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Abstract. We study stationary measures for iterated function systems (considered as
random dynamical systems) consisting of two piecewise affine interval homeomorphisms,
called Alsedà–Misiurewicz (AM) systems. We prove that for an open set of parameters,
the unique non-atomic stationary measure for an AM system has Hausdorff dimension
strictly smaller than 1. In particular, we obtain singularity of these measures, answering
partially a question of Alsedà and Misiurewicz [Random interval homeomorphisms. Publ.
Mat. 58(suppl.) (2014), 15–36].
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1. Introduction
In recent years, a growing interest in low-dimensional random dynamics has led to an
intensive study of random one-dimensional systems given by (semi)groups of interval and
circle homeomorphisms, both from the stochastic and geometric points of view (see e.g.
[1, 7, 8, 10–12, 16–18, 23, 24]). This can be seen as an extension of the research on the
well-known case of groups of smooth circle diffeomorphisms (see e.g. [13, 19]).

Let f1, . . . , fm, m ≥ 2, be homeomorphisms of a 1-dimensional compact manifold X
(a closed interval or a circle). The transformations fi generate a semigroup consisting of
iterates fin ◦ · · · ◦ fi1 , where i1, . . . , in ∈ {1, . . . , m}, n ∈ {0, 1, 2, . . .}. For a probability
vector (p1, . . . , pm), such a system defines a Markov process on X which, by the
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Krylov–Bogolyubov theorem, admits a (non-necessarily unique) stationary measure, i.e. a
Borel probability measure μ on X satisfying

μ(A) =
m∑

i=1

piμ(f −1
i (A))

for every Borel set A ⊂ X. In many cases, it can be shown that the stationary measure
is unique (at least within some class of measures) and is either absolutely continuous
or singular with respect to the Lebesgue measure. It is usually a non-trivial problem to
determine which of the two cases occurs (see e.g. [20, §7]), and the question has been
solved only in some particular cases.

This paper is a continuation of the research started in [2] on singular stationary measures
for so-called Alsedà–Misiurewicz systems (AM systems), defined in [1]. These are random
systems generated by two piecewise affine increasing homeomorphisms f−, f+ of the unit
interval [0, 1], such that fi(0) = 0, fi(1) = 1 for i = −, +, each fi has exactly one point
of non-differentiability xi ∈ (0, 1) and f−(x) < x < f+(x) for x ∈ (0, 1). For a detailed
description of AM systems, refer to [2]. The dynamics of AM systems and related ones
has already gained some interest in recent years, being studied in e.g. [1–6, 25]. Within
the class of uniformly contracting iterated function systems, piecewise linear maps and the
dimension of their attractors were recently studied in [22].

In this paper, as explained below, we study stationary measures for symmetric AM
systems with positive endpoint Lyapunov exponents.

Definition 1.1. A symmetric AM system is the system {f−, f+} of increasing homeomor-
phisms of the interval [0, 1] of the form

f−(x) =
{

ax for x ∈ [0, x−],

1 − b(1 − x) for x ∈ (x−, 1],
f+(x) =

{
bx for x ∈ [0, x+],

1 − a(1 − x) for x ∈ (x+, 1],

where 0 < a < 1 < b and

x− = b − 1
b − a

, x+ = 1 − a

b − a
.

See Figure 1.

We consider {f−, f+} as a random dynamical system, which means that iterating the
maps, we choose them independently with probabilities p−, p+, where (p−, p+) is a given
probability vector (i.e. p−, p+ > 0, p− + p+ = 1). Formally, this defines the step skew
product

F+ : �+
2 × [0, 1] → �+

2 × [0, 1], F+(i, x) = (σ (i), fi1(x)), (1.1)

where �+
2 = {−, +}N, i = (i1, i2, . . .) ∈ �+

2 and σ : �+
2 → �+

2 is the left-side shift.
The endpoint Lyapunov exponents of an AM system {f−, f+} are defined as

�(0) = p− log f ′−(0) + p+ log f ′+(0), �(1) = p− log f ′−(1) + p+ log f ′+(1).

It is known (see [1, 12]) that if the endpoint Lyapunov exponents are both positive,
then the AM system exhibits the synchronization property, i.e. for almost all paths
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FIGURE 1. An example of a symmetric AM system.

(i1, i2, . . .) ∈ {−, +}N (with respect to the (p−, p+)-Bernoulli measure), we have |fin ◦
· · · ◦ fi1(x) − fin ◦ · · · ◦ fi1(y)| → 0 as n → ∞ for every x, y ∈ [0, 1]. Moreover, in this
case, there exists a unique stationary measure μ without atoms at the endpoints of [0, 1],
i.e. a Borel probability measure μ on [0, 1], such that

μ = p− (f−)∗μ + p+ (f+)∗μ,

with μ({0, 1}) = 0 (see [1], [11, Proposition 4.1], [12, Lemmas 3.2–3.4] and, for a more
general case, [7, Theorem 1]). From now on, by a stationary measure for an AM system, we
will always mean the measure μ. It is known that μ is non-atomic and is either absolutely
continuous or singular with respect to the Lebesgue measure (see [2, Propositions 3.10 and
3.11]).

In [1], Alsedà and Misiurewicz conjectured that the stationary measure μ for an AM
system should be singular for typical parameters. In our previous paper [2], we showed that
there exist parameters a, b, (p−, p+), for which μ is singular with Hausdorff dimension
smaller than 1 (see [2, Theorems 2.10 and 2.12]). These examples can be found among
AM systems with resonant parameters, that is, those with log a/log b ∈ Q. In most of the
examples, the measure μ is supported on an exceptional minimal set, which is a Cantor set
of dimension smaller than 1 (although we also have found examples of singular stationary
measures with the support equal to the unit interval, see [2, Theorem 2.16]).

In this paper, already announced in [2], we make a subsequent step to answer the Alsedà
and Misiurewicz question, showing that the stationary measure μ is singular for an open set
of parameters (a, b) and probability vectors (p−, p+). In particular, we find non-resonant
parameters (i.e. those with log a/log b /∈ Q), for which the corresponding stationary
measure is singular (note that non-resonant AM systems necessarily have stationary
measures with support equal to [0, 1], see [2, Proposition 2.6]). To prove the result, we
present another method to verify singularity of stationary measures for AM systems.
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Namely, instead of constructing a measure supported on a set of small dimension, we
use the well-known bound on the dimension of stationary measure

dimH μ ≤ −H(p−, p+)

χ(μ)
,

in terms of its entropy

H(p−, p+) = −p− log p− − p+ log p+

and the Lyapunov exponent

χ(μ) =
∫

[0,1]

(p− log f ′−(x) + p+ log f ′+(x)) dμ(x),

proved in [15] in a very general setting. We find an open set of parameters for which
the Lyapunov exponent is small enough (hence the average contraction is strong enough)
to guarantee dimH μ < 1. The upper bound on the Lyapunov exponent follows from
estimates of the expected return time to the interval

M = [x+, x−].

Remark 1.1. One should note that the question of Alsedà and Misiurewicz has been
answered when considered within a much broader class of general random interval
homeomorphisms with positive endpoint Lyapunov exponents [3, 5] and minimal random
homeomorphisms of the circle [4]. More precisely, Czernous and Szarek considered in [5]
the closure G of the space G of all random systems ((g−, g+), (p−, p+)) of absolutely con-
tinuous, increasing homeomorphisms g−, g+ of [0, 1], taken with probabilities p−, p+,
such that g−, g+ are C1 in some fixed neighbourhoods of 0 and 1, have positive endpoint
Lyapunov exponents and satisfy g−(x) < x < g+(x) for x ∈ (0, 1). In [5, Theorem 10],
they proved that for a generic system in G (in the Baire category sense under a natural
topology), the unique non-atomic stationary measure is singular. This result was extended
by Bradík and Roth in [3, Theorem 6.2], where they allowed the functions to be only
differentiable at 0, 1, and showed that in addition to being singular, the stationary measure
has typically full support. Similar results were obtained by Czernous [4] for minimal
systems on the circle. However, as the finite-dimensional space of AM systems is meagre
as a subset of the spaces considered in [3–5], these results give no information on the
singularity of stationary measures for typical AM systems.

2. Results
We adopt a convenient notation

b = a−γ

for a ∈ (0, 1), γ > 0 and

I : [0, 1] → [0, 1], I(x) = 1 − x,

https://doi.org/10.1017/etds.2023.57 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.57


On the dimension of stationary measures for random homeomorphisms 1477

so that a symmetric AM system has the form

f−(x) =
{

ax for x ∈ [0, x−],

I(a−γ I(x)) for x ∈ (x−, 1],
f+(x) =

{
a−γ x for x ∈ [0, x+],

I(aI(x)) for x ∈ (x+, 1],
(2.1)

where

x− = a−γ − 1
a−γ − a

, x+ = 1 − a

a−γ − a
.

By definition, we have

f± = I ◦ f∓ ◦ I−1 = I ◦ f∓ ◦ I. (2.2)

Under this notation, the endpoint Lyapunov exponents for the system in equation (2.1) and
a probability vector (p−, p+) are given by

�(0) = (p− − γp+) log a, �(1) = (p+ − γp−) log a.

Throughout the paper, we assume that �(0) and �(1) are positive, which is equivalent to

γ > max
(

p−
p+

,
p+
p−

)
. (2.3)

In particular, we have γ > 1. Note that this implies

x+ < x−. (2.4)

Indeed, if γ > 1, then the endpoint Lyapunov exponents for p− = p+ = 1/2 are positive,
so equation (2.4) follows from [2, Lemma 4.1].

The aim of this paper is to prove the following theorem.

THEOREM 2.1. Consider a space of symmetric AM systems {f−, f+} of the form in
equation (2.1) with positive endpoint Lyapunov exponents. Then there is a non-empty
open set of parameters (a, γ ) ∈ (0, 1) × (1, ∞) and probability vectors (p−, p+), such
that the corresponding stationary measure μ for the system {f−, f+} is singular with
Hausdorff dimension smaller than 1. More precisely, there exists δ > 0 such that for every
(p−, p+) with p−, p+ < 1

2 + δ, there is a non-empty open interval Jp−,p+ ⊂ (1, 3/2),
depending continuously on (p−, p+), such that for γ ∈ Jp−,p+ and a ∈ (0, amax) for some
amax = amax(γ ) > 0, depending continuously on γ , we have

dimH μ ≤ p log p + (1 − p) log(1 − p)

(1 − (1 + γ )p2(p + γ )/(γ − p(1 − p))) log a
< 1,

where p = max(p−, p+).
In particular, in the case (p−, p+) = ( 1

2 , 1
2 ), we have

dimH μ ≤ (1 − 4γ ) log 2
(γ − 1)(3/2 − γ ) log a

< 1

for γ ∈ (1, 3/2), a ∈ (0, 2(1−4γ )/((γ−1)(3/2−γ ))).
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FIGURE 2. The range of parameters p = max(p−, p+) and γ , for which the stationary measure μ for the system
in equation (2.1) is singular for sufficiently small a > 0.

Remark 2.2. The range of probability vectors (p−, p+) for which we obtain the singularity
of μ for a non-empty open set of parameters a, γ , is rather small. As the proof of Theorem
2.1 shows, suitable conditions for the possible values of p = max(p−, p+) are given by
the inequalities in equations (4.2) and (4.4). Solving them, we obtain p ∈ [ 1

2 , p0), where
p0 = 0.503507 . . . is the smaller of the two real roots of the polynomial p6 − 2p5 +
5p4 − 6p3 − 2p2 + 1. As p varies from 1

2 to p0, the range of allowable parameters γ

shrinks from the interval (1, 3/2) to a singleton. For such values of p and γ , the measure
μ is singular for sufficiently small a > 0. See Figure 2.

Remark 2.3. Every system of the form in equation (2.1) with a < 1
2 is of disjoint type in

the sense of [2, Definition 2.3], i.e. f−(x−) < f+(x+). Indeed, for a < 1
2 , we have

2a1−γ < a−γ < a−γ + a,

so a1−γ − a < a−γ − a1−γ and

f−(x−) = a
a−γ − 1
a−γ − a

< a−γ 1 − a

a−γ − a
= f+(x+).

Since a simple calculation shows 2(1−4γ )/((γ−1)(3/2−γ )) < 1
2 for γ ∈ (1, 3/2), we see that

all the systems with the probability vector (p−, p+) = ( 1
2 , 1

2 ) covered by Theorem 2.1 are
of disjoint type.

Remark 2.4. Since the conditions used in the proof of Theorem 2.1 to obtain the
singularity of μ define open sets in the space of system parameters, it follows that the
singularity of the stationary measure holds also for non-symmetric AM systems with
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parameters close enough to those covered by Theorem 2.1. We leave the details to the
reader.

3. Preliminaries
We state some standard results from probability and ergodic theory, which we will use
within the proofs.

THEOREM 3.1. (Hoeffding’s inequality) Let X1, . . . , Xn be independent bounded random
variables and let Sn = X1 + · · · + Xn. Then for every t > 0,

P(Sn − ESn ≥ t) ≤ exp
(

− 2t2∑n
j=1(sup Xj − inf Xj)2

)
.

THEOREM 3.2. (Wald’s identity) Let X1, X2, . . . be independent identically distributed
random variables with finite expected value and let N be a stopping time with EN < ∞.
Then,

E(X1 + · · · + XN) = EN EX1.

THEOREM 3.3. (Kac’s lemma) Let F : X → X be a measurable μ-invariant ergodic
transformation of a probability space (X, μ) and let A ⊂ X be a measurable set with
μ(A) > 0. Then, ∫

A

nA dμA = 1
μ(A)

,

where

nA : X → N ∪ {∞}, nA(x) = inf{n ≥ 1 : Fn(x) ∈ A}
is the first return time to A and μA = 1/μ(A)μ|A.

For the proofs of these results, refer respectively to [14, Theorem 2], [9, Ch. XII,
Theorem 2] and [21, Theorem 4.6].

4. Proofs
As noted in the introduction, the proof of Theorem 2.1 is based on an upper bound on
the Hausdorff dimension of a stationary measure in terms of its entropy and Lyapunov
exponent, in a version proved by Jaroszewska and Rams in [15, Theorem 1]. Consider
a symmetric AM system {f−, f+} of the form in equation (2.1) with positive endpoint
Lyapunov exponents for some probability vector (p−, p+), and its stationary measure μ.
Recall that the entropy of (p−, p+) is defined by

H(p−, p+) = −p− log p− − p+ log p+,

while

χ(μ) =
∫

[0,1]

(p− log f ′−(x) + p+ log f ′+(x)) dμ(x)
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is the Lyapunov exponent of μ. As μ is non-atomic (see [2, Proposition 3.11]) and f−, f+
are differentiable everywhere except for the points x−, x+, the Lyapunov exponent χ(μ)

is well defined. Moreover, μ is ergodic (see [12, Lemmas 3.2 and 3.4]). It follows that we
can use [15, Theorem 1] which asserts that

dimH μ ≤ −H(p−, p+)

χ(μ)
(4.1)

as long as χ(μ) < 0.
Now we proceed with the details. Let

M = [x+, x−], L = [x+, f −1− (x+)), R = I(L) = (f −1+ (x−), x−].

It follows from equation (2.4) that these intervals are well defined. Note that M , L, R

depend on parameters a and γ , but we suppress this dependence in the notation. To
estimate the Hausdorff dimension of μ, we find an upper bound for χ(μ) in terms of μ(M)

and estimate μ(M) from below. To this aim, we need the disjointness of the intervals L, R.
The following lemma provides the range of parameters for which this condition holds.

LEMMA 4.1. The following assertions are equivalent:
(a) L ∩ R = ∅;
(b) x+ < f−( 1

2 );
(c) γ > 1 − log(a2 − 2a + 2)/log a.

Proof. By equation (2.4) and the fact that x+ = I(x−), we have 1
2 < x−, so f−( 1

2 ) = a/2
and condition (b) becomes x+ < a/2. Then a direct computation yields the equivalence
of conditions (b) and (c). Furthermore, by equation (2.4), condition (a) holds if and
only if f −1− (x+) < f −1+ (x−). As f− ◦ I = I ◦ f+, this is equivalent to f −1− (x+) <

I(f −1− (x+)), which is the same as f −1− (x+) < 1/2. Applying f− to both sides, we arrive at
condition (b).

Remark 4.2. The condition in Lemma 4.1(c) can be written as γ −1 > − log((1−a)2+1)/

log a. As log((1 − a)2 + 1) < log 2 for a ∈ (0, 1), we see that the condition is satisfied
provided γ > 1, a ∈ (0, 21/(1−γ )).

We can now estimate the measure of M. It is convenient to use the notation

p = max(p−, p+).

Obviously, p ∈ [ 1
2 , 1). Note that the condition in equation (2.3) for the positivity of the

endpoint Lyapunov exponents can be written as

γ >
p

1 − p
(4.2)

and the entropy of (p−, p+) is equal to

H(p) = −p log p − (1 − p) log(1 − p).

The following lemma provides a lower bound for μ(M).
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LEMMA 4.3. Let a ∈ (0, 1), γ > 1 and p ∈ [ 1
2 , 1) satisfy the conditions in equation (4.2)

and Lemma 4.1(c). Then,

μ(M) ≥ γ (1 − p) − p

γ − p(1 − p)
.

Before giving the proof of Lemma 4.3, let us explain how it implies Theorem 2.1.
Suppose the lemma is true. Then we can estimate the Lyapunov exponent χ(μ) in the
following way.

COROLLARY 4.4. Let a ∈ (0, 1), γ > 1 and p ∈ [ 1
2 , 1) satisfy the conditions in equation

(4.2) and Lemma 4.1(c). Then,

χ(μ) ≤
(

1 − (1 + γ )p2(p + γ )

γ − p(1 − p)

)
log a.

Proof. By definition, we have

χ(μ) = (μ(M) + (p− − γp+)μ([0, x+]) + (p+ − γp−)μ([x−, 1])) log a. (4.3)

Computing the maximum of this expression under the condition μ([0, x+]) +
μ([x−, 1]) = 1 − μ(M), we obtain

χ(μ) ≤ (1 − (1 + γ )p(1 − μ(M))) log a.

Then Lemma 4.3 provides the required estimate by a direct computation.

Proof of Theorem 2.1. Let a ∈ (0, 1), γ > 1 and p ∈ [ 1
2 , 1) satisfy the conditions in

equation (4.2) and Lemma 4.1(c). By Corollary 4.4, we have χ(μ) < 0 provided

(1 + γ )p2(p + γ )

γ − p(1 − p)
< 1. (4.4)

Hence, applying equation (4.1) and Corollary 4.4, we obtain

dimH μ ≤ p log p + (1 − p) log(1 − p)

(1 − (1 + γ )p2(p + γ )/(γ − p(1 − p))) log a
(4.5)

as long as equation (4.4) is satisfied. If, additionally,

p log p + (1 − p) log(1 − p) >

(
1 − (1 + γ )p2(p + γ )

γ − p(1 − p)

)
log a, (4.6)

then equation (4.5) provides dimH μ < 1. We conclude that the conditions required for
dimH μ < 1 are equations (4.2), (4.4), Lemma 4.1(c) and equation (4.6).

To find the range of allowable parameters, consider first the case p− = p+ = 1
2

(which corresponds to p = 1
2 ). Then the condition in equation (4.2) is equivalent to

γ > 1, while the inequality in equation (4.4) takes the form 2γ 2 − 5γ + 3 < 0 and is
satisfied for γ ∈ (1, 3/2). Furthermore, by Remark 4.2, the condition in Lemma 4.1(c) is
fulfilled for γ > 1, a ∈ (0, 21/(1−γ )). The condition in equation (4.6) can be written as
(1 − 4γ ) log 2/((γ − 1)(3/2 − γ ) log a) < 1, which is equivalent to

a < 2(1−4γ )/((γ−1)(3/2−γ )).
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A direct computation shows 2(1−4γ )/((γ−1)(3/2−γ )) < 21/(1−γ ) for γ ∈ (1, 3/2). By equa-
tion (4.5), we conclude that in the case p− = p+ = 1

2 , we have

dimH μ ≤ (1 − 4γ ) log 2
(γ − 1)(3/2 − γ ) log a

< 1

for γ ∈ (1, 3/2), a ∈ (0, 2(1−4γ )/((γ−1)(3/2−γ ))).
Suppose now that (p−, p+) is a probability vector with p < 1

2 + δ for a small
δ > 0. Note that the functions appearing in equations (4.2) and (4.4) are well defined and
continuous for γ ∈ (1, 3/2) and p in a neighbourhood of 1

2 . Hence, equations (4.2) and
(4.4) are fulfilled for γ ∈ Jp−,p+ = Jp, where Jp ⊂ (1, 3/2) is an interval slightly smaller
than (1, 3/2), depending continuously on p ∈ [ 1

2 , 1
2 + δ). Furthermore, if γ ∈ Jp, then the

conditions in Lemma 4.1(c) and equation (4.6) hold for sufficiently small a > 0, where an
upper bound for a can be taken to be a continuous function of γ , which does not depend
on p. By equation (4.5), we have

dimH μ ≤ p log p + (1 − p) log(1 − p)

(1 − (1 + γ )p2(p + γ )/(γ − p(1 − p))) log a
< 1

for p ∈ [ 1
2 , 1

2 + δ), γ ∈ Jp and sufficiently small a > 0 (with a bound depending contin-
uously on γ ). In fact, analysing the inequalities in equations (4.2) (4.4), Lemma 4.1(c)
and equation (4.6), one can obtain concrete ranges of parameters a, γ , p, for which
dimH μ < 1 (cf. Remark 2.2 and Figure 2).

To complete the proof of Theorem 2.1, it remains to prove Lemma 4.3.

Proof of Lemma 4.3. The proof is based on Kac’s lemma (see Theorem 3.3) and the
observation that outside of the interval M, the system {f−, f+} (after a logarithmic change
of coordinates) acts like a random walk with a drift. Note first that μ(M) > 0. Indeed, we
have

f −1+ (x−) > x+, (4.7)

as it is straightforward to check that this inequality is equivalent to a1−γ > 1, which
holds since a ∈ (0, 1) and γ > 1. This means that the sets M and f −1+ (M) are not
disjoint. By symmetry, M and f −1− (M) are also not disjoint. As limn→∞ f −n+ (x−) = 0
and limn→∞ f −n− (x+) = 1, we see that

⋃∞
n=0 f −n+ (M) ∪ f −n− (M) = (0, 1) and hence

μ(M) > 0, as μ is stationary and μ({0, 1}) = 0.
We will apply Kac’s lemma to the step skew product in equation (1.1) and the set

�+
2 × M . Let nM : �+

2 × M → N ∪ {∞} be the first return time to �+
2 × M , that is,

nM(i, x) = inf{n ≥ 1 : (F+)n(i, x) ∈ �+
2 × M}.

Set P = Ber+p−,p+ to be the (p−, p+)-Bernoulli measure on �+
2 . Since P ⊗ μ is invariant

and ergodic for F+ (cf. [12, Lemmas 3.2 and A.2]) and (P ⊗ μ)(�+
2 × M) = μ(M) > 0,
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Kac’s lemma implies ∫
�+

2 ×M

nM dν = 1
μ(M)

, (4.8)

where

ν = 1
μ(M)

(P ⊗ μ)|�+
2 ×M .

Recall that we assume the condition in Lemma 4.1(c), so L ∩ R = ∅. Let

C = [sup L, inf R],

so that M = L ∪ C ∪ R with the union being disjoint. By the definitions of L, C and R,

f−(L) ⊂ [0, x+), f−(C ∪ R) ∪ f+(L ∪ C) ⊂ M , f+(R) ⊂ (x−, 1]. (4.9)

Let

E = {(i, x) ∈ �+
2 × M : fi1(x) /∈ M} = {(i, x) ∈ �+

2 × M : nM > 1}.
It follows from equation (4.9) that

E = {i1 = −} × L ∪ {i1 = +} × R, (4.10)

so

ν(E) = p− μ(L) + p+ μ(R)

μ(M)
(4.11)

and as L, R are disjoint subsets of M,

ν(E) ≤ p
μ(L) + μ(R)

μ(M)
≤ p (4.12)

for p = max(p−, p+). By equation (4.10),∫
�+

2 ×M

nM dν = 1 − ν(E) +
∫
E

nM dν = 1 − ν(E) +
∫

{i1=−}×L

nM dν +
∫

{i1=+}×R

nM dν.

(4.13)

Note that it follows from equation (4.7) that f+(x+) < x−, and hence a trajectory
{fin ◦ · · · ◦ fi1(x)}∞n=0 of a point x ∈ [0, 1] cannot jump from [0, x+) to (x−, 1] (or vice
versa) without passing through M. Combining this observation with the fact that the
transformations f− and f+ are increasing, we conclude that

nM(i, x) ≤ nM(i, x+) for (i, x) ∈ {i1 = −} × L,

nM(i, x) ≤ nM(i, x−) for (i, x) ∈ {i1 = +} × R.
(4.14)
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Therefore, we can apply equation (4.14) together with equation (4.11) to obtain∫
{i1=−}×L

nM dν +
∫

{i1=+}×R

nM dν ≤
∫

{i1=−}×L

nM(i, x+)dν +
∫

{i1=+}×R

nM(i, x−)dν

= μ(L)

μ(M)

∫
{i1=−}

nM(i, x+) dP(i) + μ(R)

μ(M)

∫
{i1=+}

nM(i, x−) dP(i)

= p−
μ(L)

μ(M)
E−N− + p+

μ(R)

μ(M)
E+N+ ≤ ν(E) max(E−N−, E+N+),

(4.15)

where

N±(i) = inf{n ≥ 1 : fin ◦ · · · ◦ fi1(x∓) ∈ M}
and E± is the expectation taken with respect to the conditional measure

P± = 1
P(i1 = ±)

P|{i1=±} = 1
p±

P|{i1=±}.

Using equations (4.13), (4.15) and (4.12), we obtain∫
�+

2 ×M

nM dν ≤ 1 + ν(E)(max(E−N−, E+N+) − 1) ≤ 1 + p(max(E−N−, E+N+) − 1).

(4.16)

Define random variables X±
j : �+

2 → R, j ∈ N, by

X−
j (i) =

{
1 if ij = −,

−γ if ij = +,
X+

j (i) =
{

−γ if ij = −,

1 if ij = +.

Then X−
2 , X−

3 , . . . is an independent and identically distributed sequence of random
variables with P−(X−

j = 1) = p−, P−(X−
j = −γ ) = p+. To estimate E−N−, note that

for i ∈ {i1 = −}, we have

N−(i) = inf{n ≥ 1 : a1+X−
2 +···+X−

n x+ ≥ x+} = inf{n ≥ 2 : X−
2 + · · · + X−

n ≤ −1},
as for n < N−(i), we have fin ◦ · · · ◦ fi1(x+) < x+ and f−(x) = ax, f+(x) = a−γ x on
[0, x+]. Consequently, N− is a stopping time for {X−

j }∞j=2. We show that E−N− < ∞. To
do this, note that by Hoeffding’s inequality (see Theorem 3.1) and equation (2.3),

P−(N− > n + 1) ≤ P−
( n+1∑

j=2

X−
j > −1

)

= P−
( n+1∑

j=2

X−
j − nE−X−

2 ≥ −1 − n(p− − γp+)

)

≤ exp
(

− 2(1 + n(p− − γp+))2

n(γ + 1)2

)
≤ exp(−cn)
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for some constant c > 0 and n ∈ N large enough. We have used here the fact that
t := −1 − n(p− − γp+) is positive for n large enough, following from equation (2.3).
As E−N− = ∑∞

n=0 P−(N > n), the above inequality implies E−N− < ∞.
Let

SN−(i) =
N−(i)∑
n=2

X−
n (i).

This random variable is well defined, since 2 ≤ N− < ∞ holds P−-almost surely. As
E−N− < ∞, we can apply Wald’s identity (see Theorem 3.2) to obtain

E−SN− = E−X−
2 (E−N− − 1) = (p− − γp+)(E−N− − 1). (4.17)

To estimate E−SN− , we condition on X−
2 and note that SN− ≥ −1 − γ almost surely and,

by equation (2.3), −γ < −1. This gives

E−SN− = p− E−(SN−|X−
2 = 1) + p+ E−(SN−|X−

2 = −γ )

≥ p− (−1 − γ ) − p+ γ (4.18)

= −p− − γ .

Combining this with equations (2.3) and (4.17), we get

E−N− − 1 ≤ p− + γ

γp+ − p−
. (4.19)

By the symmetry in equation (2.2) and x+ = I(x−), we can estimate E+N+ in the same
way, exchanging the roles of p− and p+, obtaining

E+N+ − 1 ≤ p+ + γ

γp− − p+
. (4.20)

Applying equations (4.19) and (4.20) to equation (4.16), we see that∫
�+

2 ×M

nM(i, x) dν(i, x) ≤ 1 + p max
(

p− + γ

γp+ − p−
,

p+ + γ

γp− − p+

)
= 1 + p

p + γ

γ (1 − p) − p
.

Invoking equation (4.8), we obtain

μ(M) ≥ 1
1 + p(p + γ )/(γ (1 − p) − p)

= γ (1 − p) − p

γ − p(1 − p)
,

which ends the proof.

We finish the paper with some remarks on the limitations of our method for proving
singularity of the measure μ.

Remark 4.5. One should be aware that, in general, the upper bound −H(p−, p+)/χ(μ)

does not coincide with the actual value of dimH μ for AM systems. Indeed, for (p−, p+) =
( 1

2 , 1
2 ), we have H(p−, p+) = log 2 and by equation (4.3),

χ(μ) =
(

1 + γ

2
μ(M) + 1 − γ

2

)
log a ≥ log a.
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However, [2, Theorems 2.10 and 2.12] provide an exact value of the dimension of μ in the
resonance case γ = k ∈ N, k ≥ 2, yielding

dimH μ = dimH (supp μ) = log η

log a
,

where η ∈ ( 1
2 , 1) is the unique solution of the equation ηk+1 − 2η + 1 = 0. Therefore,

dimH μ = log η

log a
<

log 1/2
log a

≤ −H(p−, p+)

χ(μ)
.

Remark 4.6. It is natural to ask what is a possible range of parameters for which the
method presented is this paper could be applied. Let us discuss this in the basic case
p− = p+ = 1

2 . Following the proof of Theorem 2.1 in this case, we see that by equations
(4.1) and (4.3), if for a given γ > 1 we have

μ(M) >
γ − 1
γ + 1

,

then the measure μ is singular for a < 1 small enough (depending on γ ). However,
combining equations (4.8), (4.16), (4.17), and noting that E−N− = E+N+ and E−SN− =
E+SN+ for p− = p+ = 1

2 , we see that

μ(M) ≥ γ − 1
γ − 1 − E−SN−

,

provided that the condition of Lemma 4.1(c) is satisfied (which for a fixed γ > 1 holds for
small enough a ∈ (0, 1)). Therefore, if for fixed γ > 1 inequality

E−SN− > −2 (4.21)

is satisfied, then μ is singular for a ∈ (0, 1) small enough. The proof of Theorem 2.1 shows
that equation (4.21) holds for γ ∈ (1, 3/2). Figure 3 presents computer simulated values
of E−SN− for γ in the interval (1, 3). It suggests that the range of parameters γ for which
the singularity of μ holds with a small enough could be extended from (1, 3/2) to a larger
set of the form (1, γ1) ∪ (2, γ2), for some γ1 ∈ (1, 2), γ2 ∈ (2, 3). It is easy to see that one
can obtain equation (4.21) for some γ > 3/2 by conditioning on a larger number of steps
in equation (4.18). We do not pursue the task of finding a wider set of possible parameters
in this work. One should note, however, that equation (4.21) cannot hold for γ ≥ 3, as the
formula from the first line of equation (4.18) can be used together with an obvious bound
SN− ≤ −1 to obtain (for p− = p+ = 1

2 )

E−SN− ≤ −p− − p+γ = −1 − γ

2
,

yielding E−SN− ≤ −2 for γ ≥ 3. This shows that the method used in this paper cannot
be (directly) applied for γ ≥ 3 (even though there do exist AM systems with γ ≥ 3 for
which μ is singular—see [2, Theorems 2.10 and 2.12]). To obtain an optimal range of
γ satisfying equation (4.21), one should compute E−SN− explicitly in terms of γ . This
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FIGURE 3. Simulated values of E−SN− as a function of γ . The values of γ are presented on the x-coordinate axis,
while the y-coordinate gives the corresponding value of E−SN− . Simulations were performed for 4000 values of
γ , uniformly spaced in the interval (1, 3). For each choice of γ , we performed 40 000 simulations of 3000 steps

of the corresponding random walk.

however seems to be complicated and Figure 3 suggests that one should not expect a simple
analytic formula.
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