Êu → Ec : σ is fiber preserving over id,

and σp : Êu(p) → Ec(p) is linear for all p ∈ M}.
We put the norm ‖ · ‖� on � given by

‖σ‖� = sup
p∈M

‖σp‖,

where ‖σp‖ is the operator norm. Note that this norm makes � a Banach space.
Now, we want to define a map � : � → �, called the linear graph transform covering

g, so that Dpg(graph(σp)) = graph(�(σp)). We now give � : � → � explicitly. Since by
assumption, Dg preserves Ec = ker(Dπ) (and Dg preserves Êu ⊕ Ec), we can write for
each p ∈ M ,

Dpg =
(

Ap 0
Cp Kp

)
: Êu(p) ⊕ Ec(p) → Êu(g(p)) ⊕ Ec(g(p)),

where

Ap : Êu(p) → Êu(g(p)), Cp : Êu(p) → Ec(g(p)), Kp : Ec(p) → Ec(g(p))

are all linear. Also note that since Dpg is invertible, both Ap and Kp are invertible.
Note that we can write a point in the graph of σp as (v, σpv) ∈ graph(σp) ⊂ Êu(p) ⊕

Ec(p). Applying Dpg to this point gives us

Dpg(v, σpv) =
(

Ap 0
Cp Kp

) (
v

σpv

)
=

(
Apv

Cpv + Kpσpv

)
.

So, we can write

Dpg(graph(σp)) =
{(

Apv

Cpv + Kpσpv

)
: v ∈ Êu(p)

}
=

{(
w

(Cp + Kpσp) ◦ A−1
p w

)
: w ∈ Êu(g(p))

}
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by reparameterizing. Thus, the requirement that Dpg(graph(σp)) = graph(�(σp)) is
equivalent to saying that (

w

(Cp + Kpσp) ◦ A−1
p w

)
=

(
w

�σpw

)
for all w ∈ Êu(g(p)). This gives us an equation for � in terms of C, K , and A:

�σp = (Cp + Kpσp) ◦ A−1
p : Êu(g(p)) → Ec(g(p))

for all σ ∈ �, p ∈ M , and v ∈ Êu(p). Omitting base points, we get that

�σ = (C + Kσ) ◦ A−1.

Now, our goal is to find an invariant section for � (the graph of which we will then
show is the unstable bundle Eu for g). To do this, it suffices to show that � : � → � is a
contraction. Take σ , σ ′ ∈ �. For p ∈ M , we have

‖�σp − �σ ′
p‖ = ‖(Cp + Kpσp) ◦ A−1

p − (Cp + Kpσ ′
p) ◦ A−1

p ‖
= ‖(Cp + Kpσp − Cp − Kpσ ′

p) ◦ A−1
p ‖

= ‖(Kpσp − Kpσ ′
p) ◦ A−1

p ‖
= ‖Kp ◦ (σp − σ ′

p) ◦ A−1
p ‖

≤ ‖Kp‖‖σp − σ ′
p‖‖A−1

p ‖. (4.1)

We now bound ‖Kp‖ and ‖A−1
p ‖. Since g is an isometry on fibers of π : M → B and

Ec = ker(Dπ), we have that Dpg|Ec(p) = Kp : Ec(p) → Ec(g(p)) is an isometry. Thus,
‖Kp‖ = 1. Now, we bound ‖A−1

p ‖ by relating the norm of A to the norm of Df on Eu
f .

Since Eu
f is the unstable bundle for the Anosov diffeomorphism f : B → B and the norm

‖ · ‖B is adapted to f, we know that there exists a constant λ > 1 such that for all w ∈ Eu
f ,

‖Df (w)‖B ≥ λ‖w‖B . Take v ∈ Êu(p). Since Dpπ(v) ∈ Eu
f (π(p)), we therefore have

that

‖Dπ(p)f (Dpπ(v))‖B ≥ λ‖Dp(v)‖B .

Since g covers f, we see that Dπ(p)f (Dpπ(v)) = Dg(p)π(Dpg(v)). This along with the
fact that Ec = ker(Dπ) and Cp(v) ∈ Ec(g(p)) gives that

Dπ(p)f (Dpπ(v)) = Dg(p)π(Dpg(v)) = Dg(p)π(Ap(v) + Cp(v)) = Dg(p)π(Ap(v)).

Thus,

λ‖Dp(v)‖B ≤ ‖Dπ(p)f (Dpπ(v))‖B = ‖Dg(p)π(Ap(v))‖B .

Finally, note that since v, Ap(v) ∈ Êu(P ) ⊂ Hp, by our definition of the norm on M, we
get that

‖Dpπ(v)‖B = ‖v‖ and ‖Dg(p)π(Ap(v))‖B = ‖Ap(v)‖.

We have therefore shown that λ‖v‖ ≤ ‖Ap(v)‖, which implies that ‖A−1
p ‖ ≤ λ−1.
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Combining our estimates for the norms of ‖Kp‖ and ‖A−1
p ‖ with equation (4.1) gives

that

‖�σp − �σ ′
p‖ ≤ λ−1‖σp − σ ′

p‖.

We have therefore shown that � is a contraction map. Then, by the contraction mapping
principle, we get a �-invariant section σu ∈ �. We now define a bundle Eu ⊂ T M by
letting Eu(p) := graph(σu

p ). Note that Eu is Dg invariant since σu is � invariant and
Dpg(graph(σp)) = graph(�(σp)) = graph(σg(p)).

The construction of the bundle Es is analogous.
We now have a Dg-invariant splitting, T M = Es ⊕ Ec ⊕ Eu. We now need to show

that this splitting is partially hyperbolic. To do this, we construct a new metric 〈·, ·〉′ on M
by letting for all p ∈ M:
• 〈v, v′〉′ = 〈Dpπ(v), Dpπ(v′)〉B for v, v′ ∈ Es ;
• 〈v, v′〉′ = 〈Dpπ(v), Dpπ(v′)〉B for v, v′ ∈ Eu;
• 〈v, v′〉′ = 〈v, v′〉Fπ(p) for v, v′ ∈ Ec; and
• Es , Ec, and Eu be pairwise orthogonal.
From our construction of Es and Eu, we get that Dg is uniformly expanding on Eu

and uniformly contracting on Ec with respect to this new metric. Finally, the splitting
is dominated because Dg restricted to Ec is an isometry.

5. Proof of Theorem A
First, we recall our setup. Let f̂ : M → M be a fibered partially hyperbolic system with
quotient a nilmanifold B, C1 fibers F (where F is a closed manifold), and structure
group G ⊂ Diff1(F ). Suppose that there exists a Riemannian metric on F and a subgroup
I ⊂ Isom(F ) ∩ G such that the inclusion I ↪→ G is a homotopy equivalence.

The diffeomorphism f̂ : M → M descends to a homeomorphism f : B → B. Our
first step is to construct a conjugacy h : B → B between f and a hyperbolic nilmanifold
automorphism A : B → B. This will follow immediately from Theorem E if we can
show that f : B → B is an Anosov homeomorphism. To see why the homeomorphism
f : B → B is Anosov, we first observe that f̂ admits an invariant center foliation F c

whose leaves are the level sets of π and that leaves of F c are compact and have trivial
holonomy. (For the definition of holonomy, see [7, Ch. 2]. The fact that the leaves of
F c have trivial holonomy follows immediately from the definition of a fibered partially
hyperbolic system and the definition of holonomy.) Thus, by the following result of Bohnet
and Bonatti, f : B → B is an Anosov homeomorphism.

LEMMA 5.1. [6, Theorem 2, Proposition 4.20] If f : M → M is a partially hyperbolic
diffeomorphism with an invariant center foliation F c with compact leaves and without
holonomy, then the homeomorphism F : M/F c → M/F c induced by f on the quotient is
an Anosov homeomorphism.

Now, we can apply Theorem E to get that there exists a hyperbolic nilmanifold
automorphism A : B → B and a homeomorphism h : B → B that is homotopic to the
identity such that A ◦ h = h ◦ f̂ .
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The next step in the proof is to construct a smooth F-bundle π̂ : M̂ → B that is
isomorphic to the original bundle π : M → B and such that the structure group of
π̂ : M̂ → B is Isom(F ). To do this, we first construct a principal G bundle p : P → B

with the same transition functions as π : M → B. Since the inclusion of I ↪→ G is a
homotopy inclusion, by Lemma 2.3, there exists a continuous principal I-bundle q ′ : Q′ →
B that has transition functions cohomologous to those of p : P → B. Since I ⊂ Isom(F ),
we can construct (Lemma 2.1) a continuous principal Isom(F )-bundle q : Q → B with the
same transition data as q ′ : Q′ → B.

Now, we find a smooth principal Isom(F ) bundle q̂ : Q̂ → B that is isomorphic to
q : Q → B. This follows immediately from the following lemma along with the fact that
Isom(F ) is a locally Euclidean Lie group [35].

LEMMA 5.2. [34] Let K be a Lie group modeled on a locally convex space. Every principal
K bundle over a closed manifold is isomorphic to a smooth principal K bundle.

Now, we use the fiber bundle construction theorem (Lemma 2.1) to construct a smooth
F-bundle π̂ : M̂ → B with the same transition functions as q̂ : Q̂ → B. Since q̂ : Q̂ → B

has transition functions that are cohomologous to those of the original bundle π : M → B,
we get that the bundle π̂ : M̂ → B is isomorphic to the original bundle π : M → B.

Next, we lift the conjugacy h : B → B to a homeomorphism ĥ : M → M̂ . This follows
immediately from Lemma 3.1.

Finally, we lift the hyperbolic nilmanifold automorphism A : B → B to a partially
hyperbolic diffeomorphism g : M̂ → M̂ . This follows immediately from Corollary 4.2
and Proposition 4.3. To see why we can apply Corollary 4.2 here, we first note that the
structure group of π̂ : M̂ → B is Isom(F ), which is a finite-dimensional compact Lie
group [35]. This implies that Isom(F ) has a smooth universal bundle [34, Lemma I.12].
This completes the proof of Theorem A.

Remark 5.3. The fact that the F-bundle M̂ has structure group Isom(F ) is solely used to
guarantee that the lift g : M̂ → M̂ of A : B → B is partially hyperbolic. Without this fact,
the arguments given would allow us to lift A : B → B to a homeomorphism, but we would
not be able to guarantee that the lift would be a partially hyperbolic diffeomorphism.

This is the only reason that the assumption that there exists a Riemannian metric
on F and a subgroup I ⊂ Isom(F ) ∩ G such that the inclusion I ↪→ G is a homotopy
equivalence is necessary in the proof. Without this assumption, we would be able to get
the conjugacy h : B → B between f and A, and we would be able to construct a smooth
F-bundle M̂ over B that is isomorphic to the original F-bundle M. (To construct M̂ , we
would first use Lemma 2.3 and Proposition 2.5 to get an F-bundle with structure group
Diff∞(F ) that is isomorphic to M. We then would apply Lemma 5.2 with K = Diff∞(F ),
which would give us M̂ .) However, the structure group of M̂ would only be Diff∞(F ), not
Isom(F ).

Finding a way to lift A : B → B to a partially hyperbolic diffeomorphism g : M̂ → M̂

without requiring that the structure group of M̂ be Isom(F ) or be trivial is a question for
further research.
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Proposition B is an example of a case where we can overcome the difficulty lifting
A : B → B to a partially hyperbolic diffeomorphism that is discussed in the above remark.

Proof of Proposition B. The setup of Proposition B is that we are given a fibered
partially hyperbolic system f̂ : M → M with quotient a nilmanifold B and C1 fibers
F. We assume that the F-bundle M is trivial. Note that this means that the structure
group of the bundle π : M → B is the trivial group. We can then proceed with an
analogous argument to that given in the proof of Theorem A to get the conjugacy
h : B → B between the Anosov homeomorphism f : B → B induced by f̂ : M → M

and a hyperbolic nilmanifold automorphism A : B → B, and to get a smooth bundle π̂ :
M̂ → B with trivial structure group that is isomorphic to the original bundle π : M → B.
This means that identifying the smooth F-bundle π̂ : M̂ → B with the smooth bundle
proj1 : B × F → B (that is, projection onto the first coordinate), we can smoothly lift
A : B → B to the fibered partially hyperbolic diffeomorphism g : M̂ ∼= B × F → M̂ ∼=
B × F given by g : (x, y) �→ (Ax, y) for (x, y) ∈ B × F .

6. Corollaries of Theorem A
We now explain how Corollaries C and D follow from Theorem A.

To prove Corollary C, we apply Theorem A with G = Diff1(F ) and with I = Isom(F ).
To do this, we just need to show that the inclusion Isom(F ) ↪→ Diff1(F ) is a homotopy
equivalence when F = Sn for n = 1, 2, 3 and for F a hyperbolic 3-manifold. In fact,
showing that the inclusion Isom(F ) ↪→ Diff1(F ) is a homotopy equivalence is equivalent
to showing that the inclusion Isom(F ) ↪→ Diff∞(F ) is a homotopy equivalence by
Proposition 2.5.
(1) When F = S1, it is a standard fact that Diff∞(S1) deformation retracts

to O(2) = Isom(S1). When F = S2, Smale [38] proved that the inclusion
Isom(S2) ↪→ Diff∞(S2) is a homotopy equivalence. Hatcher [21] proved this for S3.

(2) When F is a hyperbolic 3-manifold, Gabai [15] proved that the inclusion
Isom(F ) ↪→ Diff∞(F ) is a homotopy equivalence.

Remark 6.1. When n ≥ 4, the inclusion Isom(Sn) ↪→ Diff(Sn) is not a homotopy equiv-
alence. This was proved for n = 4 in [43]. To see that Isom(Sn) ↪→ Diff(Sn) is not a
homotopy equivalence for n ≥ 5, first note that this statement is equivalent to the statement
that Diff(Dn rel ∂Dn) is contractible [21, Appendix].

One way to see that Diff(Dn rel ∂Dn) is not contractible for many n is to use the
fact that π0(Diff(Dn rel ∂Dn)) ∼= �n+1 for n ≥ 5, where �n+1 is the group of exotic
(n + 1)-spheres [8, 22, 39]. For example, this along with the fact that there exist exotic
7-spheres [32] implies that Isom(S6) ↪→ Diff(S6).

To prove that Diff(Dn rel ∂Dn) is not contractible for n = 5, we use the fact that
the map π1(Diff(Dn rel ∂Dn)) → π0(Diff(Dn+1 rel ∂Dn+1)) is surjective for n ≥ 5
[8]. Thus, since π0(Diff(D6 rel ∂D6)) �= 0, we get that π1(Diff(D5 rel ∂D5)) �= 0, so
Diff(D5 rel ∂D5) is not contractible.

For n ≥ 7, the fact that Diff(Dn rel ∂Dn) is not contractible is proved in [9].
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This means that we cannot apply Theorem A as above to get an analogous version of
Corollary C for Sn, n ≥ 4.

Now, we prove Corollary D. In Corollary D, the structure group of M is G = Diff1
0(F ).

We prove each case of Corollary D separately using the same strategy: we apply Theorem A
by finding a subgroup I ⊂ Isom(F ) ∩ Diff1

0(F ) such that the inclusion I ↪→ Diff1
0(F ) is

a homotopy equivalence.
(1) When F = T

n for n = 2, 3, we choose I = T
n, where Tn acts on itself by Euclidean

isometry via translation. When F = T
2, the inclusion T

2 ↪→ Diff∞0 (T2) is a homo-
topy equivalence [33, §4.1.5]. When F = T

3, T
3 ↪→ Diff∞0 (T3) is a homotopy

equivalence [23, 42].
(2) When F is a hyperbolic surface, then Diff+0 (F ) is contractible [12, Theorem 1.14],

which means that the hypothesis of Theorem A holds for I the trivial subgroup.
(3) When F is a Haken manifold, we consider three cases.

• When F is not a Seifert manifold with coherently orientable fibers, then the
components of Diff(F ) are contractible [20, 23], [26, §1.3], which means that
the hypothesis of Theorem A holds when I is the trivial subgroup.

• When F is a Seifert manifold with coherently oriented fibers, that is, not
T

3, we take I = S1, where S1 acts on F by rotating circle fibers of the
Seifert fiber bundle structure. This satisfies the hypothesis of Theorem A
because the inclusion S1 ↪→ Diff0(F ) is a homotopy equivalence [20, 23],
[26, §1.3].

• When F = T
3, we dealt with this case in item (1).
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A. Appendix. Anosov homeomorphisms
The goal of this appendix is to provide a proof of Theorem E. This result was initially
proved by Sumi [41], and we provide a proof which follows the same structure as that of
Sumi’s for the sake of completeness. Theorem E extends the following result of Franks and
Manning to Anosov homeomorphisms of nilmanifolds.

THEOREM A.1. [13, 31] An Anosov diffeomorphism of a nilmanifold is topologically
conjugate to a hyperbolic nilmanifold automorphism.

Theorem E generalizes the following result of Hiraide from tori to nilmanifolds.
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THEOREM A.2. [24] An Anosov homeomorphism of a torus is topologically conjugate to
a hyperbolic toral automorphism.

The proof of Theorem E follows the same basic structure as Sumi’s proof, and also
the same structure as Hiraide’s proof with some modifications to account for being on a
nilmanifold instead of a torus.

A.1. Notation and preliminaries for the proof of Theorem E. This section recalls several
properties of Anosov homeomorphisms that will be necessary to the proof of Theorem E.

We assume in the following that M is a connected, closed n-dimensional Riemannian
manifold. Let d be the distance function on M induced by the Riemannian metric.

A.1.1. Generalized foliations for Anosov homeomorphisms. In this section, we describe
an analog of the stable manifold theorem for Anosov homeomorphisms that is due to
Hiraide [24]. Let f : M → M be a homeomorphism. For each x ∈ M , we define the stable
set (respectively unstable set) of f at x as

Ws(x) := {y ∈ X : d(f n(x), f n(y))
n→∞−→ 0}

(respectively Wu(x) := {y ∈ X : d(f −n(x), f −n(y))
n→∞−→ 0}).

The collection of stable (respectively unstable) sets for f, which we will denote by F s
f

(respectively F u
f ), gives an f -invariant decomposition of M. The stable manifold theorem

states that when f is an Anosov diffeomorphism, these collections form foliations. When f
is an Anosov homeomorphism, we get the following analog.

THEOREM A.3. [24, Proposition A] If f : M → M is an Anosov homeomorphism of the
closed manifold M, then the collections

F σ
f = {Wσ (x) : x ∈ M}, σ ∈ {s, u}

are transverse generalized foliations of M.

Remark A.4. When f is the projection of a fibered partially hyperbolic diffeomorphism
f̂ , the transverse generalized foliations Ws and Wu are, in fact, foliations. They are the
projections of the foliations Ŵ s and Ŵu for f̂ .

Generalized foliations are a generalization of foliations given by weakening the
condition that the leaves be manifolds. More precisely, a collection F of subsets of M
is a generalized foliation of M if the following properties hold:
(1) F is a partition of M;
(2) each L ∈ F (called a leaf ) is path-connected;
(3) for each x ∈ M , there exist

• non-trivial, connected subsets Dx , Kx ⊂ M with Dx ∩ Kx = {x};
• a connected, open neighborhood Nx ⊂ M of x;
• a homeomorphism φx : Dx × Kx → Nx (called local coordinates around x)
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such that:
(a) φx(x, x) = x;
(b) φx(y, x) = y for all y ∈ Dx and φx(x, z) = z for all z ∈ Kx ;
(c) for any L ∈ F , there is at most a countable set B ⊂ Kx such that Nx ∩ L =

φx(Dx × B).
Two generalized foliations F and F ′ on M are transverse if, for each x ∈ M , there

exist:
• non-trivial, connected subsets Dx , D′

x ⊂ M with Dx ∩ D′
x = {x};

• a connected, open neighborhood Nx of x (called a coordinate domain);
• a homeomorphism φx : Dx × D′

x → Nx (called a canonical coordinate chart
(around x)),

such that:
(a) φx(x, x) = x;
(b) φx(y, x) = y for all y ∈ Dx , and φx(x, z) = z for all z ∈ D′

x ;
(c) for any L ∈ F , there is at most a countable set B ′ ⊂ D′

x such that Nx ∩ L =
φx(Dx × B ′);

(d) for any L′ ∈ F ′, there is at most a countable set B ⊂ Dx such that Nx ∩ L′ =
φx(B × D′

x).
Note that the sole difference between the definitions of a foliation and of a generalized

foliation is we do not require the sets Dx and Kx to be manifolds in the definition of
a generalized foliation. (If Dx and Kx are manifolds for all x ∈ M , then a generalized
foliation F is, in fact, a topological foliation of M.) While the sets Dx and Kx may fail to
be manifolds, the fact that their product, Dx × Kx , is a manifold significantly restricts
the ways in which Dx and Kx can fail to be manifolds. In other words, Dx and Kx

(and therefore the leaves of F ), while not necessarily manifolds themselves, will behave
like manifolds in many ways. In fact, the leaves of a generalized foliation are homology
manifolds (also known as generalized manifolds). An homology manifold is a topological
space that looks like a manifold under homology. This is stated precisely in the following
proposition.

PROPOSITION A.5. [24, Lemma 4.2] Let F be a generalized foliation on a connected
manifold without boundary. There exists 0 < p < dim(M) such that any for leaf L ∈ F

and x ∈ L, the relative homology groups, H∗(L, L \ {x}), are given by

Hi(L, L \ {x}) =
{
Z if i = p,

0 if i �= p.

This proposition allows us to define a notion of dimension for generalized foliation.
If F is a generalized foliation of M, then the integer p from Proposition A.5 is called
the dimension of f. Proposition A.5 also allows us to define orientability for generalized
foliations. A p-dimensional generalized foliation is said to be orientable if there is a
‘locally consistent’ choice of generators for the groups Hp(L, L \ {x}), L ∈ F , and x ∈ L.
For more details, see [24, §4].
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A.1.2. Lifts of stable and unstable sets. Much of Franks’ and Manning’s proofs of
Theorem A.1 take place using maps lifted to the universal cover. These arguments exploit
the facts that Anosov diffeomorphisms lift to Anosov diffeomorphisms whose stable and
unstable sets are lifts of the original stable and unstable manifolds. We will now give
versions of these facts for Anosov homeomorphisms, which will be used in our proof of
Theorem E.

We begin with the following setup. Let M be a closed Riemannian manifold and let
p : M̃ → M be a smooth covering map for M. By lifting the Riemannian metric on M, we
see that M̃ is a complete Riemannian manifold.

We can now generalize the previous results about lifts of Anosov diffeomorphisms
to Anosov homeomorphisms. These generalizations are due to Hiraide. For details on
them and their proofs, see [24, §3]. Let f : M → M be an Anosov homeomorphism. The
map f lifts to a homeomorphism f̃ : M̃ → M̃ . Just as Anosov diffeomorphisms lift to
Anosov diffeomorphisms, we observe that an Anosov homeomorphism lifts to an Anosov
homeomorphism.

Next, we will discuss the relationship between the stable and unstable sets of f and f̃ .
For x̃ ∈ M̃ and ε > 0, we let W̃ s

ε (x̃) and W̃u
ε (x̃) be the local stable and unstable sets of f̃

at x̃,
W̃ s

ε (x̃) = {y ∈ M̃ : d(f̃ n(x̃), f̃ n(y)) ≤ ε for all n ≥ 0},
W̃u

ε (x̃) = {y ∈ M̃ : d(f̃ −n(x̃), f̃ −n(y)) ≤ ε for all n ≥ 0}.
Just as for an Anosov diffeomorphism, the stable and unstable sets for f̃ project down to
the stable and unstable sets for f. In fact, locally, this projection is an isometry. In addition,
the collection of stable (respectively unstable) sets of f̃ forms a generalized foliation,
denoted F s

f̃
(respectively F u

f̃
), and the stable and unstable generalized foliations for f̃ are

transverse.

A.1.3. Indices of fixed points. Let f : M → M be an Anosov diffeomorphism. The
index of f at any fixed point x, denoted Indx(f ), will be either ±1 since dxf : TxM →
TxM is hyperbolic. The sign of Indx(f ) will depend on the orientation of the stable and
unstable subspaces, Es

x and Eu
x , at x. Thus, if the unstable bundle, Eu, of f is orientable

(which implies that the unstable foliation for f is orientable), we can make the fixed point
index globally constant, that is, for all x, x ′ ∈ Fix(f ), Indx(f ) = Indx′(f ). This, along
with the Lefschetz fixed point theorem, tells us that the absolute value of the Lefschetz
number of f, denoted L(f ), is equal to the number of fixed points of f. This fact is relied
upon in the proof of Theorem A.1.

The purpose of this section is to give the following similar result about the fixed point
index of an Anosov homeomorphism, which will allow us to use the Lefschetz number
to count fixed points. Note that we can define the fixed point index for a fixed point of
an Anosov homeomorphism because all fixed points of an Anosov homeomorphism are
isolated by expansivity.

PROPOSITION A.6. [24, Proposition B] Let f : M → M be an Anosov homeomorphism
of the closed manifold M. If the generalized unstable foliation F u

f is orientable, then for
sufficiently large m, all the fixed points of f m have the same index, which is either 1 or −1.
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Note that the assumption in this proposition (that is, that the generalized unstable
foliation be orientable) is analogous to the assumption we made in the Anosov case. For the
definition of orientability for a generalized foliation, see [24]. The proof of Theorem A.6
can be found in [24, §5].

A.1.4. The spectral decomposition. The spectral decomposition is a useful tool
for decomposing the non-wandering set of an Anosov diffeomorphism into smaller
invariant sets. Recall that given a homeomorphism, f : M → M , a point x ∈ M is
called non-wandering if for any neighborhood U of x, there exists n ≥ 1 such that
f n(U) ∩ U �= ∅. The non-wandering set of f, denoted �(f ), is the set of non-wandering
points of f. The spectral decomposition admits the following generalization to Anosov
homeomorphisms.

THEOREM A.7. (Spectral decomposition, [2]) Let f : M → M be an Anosov homeo-
morphism of a compact manifold M. Then, there exist closed, pairwise disjoint sets
X1, . . . , Xk and a permutation σ ∈ Sk such that:
(a) �(f ) = ⋂k

i=1 Xi;
(b) f (Xi) = Xσ(i); and
(c) if for a > 0, σa(i) = i, then f a|Xi

is topologically mixing.

Recall that a continuous map f : M → M is topologically mixing if for any open sets
U , V ⊂ M , there exists an integer N such that f n(U) ∩ V �= ∅ for all n ≥ N .

A.2. Proof of Theorem E. The proof of Theorem E follows the same structure as the
proofs of the main result of [24] with a couple of modifications to account for being on
a nilmanifold instead of a torus. Before giving the details of the proof, we provide a brief
synopsis of the proof and note where it differs from that of Hiraide. The argument has
three main parts.
• Constructing the hyperbolic nilmanifold automorphism A : M → M . This differs

from Hiraide’s argument [24] in the same ways that Manning’s argument [31] differs
from Franks’s [13]. The construction of the nilmanifold automorphism A : M → M

is the same as Manning’s construction in [31]. The proof that A is hyperbolic follows
Hiraide’s argument using the same technique that Manning uses in [30, 31] to get a
formula for the Lefschitz number of A in terms of the eigenvalues of A.

• Constructing a semiconjugacy h : M → M between A and f. Since M is a K(π , 1),
this construction is the same as that on the torus.

• Proving that the semiconjugacy h : M → M is actually a conjugacy. This follows
the same argument given by Hiraide, with the main modification in Lemma A.13 to
construct a homotopy between f̃ and Ã that does not introduce fixed points outside a
compact set.

Now, we give the details of the proof. Let f : M → M be an Anosov homeomorphism
of the nilmanifold M = N/�. We begin by finding a candidate for the hyperbolic
nilmanifold automorphism in Theorem E. We will do this following the same procedure as
Franks [13], Manning [31], and Hiraide [24]; we will find a ‘linear’ model of f, which we
will then show is hyperbolic. Our linear model of f will be a nilmanifold automorphism
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A that is homotopic to f. The construction of this linear model is identical to that given in
[31]. To construct A, we will show that the induced action of f on π1(M , e�) can be lifted
to an automorphism of �. We will then extend this automorphism to all of N to get our
linear model.

Let f∗ : π1(M , e�) → π1(M , f (e�)) be the homomorphism that f induces on the
fundamental group of M. We can view π1(M , e�) and π1(M , f (e�)) as subgroups of
N. To do this, we first identify π1(M , e) with � (via the endpoints of the lifts of the loops
in the fundamental group). Recall that changing basepoint in the fundamental group is
the same as conjugating by some path in M. So in the universal cover of M (that is N),
the identification that takes π1(M , e�) to � will take π1(M , f (e�)) to x−1�x for some
x ∈ N . By lifting to N, we can view f∗ as a homomorphism � → x−1�x.

Since we want a homomorphism � → �, we compose f∗ with conjugation by x−1,
which gives us our automorphism of �. To summarize, we have shown that we can
lift f∗ : π1(M , e�) → π1(M , f (e�)) to an automorphism of �, which is defined up to
an inner automorphism of N. We can uniquely extend f∗ : � → � to an automorphism
Ã : N → N [37, Corollary 1 of Theorem 2.11]. Since Ã preserves �, it descends to a
nilmanifold automorphism, A : M → M . Note that f is homotopic to A since they induce
conjugate maps on π1(M) and M is a K(π , 1).

We now claim that the linearization A is hyperbolic, which follows immediately from
the following proposition.

PROPOSITION A.8. Let f : M → M be an Anosov homeomorphism of a nilmanifold
M = N/�. If A : M → M is a nilmanifold automorphism that is homotopic to f, then
A is hyperbolic.

Proof. This proof is a combination of the techniques of Manning [31, Theorem A] and
Hiraide [24, Proposition 6.2]. By passing to a double cover of M, it suffices to consider
the case where the unstable generalized foliation of f, F u

f , is orientable. The goal of this
proof is to show that A is hyperbolic. More formally, we need to show that DeA has no
eigenvalues of absolute value one. Let λ1, . . . , λn be the eigenvalues of DeA (counted
with multiplicity).

The first step in this proof is to relate the number of m-periodic points of f, for
m ∈ N, to the eigenvalues of DeA. We do this using the Lefschetz fixed point theorem.
First, recall that since f m and Am are homotopic, their Lefschetz numbers are the same,
that is, L(f m) = L(Am). Since F u

f is orientable, the Lefschitz fixed point theorem and
Proposition A.6 imply that the number of fixed points of f m, denoted N(f m), is given by
N(f m) = |L(f m)| for sufficiently large m. Now, recall from [30] that we can also write
L(f m) = L(Am) = ∏n

i=1(1 − λm
i ). We have therefore shown that, for sufficiently large

m, the number of fixed points of f m is given by

Pm(f ) = N(f m) =
n∏

i=1

|1 − λm
i |. (A.1)

This equation cannot hold if A is not hyperbolic by arguments given in the proof of [24,
Proposition 6.2].
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Recall that when we defined the ‘linearization’ A of an Anosov homeomorphism
f : M → M of a nilmanifold, we only were able to define A up to an inner automorphism
of N because we did not know whether f had any fixed points. We are now equipped to
show that f does indeed have fixed points.

COROLLARY A.9. An Anosov homeomorphism of a nilmanifold has at least one fixed
point.

Proof. This follows immediately from the Lefschetz fixed point theorem and
Proposition A.8.

Note that by conjugating the Anosov homeomorphism f : M → M by a translation,
we can assume without loss of generality that f fixes the point e� ∈ M . We let A be the
hyperbolic ‘linearization’ of f described above.

The goal of the rest of the proof is to construct a conjugacy between A and f. To do this,
we first construct a semiconjugacy, h : M → M , between A and f.

PROPOSITION A.10. Let M = N/� be a nilmanifold and let f : M → M be a homeo-
morphism that fixes the point e� ∈ M . If f is freely homotopic to a hyperbolic nilmanifold
automorphism A : M → M , then there exists a continuous map h : M → M (freely)
homotopic to the identity such that A ◦ h = h ◦ f and h(e�) = e�. Furthermore, the map
h is the unique map freely homotopic to the identity fixing e�.

Proof. Since f and A are freely homotopic, M is a K(π , 1), and A is hyperbolic,
there exists a homomorphism (h0)∗ : π1(M , e�) → π1(M , e�) that is induced by a base
point preserving map h0 : M → M that is freely homotopic to the identity, such that
A∗ ◦ (h0)∗ = (h0)∗ ◦ f∗. Under these conditions, [14, Theorem 2.2] states that there exists
a unique continuous base point preserving map, h : M → M , that is homotopic to h0, such
that A ◦ h = h ◦ f .

We complete the proof of Theorem E by proving that the semiconjugacy, h : M → M ,
from Proposition A.10 is actually a conjugacy. To do this, we just need to show that h is a
homeomorphism.

PROPOSITION A.11. h : M → M is a homeomorphism.

Proof. The main step in this argument is to show that h is a local homeomorphism.
This combined with the fact that h is surjective (because h is homotopic to the identity
and is a proper map) will imply that h : (M , e�) → (M , e�) is a covering map. Then,
since h is homotopic to the identity, the covering spaces h : (M , e�) → (M , e�) and
id : (M , e�) → (M , e�) are isomorphic, that is, there is a homeomorphism g : M → M

such that h = id ◦ g. This will complete the argument that h is a homeomorphism, and
thus gives a conjugacy between A and f.

Thus, all that remains is to show that h is a local homeomorphism. We do this by
showing that its lift h̃ : (N , e) → (N , e) is a local homeomorphism. (When we take this
lift, we lift the point e� ∈ M to the point e ∈ N . In the rest of this section, we will be lifting
e� ∈ M to e ∈ N unless otherwise noted.) Recall that Brower’s theorem on invariance
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of domain states that a locally injective continuous map between two manifolds without
boundary of the same dimension is a local homeomorphism. Thus, we will be done if we
can show that h̃ is locally injective. In fact, we will show that h̃ is injective.

First, we note that f lifts to an Anosov homeomorphism f̃ : (N , e) → (N , e). We recall
from §A.1.2 that the stable and unstable sets for f̃ , denoted F s

f̃
and F u

f̃
, are transverse

generalized foliations on N. The first step in the argument that h̃ is injective is to show that
it suffices to prove injectivity of h̃ on stable and unstable leaves of f̃ . This follows from
the fact that the stable and unstable generalized foliations for f̃ establish a global product
structure for N, that is, the following proposition.

PROPOSITION A.12. For any points x, y ∈ N , the stable leaf through x and the unstable
leaf through y intersect at exactly one point, that is, the set W̃ s(x) ∩ W̃u(y) contains
exactly one point.

Before going through the proof of Proposition A.12, we show how this proposition
implies that injectivity of h̃ follows from injectivity on stable and unstable leaves. This
argument follows that in [24, pp. 387–388]. Take x, y ∈ N such that h̃(x) = h̃(y). By
Proposition A.12, we can define a point z := W̃ s(x) ∩ W̃u(y) to be the intersection of the
stable leaf through x and the unstable leaf through y. If we show that h̃(x) = h̃(y) = h̃(z),
then injectivity of h̃ will follow from injectivity of the stable and unstable leaves. Thus, it
suffices to show that h̃(y) = h̃(z).

To prove h̃(y) = h̃(z), recall that since Ã is a hyperbolic automorphism of N, for
arbitrary M1 > 0, the map Ã is expansive with expansive constant M1. Thus, to show
that h̃(y) = h̃(z), it suffices to show that there exists a constant M1 > 0 such that for all
n ∈ Z,

d(Ãn ◦ h̃(z), Ãn ◦ h̃(y)) ≤ M1. (A.2)

To see this, first recall that since Ã ◦ h̃ = h̃ ◦ f̃ and h̃(x) = h̃(y), we have that for all
n ∈ Z,

d(Ãn ◦ h̃(z), Ãn ◦ h̃(y)) = d(h̃ ◦ f̃ n(z), h̃ ◦ f̃ n(y)) = d(h̃ ◦ f̃ n(z), h̃ ◦ f̃ n(x)).

In light of these two equations, to prove equation (A.2), it is sufficient to prove that there
exists a constant M1 > 0 such that for all n ≥ 0, the following two inequalities hold:

d(h̃ ◦ f̃ −n(z), h̃ ◦ f̃ −n(y)) ≤ M1,

d(h̃ ◦ f̃ n(z), h̃ ◦ f̃ n(x)) ≤ M1.

These inequalities follow immediately from the following two observations.
• Since h is homotopic to the identity, the map h̃ is a bounded distance away

from the identity, that is, there exists a constant M0 > 0 such that for all w ∈ N ,
d(h̃(w), w) ≤ M0.

• The facts that z ∈ W̃ s(x) and z ∈ W̃u(y) imply that there exists a constant C > 0 such
that for all n ≥ 0,

d(f̃ n(x), f̃ n(z)) ≤ C and d(f̃ −n(y), f̃ −n(z)) ≤ C.
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Now, all that remains is to prove that the stable and unstable generalized foliations
give a global product structure on N, that is, Proposition A.12. The proof of this follows
the proof of [24, Lemma 6.8], with a single minor change to account for the fact that
M is a nilmanifold instead of a torus. We therefore give the general steps in Hiraide’s
argument and note where modifications need to be made. The argument proceeds in four
steps/lemmas.

LEMMA A.13. Let f : M → M be an Anosov homeomorphism of the nilmanifold
M = N/�. Let f̃ : N → N be a lift of f to N, and let Ã : N → N be a hyperbolic
automorphism of N. If the C0-distance between Ã and f̃ is bounded, then f̃ has exactly
one fixed point.

Proof. This proof is a slight modification of the proof of [24, Lemma 6.5]. The main
ingredients in this proof are the Lefschetz fixed point theorem and the homotopy invariance
of the Lefschetz number. Since we are working in a space that is not compact, we need to
be careful when using Lefschetz numbers. (Recall that the Lefschetz number of a map
g : X → X is only defined if the set of fixed points Fix(g) is compact. Two maps have
the same Lefschetz number if they are homotopic via a map that does not introduce fixed
points out of a compact set [11].) Since Ã is a hyperbolic automorphism, its Lefschetz
number is L(Ã) = ±1. The Lefschetz number of f̃ is defined because f̃ is a bounded
distance away from Ã.

Now, we argue that f̃ has at least one fixed point. Since N is contractible, we can
construct a homotopy between f̃ and Ã that does not introduce fixed points outside of a
compact set. Thus, L(f̃ ) = L(Ã) = ±1, which implies that f̃ has at least one fixed point.

The fact that f̃ has at most one fixed point follows from arguments in [24, Lemma
6.7].

We now prove that the non-wandering set of f is the whole nilmanifold.

LEMMA A.14. The non-wandering set of an Anosov homeomorphism f : M → M of a
nilmanifold M = N/� is the entire nilmanifold, that is, �(f ) = M .

Proof. This follows from the same argument as [24, Proposition 6.6].

We begin by showing that the stable and unstable generalized foliations of f̃ give a
global product structure on N.

LEMMA A.15. For x, y ∈ N , the stable manifold of f̃ at x, W̃ s(x), and the unstable
manifold of f̃ at y, W̃u(y), intersect at at most one point.

Proof. This follows from the previous two lemmas along with the spectral decomposition.
The details are exactly the same as those in [24, Lemma 6.7].

Now to complete the proof of Proposition A.12, we just need to show that W̃ s(x) and
W̃u(y) actually intersect for each x, y ∈ N . This follows by gluing together local product
neighborhoods given by F s

f and F u
f using the arguments in [13, Lemma 1.6].
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Now, all that remains in the proof of Theorem E is to show that h̃ is injective on the
stable and unstable leaves of f̃ , which proceeds exactly as in [24].
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