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Hardy Space Estimate for the Product of
Singular Integrals

To the memory of Akihito Uchiyama

Akihiko Miyachi

Abstract. HP estimate for the multilinear operators which are finite sums of pointwise products of singular
integrals and fractional integrals is given. An application to Sobolev space and some examples are also given.

1 Introduction

For 0 £ A < oo, we define G()\) as the set of all those C* functions a on R" \ {0} such
that
|0¢a(©)] < a1

for every multi-index a.

Let S denote the Schwartz class of testing functions. We denote by §; the set of all those
f € 8 such that f(€), the Fourier transform, vanishes in a neighbourhood of £ = 0.

If a € G()\), then we define the linear operator T: 8 — 8y by

Tf = (af)’ (f € 8p),

where V' denotes the inverse Fourier transform. The function a is called the multiplier of
T. We denote by K(A), 0 < A < o0, the set of all the operators T corresponding to the
multipliers a € G(\).

Let H? = HP(R"), 0 < p = 1, denote the usual real variable Hardy space on R”. We
define H? = L? = LP(R") for 1 < p < oo. For H?, see, e.g., S, Chap. III].

The following H?-H1 estimate of the operators of class K(\) is well known: If T € JC()),
0 < X\ < oo, then, for p and g satisfying

1 1 A
(1.1) 0<p<g<oo and ——=-==,
P q
the estimate
(1.2) ITfllre < cll fllme

holds for all f € §. See [CT, Section 4].
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In this paper, we consider the multilinear operator A defined by

(1.3) Afis s ) =Y (TP f) - (T7 fi)

oeA
for fi,..., fx € So, where A is a finite index set and T7 are linear operators such that
(1.4) T7 € X(A7), 0=X]<oo (0 €A, j=1,... k).

(Each term in the right hand side of (1.3) is the pointwise product of the k functions T7 f;.)

This A is well-defined as a multilinear operator (8$y)* — 8.
We consider the case where

k
(1.5) Z A = Aisindependentof o € A.
j=1
Let py, ..., pr and g be positive real numbers such that
1 A] .
(1.6) oo>—>? (ceA,j=1,...,k
j
and
1 A] 1
(1.7) (— - —’) =-.
JZ_; pj n q
Then clearly we have the estimate
(1.8) A -5 fllg = ell Allaen - (] fel
(We write || - ||, to denote the quasinorm in L"(R"); see Section 2.1.) Indeed, if we write

1/q7 = 1/p;j — A7 /n, then the estimate (1.2)~(1.1) implies
W7 fill gz = el fillrs-

Hence, we use Holder’s inequality to obtain

k
AR, s fllg S €D ICTTA) - (T fllg < e > TTIT filles

ey sEA j=1
k k
<cd I fillye < e TSl
oceA j=1 j=1

(We use the letter ¢ to denote various positive constants which may be different in each
occasion.)

https://doi.org/10.4153/CJM-2000-018-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-018-2

Hardy Space Estimate 383

The subject of this paper is to show that, under certain assumptions on A, the L1-
quasinorm in (1.8) can be replaced by the H1-quasinorm as

(1.9) A5 ol = ell fillaen - (] fel s

Of course only the case g < 1 is interesting. (If 1 < g < oo, then H? = L7 and (1.8)
and (1.9) are the same.)
If0 < g £ 1, then 8 is not included in HY. The factis this: f € SNH1,0 < g < 1, if

and only if f € 8§ and

/ fx)x*dx=0 forl|a| < [n/q—n].
R

Therefore, when 0 < g < 1, in order that (1.9) holds it is necessary that the moment
condition

(1.10) / Afiy. s f)X)x“dx =0 for|a| < [n/q—n]
R"

is satisfied for all fi,..., fi € So.

The purpose of this paper is to show that (1.10) is also sufficient when k = 2 or when
k = 3 and all the operators T7 are homogeneous operators. The precise statement shall
now be given below.

We say that an operator T € K(\) is homogeneous if its multiplier a € G(\) is a ho-
mogeneous function, i.e., if a(t§) = t~*a(¢) forallt > 0 and all ¢ € R\ {0}. (Clearly a
homogeneous function in the class G(A) is homogeneous of degree —\.)

The main result of this paper reads as follows.

Theorem Let A be given by (1.3) with (1.4). Suppose A satisfy (1.5). Let pi, ..., px and
q satisfy (1.6) and (1.7). Suppose q < 1 and the moment condition (1.10) is satisfied for all
fis-oos fx € So. Then:

(a) Ifk = 2, then the estimate (1.9) holds forall f,..., fi € So;
(b) Ifk = 3 and if all the operators T7 are homogeneous, then the estimate (1.9) holds for all
f17 Ceey ﬁc - So.

The homogeneity assumption in (b) can be removed if we assume further moment con-
ditions; see Remark at the end of Section 5. The present author does not know whether the
homogeneity assumption in (b) can entirely be removed.

In fact, there already exist several papers dealing with this kind of estimate (as we shall
see below). Our result improves the previously known results in the following points. First,
our theorem treats the full range 0 < Af < oo; the case A = 0 or the case A = Z?;l AT <
n are already treated. Second, the assumption of our theorem for the case k = 3 is simplified
compared with the previous theorems; ¢f. [G]. Thirdly, in the proof of our theorem, we
shall give a rather explicit pointwise estimate for the maximal function of A(fi,..., fv),
which will be of independent interest.

Several interesting examples together with applications of the estimate of the form (1.9)
are given in the paper by Coifman-Lions-Meyer-Semmes [CLMS]. Some examples will also
be given in the last section of the present paper.
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We shall now review some previous works concerning the same subject.
The simplest case of the estimate (1.9) is for n = 1, k = 2, and for

A(flva) = flf2 +f1f2 or flf2 - _fle,

where ~ denotes the Hilbert transform. In this case, the estimate (1.9) can be immediately
derived from Holder’s inequality and the Burkholder-Gundy-Silverstein theorem [BGS]
(this theorem gives a characterization of H?(R) in terms of the classical Hardy class of
holomorphic functions of one variable).

The first result for n = 2 was given by Coifman-Rochberg-Weiss [CRW, Theorems I
and II] for the case k = 2, A7 = 0, and ¢ = 1. Chanillo [Ch] treated the case k = 2,
0 < A < n,and g = 1. The method used in [CRW] and [Ch] was to use the H!-BMO
duality and thus was restricted to the case ¢ = 1. Uchiyama [U] introduced a method
which directly estimate certain maximal functions and extended the result of [CRW] to the
casek = 2,A7 = 0,and n/(n+1) < q = 1. Generalizing Uchiyama’s method, Komori [K1]
and the present author [M1] treated the case k = 2,0 < A < n,n/(n+1) < g < 1and
the case k = 2, A7 = 0,0 < g = n/(n + 1), respectively. These were further generalized by
[M2] to thecasek =2,0 < A <n,and0 < g < 1.

In fact, the papers cited above do not treat A of the general form (1.3) but treat A of a
specified form. The methods of [M1] and [M2], however, can be applied to the general A
with k = 2 without essential change.

The case k = 3 with A7 = 0 was considered by Grafakos [G]. The theorems given
in [G] contained certain restrictions on the parameters py, ..., px; Komori [K2] showed
that those theorems can be generalized to the entire range 0 < p; < oo.

The contents of the succeeding sections are as follows. In Section 2, we fix several no-
tations and recall some preliminary facts. Sections 3 through 5 are devoted to the proof of
Theorem. In Section 6, we give some examples.

2 Preliminaries
2.1 Notations

As well as the notations already introduced in Section 1, the following notations are used
throughout this paper.

The letter N denotes the set of positive integers; N does not contain 0. For x € R, [x]
denotes the integer which satisfies [x] < x < [x] + 1.

In this paper, we consider functions and function spaces defined on R"; letter n always
denotes the dimension of the basic space R”. If E is a measurable subset of R” and 0 < p <
00, then || - ||, ¢ denotes the quasinorm in L?(E), i.e., for measurable functions f defined

on E, we define
1/p
£l = ( [ 1007 )

with the usual modification for p = oo. If E = R", then || f{|, ¢ is simply denoted by || f|,.
The symbol B(x, t) denotes the open ball in R” with respect to the usual Euclidean metric
with center x € R” and with radius ¢, 0 < t < 0o. The value of the distribution f evaluated
at the testing function ¢ is denoted by (f, ©).
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We fix a function ¢ on IR” which has the following properties: ¢ is C*=, 0 < ¢(x) < 1
forall x € R”, ¢(x) = 1 for |x| < 1, and supp ¢ C B(0, 2).

2.2 Operators of Class X()\)

Let T € K(A\), 0 £ X < o0o. As was already mentioned in Section 1, the H?-HY estimate
(1.2)—(1.1) holds for all f € 8y. Hence, since 8 is dense in H? for every 0 < p < o0,
the operator T: §y — &y can be uniquely extended to a bounded operator H? — H1 for
each (p, q) satisfying (1.1). If the condition (1.1) is satisfied for (p,q) = (p1,41) and for
(p,q9) = (p2,42), then the extended T: HP* — H? and the extended T: H> — H®
coincide on H?' N H2. Therefore the extensions of T give rise to a well-defined mapping

U #— | =

0<p<n/A 0<g<oco

In the sequel we shall use the same symbol T to denote the last mapping.
If T € X(0), then T f for f € 8, can be written as

(2.1) (THx) =~vfx) + ],lgn A f(x—y)dy,

© Jyl>¢;

where 7y is a complex constant, A is a function in G(n) such that

/ A(y)dy‘ < 00,
a<|y|<b

and (e;) is a sequence such that €; > 0 and lim;_,, €; = 0; the converse also holds. The
formula (2.1) can also be applied to some extensions of T. For example, it holds for all
f € Sandforallx € R". If f € LP with 1 < p < 00, then (2.1) holds almost everywhere.
For these facts, see, e.g., [S, Chap. VI, Section 4, and Chap. VII, Section 3].

If T € KX(\) with 0 < A < n, then there exists an A € G(n — \) such that

sup
0<a<b<oo

(THx) = / AW fGx— y)dy
R

for f € §y; the converse also holds. This formula can be applied also to f which is in L™
and has compact support. For these facts, see, e.g., [S, Chap. VI, Section 4, Proposition 1].

2.3 The Vanishing Moment Condition

For nonnegative integers M, we denote by Py, the set of polynomial functions on R" of
degree not exceeding M. If M is a negative integer, we define P, = {0}.

Let f be a locally integrable function on R" (or let f be a distribution with compact
support) and let M be an integer. If fP € L! and f f(x)P(x)dx = 0 forall P € Py (or if
(f,P) = 0forall P € Py, resp.), then we write f L Py,.

If M is a negative integer, then every f satisfies f L Py since Pp; = {0} by our defini-
tion.
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Now let A be the operator defined by (1.3) with (1.4) and let M be an integer.

We say A satisfies the vanishing moment condition up to order M if A(f1, ..., fi) L Pu
forall fi,..., fi € 8g. We say A satisfies the vanishing moment condition of all orders if
A(fi,... fi) LPyforall M € Nandforall fi,..., fi € 8.

If k = 1, then A is a finite sum of operators of class U/\>0 K(A) and, hence, for every
f € 80, we have A(f) € 8 and A(f) L Py for every M. Thus A with k = 1 satisfies the
vanishing moment condition of all orders. If M < 0, then we can say that every A satisfies
the vanishing moment condition up to order M since P»; = {0} by our definition.

The vanishing moment condition for A can be restated as a condition on the multipliers
of T7 in the following way.

Letaf € G()\;'.) be the multiplier of T7. The Fourier transform of A(fy, ..., fi) can be
written as

(A(fis- s )" ()
=3 [ R a0 )
sea B
xal(—m — =) fl€ —m — - =y diy - - dip_ .

The condition A(fi,. .., fi) L Pa, M € N U {0}, is equivalent to the condition that the

partial derivatives of (A(fl, cee fk))/\(g) of order £ M vanish at £ = 0. From this, it is
easy to see that A satisfies the vanishing moment condition up to order M, M € N U {0},
if and only if the equality

(22) > al(m) - af_ (1) a7 () = 0
ceA

holds for all multi-indices 8 with |3] < M and for all ny,...,m € R" \ {0} satisfying
m+--+a=0.
By the symmetry of the situation, the equality (2.2) can be replaced by

> (T a5) o7 attmn) = 0
oCA fijtm

withanym € {1,...,k—1}.

2.4 Maximal Functions

For measurable functions f on R” and for 0 £ A < oo and 0 < r < oo, the maximal
function f, is defined by

fur(x) = sup tA_n/erHr-,B(x,t) (x € RY).

oco>t>0

fOSA<00,0<r<p<qg=<oo,andl/p—1/q= A/n,then

(2.3) 1 fxrllg = ell fllp
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for all measurable functions f on R”. See [Ch, Lemma 2].
For0 <\ < oo,m € NU{0},x € R",and 0 < t < oo, we define the set T))(x, t) as the
set of all those ¢ € C§°(R") such that supp ¢ C B(x, t) and

09|l < 101 for |a| < m.

For f € D'(R"),0 < X < oo, and m € NU{0}, we define the maximal function M\ ( f)
by

My (e =swp{l(f o)l [pe | Thn} rer).

0<t<oo

fOSA<oo,meNU{0},0<p<o0,0<gqg=So0,1/p—1/g = A/n, and
m > n/p — n, then

(2.4) IMo(H)llg < ell fllae

forall f € HP(R").If0 < p < 0o, m € NU{0}, and m > n/p — n, then

(2.5) My, (Ol ~ [ f Il

forall f € D'(R"). These facts can be easily proved by the use of the atomic decomposition
for H?; ¢f. [U, Lemma 7].

For0 = A < co,m € NU{0},x € R”, and 0 < ¢, € < 00, we define the set 7,’),76(x, t) as
the set of all those C*° functions ¢ on R” such that

_ A—n—|a|—e
00| < Pl (1 + %) for |a] < m.

Let0 £ A < oo,m € NU{0},and 0 < € < oo. Then, for locally integrable functions f
on R” such that [(1+ [y|)*~"=¢| f(y)| dy < oo and for all x € R", we have

(2.6) sup{‘/f(y)go(y) dy‘ ‘ ve |J T, t)} < eMy(f)(x).

oco>t>0

Proof of this fact reads as follows.
Proof Take functions n,d € C5°(R") such that
suppn C {x | [x| <2}, suppd C {x|1/2 = |x| <2},

and

n(y)+ Y 6(277y)=1 forally € R".
j=1

Letp ¢ ‘J}Ax, t) and set
x—
poy) = @(y)n (Ty)
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and
x —

2Jt

@j(y)Zso(yﬁS( y) (j e N).

Then, for j € N U {0}, we have ¢; € 27T (x,27%1t). (Here, and in the sequel, we use
the notation AT (x,£), 0 < A < 00, to denote the set {Ap | p € T)(x,t)}; we also use the
notation A(J',ﬁyf(x, t) in the similar meaning.) Hence

’ / fe;iy) dy’ < 27 M (f)(x).
Thus

‘ / 5o dy} -

> / fWeiy) dy’ <D 2 ML) S M (f)(x).
j=0 j=0

This implies the desired estimate.

3 Lemmas
Lemma 3.1 LetK,m € NU {0}. Suppose f € L>, supp f C B(x,t), and f L Px. Then:

(a) f can be written as

o0

(3.1) f=Y b inD'R"

i=1

with b; (i = 1,2,...) such that b; € L*°, supp b; C B(w;, p;) C B(xy,2t), b; L Px,
and

0o 1/r
(Z IIbilloXBw,‘,pl)(x)) S oMy (f)x) (vx €R")

i1
forevery0 < r < oo.

(b) If p is a real number such that n/(K + 1 +n) < p < oo, then f € HP, the series in (3.1)
converges in H, and || f||m» = || My, (/) p.exo20)-

For a proof of this lemma, see [M1, Lemmas 2.3 and 2.5].
Let f € D'(R"), K € NU {0}, and 0 < t < oo. Let P be the unique polynomial in P
such that ¢(-/t)(f — P) L Pk. (For the function ¢, see Section 2.1.) We define

s =9 (:) (f =P,

o) =9 ()P

() = (1-0(2)) -

Lemma 3.2 Let f, K, andt be as mentioned above. We simply writeg = gk +(f), 6 = 0 .(f),
and h = hg(f). Let m € NU {0}. Then:
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(@) f=g+0+h
(b) suppg C B(0,2t), g L Py, and

MS(9)(x) < MO (f)(x)  forx € B0, 4t);
(c) 0 € C5e(R"), supp 6 C B(0,2t), and

10°0llo0 < cat™! inf Mi(f)

for every multi-index o
(d) supph C{xeR"||x| =t} and

M (h)(x) < M2 (f)(x) forx € B(0, 4t).

Proof The estimate of 9“6 as given in (c) can be easily proved by the well known techniques
used in the atomic decomposition ; cf., e.g., [S, Chap. III, Section 2.1.4]. For the proof of
the inequalities in (b) and (d), see [M1, Lemma 2.4]. Other claims are obvious. Details are
left to the reader.

Lemma 3.3 Let T € K(X\), 0 < X\ < 0o, and K € NU {0}. Suppose b € L™, suppb C
B(w,p), b L Px,and K+ 1+ n > A Then:

(b) Forn/(K+1+n—\) <q < oo, wehave Tb € H1 and
Tl < €llblloop™ ™%

(b) WithL = K +n — [\], we have

L
[(Th) ()| < ¢||b]|ocp® (|x f w|) for |x — w| > 2p.

Proof (a) Let qbe in the range as mentioned in the lemma. Define pby 1/p = 1/q+ \/n.
Then \/n < 1/p < (K+ 1+ n)/nand ||b]lgr < c||blloop™? (since (c||b]|oop™?) b is a
p-atom). Hence the desired estimate of || Th|| g4 follows from (1.2).

(b) By the translation invariance, we may and shall assume w = 0.

We first consider the case 0 < \ < n. In this case, as mentioned in Section 2.2, (Th)(x)
for |x| > p can be written as

(T = [ A= b dy
lyl<p
with a function A € G(n — A). Since b L. P, we have

(Tb)(x) = (Ax—y) = P(M)b(y)dy (x| > p)
Iyl
yl<p
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for every P € Px. We choose P to be the degree K Taylor polynomial of A(x — -) expanded
about 0. Then, for |x| > 2p, we have

|(Th)(x)| g/ |A(x — y) — P(y)| |b(y)| dy

lyl<p
<. / KT R () dy
lyl<p

g CHbHoop)\(|x|flp)K+l+n7)\
< ¢|[blloop (%71 0"

(the last inequality holds because L < K+ 1+ n — A).

Next suppose n < A < co. (The argument to be given below can actually cover the case
n/2 < A < 00.) Leta € G(\) be the multiplier of T.

Since b L Pk and since b is a compactly supported bounded function, we have b(¢) =
O(|€[¥+1) as € — 0. Hence a(£)b(€) = O(|¢| K1) as € — 0, which implies that a(¢)b(£)
is integrable in a neighbourhood of ¢ = 0. On the other hand, a(¢ )B({ ) is also integrable in
€] > 6 for every § > 0, since |a(€)| < ¢[¢|™*, A = n, and since b € L2. Thus ab € L'(R").
It is easy to see that Tb (here T is the extended operator as mentioned in Section 2.2) is
given by the absolutely covergent integral

(Th)(x) = / a©BOS™ dE (x € R,
R?
For 0 < € < N < oo, we set xn(£) = (1 — qS(e’lf))gzﬁ(N’lg) and

fn() = / a(©)B(E)xe N (€)™ de.

Then, for every x € R", f. n(x) converges to (Th)(x) ase | 0and N — oo. If x # 0, then
by integration by parts we have

n

— . L A
(32) fon(o) = / it (Z ! a@) [a(€)b(E) xen ()] dE.

—— 27ri|x|?
j=1

Since a € G()\), we have

) 108 [a(O)xen(©)]] < calg| 1

with ¢, independent of e and N. If || £ K + 1, then

Ob(&)] < clg|F o 9%b||o  (since b L Py)
3

|B|=K+1

< e YT b

|B|=K+1

< ¢||b|oo €] 10T K (since supp b € B(0, p)).
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If |a| > K+ 1and|{| < 1/p, then

8Eb(E)] < NI(—2mix)* b1 < callblocp*™

< Col|bll oo [€[KFI 0l pRFLem,
Thus the estimate
(3.4) 0£D(E)] £ callblloo|€ 1S it €] S 1/p
holds for every multi-index o. We also have

(3.5) [8°B|l, = ||(—27ix)*b(x)||ls < cal|b]|oop! 2.

Now using (3.2), (3.3), (3.4), and (3.5), we obtain

[fin()] < clx| ™ g7 11187 b(g)| de
3

|a+B3|=L

e 3 [ ol e

|a+8|=L [€1=1/p

1/2
telx T Y (/ (€|‘A"“')2d£> 1B 0o 14712
[€]>1/p

|a+B|=L

< cllblloo b~

Taking limit as € | 0 and N — oo, we obtain the desired estimate. Lemma 3.3 is proved.

Lemma 3.4 Let {b;} be a sequence in L*°, let {B(w;, p;)} be a sequence of balls, and let
K € NU{0}. Suppose supp b; C B(wi, pi), ||billoo = a; < 00, and b; L Pg. Let T € K(N),
0 S X< oo andK' € R, and suppose K+ 1+ n > Xand K' < K — [X]. Finally let
1< r<ooand0 < s < oo. Then

K/
._W-
‘Zpi <1+' ") |7hi|
i

pi
withl/p=1/r+s/n+ A\/n.

§ CHZ aiXB(Whpi) H
- p
r i

Proof We write B; = B(w;, p;), 2B; = B(w;,2p;), and

- —w\©

1

We decompose F; as
F; = Fixap, + Fixes) = fi + &-
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The function f; is supported on 2B; and, by Lemma 3.3 (a), we have

1 K+1+n—2X
1flls < cpmipi 28111 foro << =20 0

From these facts, it follows that
+A
‘ HZ aip; " X2B; . < CHZ%XB"HP‘
1 1

(For the former inequality, see [StT, Chap. VIII, Lemma 5]; for the latter, see [M4,
Lemma 3.2, (2)].)
For g;, we have

K'—L
X — W;
|gi ()] = ca; PH/\ <|p|> X (2B, (%)

with L = K +#n — [A] (by Lemma 3.3 (b)). Thus

[, e (4 2520) ] <

(For the last inequality, see [M4, Lemma 3.2, (2)].) Lemma 3.4 is proved.

<c

|3l
i p

Lemma 3.5 Letac G(\),0 S X< o0,0 <t < oo, and let

A= ((1-669)a)) " €s"

Then A; restricted to R" \ {0} is a C™ function, and for every multi-index o and for L €
N U {0} satisfying L > —X\ + n + ||, we have

|8“At(x)| § Ca7Lt/\_"_|a|+L|x|_L.

Proof Let « and L be as mentioned in the lemma. For multi-indices 8 with |3] = L, we
have

192 (€7 (1 = 6(t€))a(©)] | £ caslé] ™1 x50,/ (),

where ¢, g does not depend on . The right hand side of the above inequality is integrable
on R". Hence, taking the inverse Fourier transform, we see that x’9°A; is a continuous
function and that

|xﬂ8§At(x)| é Ca,ﬂ/ |§‘7)\+|a\7L df _ Calﬂt)\f|a\+L7n‘
[€1>1/t

Since this estimate holds for all 8 with |3| = L, the conclusion of the lemma follows.

Lemma 3.6 LetT € K(A),0 < A< oo, f €8y, KeNU{0},and0 <t < co. Suppose
K+1+n> X Let 0 = g 10,(f) and h = hg 10,(f). Then T(0 + h) is a C* function and, for
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every multi-index o, for everym € NU{0}, and for every p satisfyingn/(K+1+n) < p < oo,
we have

sup [2T(0 + ()| < capnt ™' ((MS());,(0) + MAF)(O) + ME(TFO)).

x| <t

Proof Leta € G()) be the multiplier of T. We set ¢ = gx 10:(f). By the same reason as in
the proof of Lemma 3.3 (b), the formula

Te = (ap)” with ap e L

holds for ¢ = f,g, and @ + h (noticethat 0 + h € Sand 0+ h = f —g L Pg). We
decompose T(6 + h) as

T +h) = ($:€)a(©)f(€)” — (€)a(©)(©))
N v N \%
+ (1= 069)a©0©) -+ (1 - 69)a©h(e))

=I-II+0I+1V.

The functions I and II are C*° since these are inverse Fourier transforms of compactly
supported L' functions. The functions III and IV are also C* since these belong to .
Therefore T(0 + h) is C*°.

In the rest of the proof, we shall estimate the derivatives of I, II, III, and IV separately.

Estimate of 0® 1(x) We can write

1= (6GO(TN€)" =26 (2) = (Th)

o100 = (1f, i @ () ).

If |x| < ¢, then, as is easily seen,

and thus

L (e ("T_) € cact™ T, (0,1)

tlal
for every e > 0, where ¢, . can be taken independent of x so long as |x| < t. Hence, by (2.6),
10°1(x)| < cot1MIM(TF)(0) for |x| < t.
Estimate of 0“11(x) Firstassume (K+1+n)/n > 1/p > max{1l, \/n}. By Lemma 3.1 (b)
and Lemma 3.2 (b), we see that g € H? and

gl = oMy (&)l p50.300) = oM ()l p5c0.400)-
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Hence
GO < cpllgllme €17~ < cpIMEP 0,100 €]

Thus
10° 1) = ’ / (2mi€)* Gt)a(€)(E)e™ de
< / |2mig)a(€)g(€)] de
[€]<2/t
< CP@/ |§|‘al_/\_'—n/p_n”M?n(f)||p,B(0,40t) dg,
|€]<2/t

which implies

(3.6) 0% TL(x)| £ capIMOH | 50401 B0, 400)[7V/P (Vx € RY).

The estimate (3.6) holds also for p with max{1,A\/n} = 1/p = 0 because, except

for the constant factor, the right hand side is a nondecreasing function in p (by Hoélder’s
inequality).
The estimate (3.6) clearly implies

0% TL(x)| < copt 1 (M;(f));p(m (Vx € R").

Estimate of 0° I1I(x) By Lemma 3.2 (c), we have

VB9 < 198 < n—|6| 0
(e H(E) < [0%0]1 < s ind MO(P)

Hence

) < n—L —L 0
10| < ert" ¢ B(}){igt)Mm(f)

for every L € N. Thus

or o) = (1 - pt)a@b© rier) )|
= /I5 - |a(§)f(€) 2mi6)* | de
= Cﬂ»Ltn_L /5>1/t ‘5|_>\+|a|_L “ B(%)I,}lgt) Mgn(f)
Taking L sufficiently large, we obtain

|0° I (x)| < cot* 1 inf MO(f)  (Vx € R"),
B(0,40t)
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which a fortiori implies

—lo| 0 *
|0 TL(x)| < capt ™11 (MO ( N5, 0 (vxeR).
Estimate of 0* 1V (x) Using A; of Lemma 3.5, we can write 9® IV (x) for |x| < t as

BV (x) = /(At)(“)(x ) (1 — % (llm)) F(y) dy.

If |x| < ¢, then using Lemma 3.5 we see that

AW (1-6 (3-)) € cact T 0,0

for every € > 0. Hence by (2.6) we have
09IV (x)| < et MMA(F)(0)  for |x| < t.
Combining the estimates of the derivatives of I ~ IV, we obtain the estimate as stated

in Lemma 3.6. Lemma 3.6 is proved.

Lemma 3.7 Let A be defined by (1.3) with (1.4). Let N € NU{0} and 0 < ¢ < oo. Suppose
A satisfies the vanishing moment condition up to order N — 1. Let f; € L (j = 1,...,k)
and suppose supp f; C B(0,t) and f; L Px with

K=N+n+2+max{[A]]|[oc €A, j=1,... k}.

Letp € T(0,1). Letr] ands‘} (c € A, j=1,...,k) bereal numbers such that1 < 7 < 00,
0=57 <oo Z];:l 1/17 =1, and Zl;zl 9 = N. Finally let m € NU {0}. Then

k
<> T IMe ()l o0,

oceA j=1

‘/wA(fl,.-.,fk)

where 1/v; = 1/r] +s7/n+ A /n.

Proof By Lemma 3.1, we can decompose f; as f; = >_:°| bj; with the series converging in
HP for 0 < 1/p < (K + 1+ n)/nand with bj; such that

||bji||oo =aj <00, supp bj,‘ C Bj,' = B(Wji,pji) C B(0,2t), bji 1 Pk,

and

(3.7) D ajixs, (%) £ M (f;)(x)  (Vx €R").

i=1
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By the boundedness (1.2), we have T7 f; = > T7bji with the series converging in H
for0 < 1/q < (K +1+n— X7)/n; in particular it converges in L? for every sufficiently
large g < oco. From this it follows that

L L
A(fla-"vﬁc):L&I&Z"'ZA(blin“-vbkik)

i=1 ir=1

with the convergence holding with respect to L1-norm for every sufficiently large g < oc.

Hence . .
Jeathoofo = tim 3737 [ oAb b,

=1 Q=1

Therefore we have

(3.8) ’ [t

§iz

Lyeeoslk

/@A(bm, ooy b))

For the moment we shall estimate each term on the right hand side of (3.8), which we
shall simply write as

’/W\(bl,---,bk)
with ||bj||cc = aj < oo, supp b; C B(wj, pj) C B(0,2t),and b; L P.
We assume p; = min{pi, ..., px}-
We first observe that
(3.9) /PA(bl, cooyb) =0 forallPe Py_.

This can be deduced from the vanishing moment condition on A by a limiting argument;
here we omit the limiting argument but prove that PA(by, . .., by) is integrable for all P €
Pn_1. Indeed, using Lemma 3.3, we see that A(by,...,b) € LllOC and A(by,...,b)(x) =
O(|x| =) as |x| — oo with

k
M= ﬁaﬁ{;([xy] ~K-m}<-(N-1D-n,

from which the integrability of PA(by, .. ., by) for P € Py_; immediately follows.
We take P as follows: If N > 0, then let P be the degree N — 1 Taylor polynomial of ¢
expanded about wy; if N = 0, then let P = 0. Then, using (3.9), we have

‘/@A(blyabk)

_ ‘/(go—P)A(bl,...,hk)

< Z/|¢—P||T;’b1\-~-\szk|

ocEA

écZ/t‘“‘N\x—wllN\T?b1|~-~\szk|dx

oEA

https://doi.org/10.4153/CJM-2000-018-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-018-2

Hardy Space Estimate 397

(\T;-’bj| stands for |(T}’bj)(x)\). Since B(wy, p1) C B(0, 2t), we have

X X—w
(3.10) 1+H§C(1+| 1>.

t P1
Also, since 2t 2 p; = min{p;} and since s7 >0and sy +---+s7 < N, we have
(3.11) VY ST E T

Using (3.10) and (3.11), we have

t7n7N|x —w ‘N

N
<t (1 2
P1

|x| —n—1 - |x —w ‘ N+n+1 o ”
e S (1 + —) oy (1 y 2 > 07 - ~-p;".
t P1

Putting the above inequalities together, we obtain the following estimate: If p; = min{p;},

A

then
‘/@A(bh;bk)
< Zt nes] =g — s /(1+| |)n1 . <1+|x—w1>N+n+1|Tgb|
¢ ! - P e 1
ceA t 1 P 1

X 5 [T bal -+ pif | TZ by dix.

We now apply the above estimate to those terms in (3.8) for which p;;, = min{py;, ...
Pki, } and take the sum of those terms to obtain

—n—1
L X
DRI RCTCTRRSI ET ST /(1+¥)

plllzmin oA

—w | N+n+1
1i o
(Zp (Bl bn-|>

(S} (Sl

= (%).
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Definer’ by 1/r' =1— ZI;':1 1/r7. Then, using Holder’s inequality, Lemma 3.4, and (3.7),

we obtain
G
1+ 2
t
r/

—w | N+n+1
( e LY
P1i

Hzp |Tab21 Hzp |Tabk1
§ CZ t*ﬂ*S‘f*S?*"'*Sﬁ+ﬂ/7‘/

ocEA

oo o0

X H E aliXB”H H g ki X By;
i=1 i i=1 %
1= =

(1) ey e

oceA

-
n

A

k
e TTe7 7 IMp () llve o2

ceA j=1

The same estimate holds also for the sum of the terms of (3.8) with p,,;, = min{py,,,
.y pii, y foreverym € {2,.. . k}. Lemma 3.7 is proved.

4 Proof of Theorem, Part (a)

We shall prove the part (a) of Theorem.
We use the following notation: For T € K(\), f € 8y,0 < p < oo, and m € NU {0},
we write

Gulf, T, p) = (My(N)}, + Ma(f) + My (TS).

We also write
N=[n/q—n]+1

(g is the number as mentioned in Theorem).
In order to prove the part (a), we shall prove that there exist v}’ (c € A, j=1,2)such
that

(4.1) 0<v;-’ < pj

and that the pointwise estimate

2
(4.2) MY (AR, £))@) S e Y [[Gulfin TS vD(x) (vx € RY)

c€EA j=1
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holds for all fi, f, € 8 and for every m € NU {0}. In the sequel we shall write

F] = Gu(fj, T7 V).
Once the estimate (4.2) is obtained, the desired H? estimate can be derived in the fol-
lowing way. We choose m € N U {0} so large that m > max{n/p; —n | j = 1,2}. Then
(2.3), (2.4), (2.5), and (1.2) give

_1 XN

1
G p; n

17l < ellfillges with

Hence (4.2) and Holder’s inequality give

IACH, Sl < el MR (AR, ), S € D0 IF Nl I1FS g < ell fullan || sz

oceA

which is the desired estimate.
Since 1/p; — A9/n > 0 and

1A 1 A 1 N
— Lt - -2 =<+ —,
p1 n. p n q n

1 1 1
0<r_"<1’ r_"+r_”§1’ 0=s7 <oo, sT+s]=N,
] 1 2
| 1 A
and —”+—]> L.
9on " pj n

Asin Lemma 3.7, we define v§ by 1/v§ = 1/r7 + 57 /n + A] /n. Then (4.1) is satisfied. We
shall prove the estimate (4.2) with these v;f'.

By translation it is sufficient to prove (4.2) for x = 0.

Let ¢ € T3(0,1). We shall estimate [ @A(fi, f2). As in Lemma 3.7, we set

K=N+n+2+max{[X]]|o €A, j=1,2}.

We decompose f; € 8y (j = 1,2) as

(4.3) f] =gj + Uj
with
(4.4) gi = gra0e(fi)y  uj = Oxa0:(f7) + hi10:(f7)-
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We have

/cpA(fl,fz) =/soA(g1,gz)+/<pA(g1,uz)+/<pA(u1,gz)+/50A(u1,uz)

=I1+II+1OI+1IV.

Estimate of I By Lemma 3.7 and Lemma 3.2 (b), we have

2
1] < CZ Ht_"/r?_s?|\M21(gj)|\v;,3(0,40t)

o j=1

2
<y TTe7 2 IM () oo

o j=1

2
=253 | (AT IS

o j=1

Estimate of 11 By Lemma 3.6, we have
wTTu, € cFé’(O)‘J’ﬁ,(O, t)

for each o € A. Hence, by Lemma 3.7 with k = 1 and by Lemma 3.2 (b), we have

} / @(T7g) (TS uy)| < cF5(0)t =<1 M0, (g1) |lve 50,400

< cFg(0)e "/ 1My, (f)lv Bro.400)
< B3 (0) (M) - ()
for each o € A. Therefore

<) (M) . (OF5(0).

oc€EA

Estimate of 111 In the same way as in the estimate of II, we obtain

(UL S ¢ FO)(M(f))), , (0).

cEA

Estimate of IV By Lemma 3.6, we have, for each o € A,

p(T7un)(T3u2) € cFY (0)F3 (0)TR(0,1)
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and hence

‘ / (T 1) (TSus)| < cF7 (0)FS (0).

Thus

[TV < ¢ F{(0)F(0).
oA

Combining the estimates of I ~ IV, we obtain

<c ) F(0)F(0).

ocEA

‘/SOA(fufz)

Since this holds for all ¢ € T%(0,1), 0 < t < oo, we have (4.2) for x = 0. The part (a) of
Theorem is proved.

5 Proof of Theorem, Part (b)

Throughout this section we write X = {1, ..., k}.

In order to prove the part (b) of Theorem, we first rewrite the operator A. Let A be
given by (1.3) with (1.4). For each j € X, take a maximal linearly independent subset of
{T? | 0 € A} and denote it by {S’] | i=1,...,L;}. (Here the linear independence refers
to that in the linear space of all the linear operators 8y — 8; for operators in [ J, ., K(\),
this linear independence is the same as that of the corresponding multipliers in the linear
space C*°(R" \ {0}).) Then, for each j, T? can be written as a linear combination of

{Sj- |i=1,...,L;} and thus A can be written in the form as

(5.1) Ao fi) =D b(S{V i) ({1 fo),
TEB

where

(5.2) B={r:X=>N|7(j) = Ljforall j € X}

and b, are complex numbers. Let ,LL? be the number such that

(5.3) S} € K(u').
We set
(5.4) frj = max{,u? |i=1,...,Lj}.

Let ] be a subset of X and let ] = {ji,..., ju} with j; < -+ < j,,. Then we use the
following notations: | J| =m, ] =X\ ],

By = {p: J = N| p(j) £ L; forall j € J},
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and, for fi,..., fx € 8o,
f;=(fir, -5 fin)
Now let A be written as in (5.1)—(5.2). Suppose J is a subset of X with 1 < |J] £ k — 1.
We can write A as ‘
Ao = 3 [T 5] Ader

pEB, ]6]

VAR DI | (SR

reBr|J=p JEF

with

We call AJ the (J, p)-cofactor.

Lemma 5.1 Let A be given as in (5.1) with (5.2), (5.3), and (5.4). Suppose all S? are ho-
mogeneous operators. Also suppose A satisfies the vanishing moment condition up to order
K, K € NU {0}. Then the cofactor A/]) satisfies the vanishing moment condition up to order

K — m, with
my = [ (0 — )]
j€J

Proof We shall give the proof for the case k = 4 and J = {1,2}. The argument can be
applied to the general case without essential change.
Let a; denote the multiplier of S}. We write

A€1,6,6,8) =Y _ ba]V(€)a] P (&)a] " (&)a] Y (&)

TEB
=Y V(€5 (€A, (&, ),
pEB,
where
A&t = Y ba]?(&)a] V(&)
TEB,T|]J=p
We shall simply write

Ap(a)(§37£4) = 05, Ap(&5,64).

As we saw in Section 2.2, the vanishing moment condition of A which is assumed in the
lemma is equivalent to this condition (M): If &;,...,& € R*"\ {0} and §; + &+ &+ &, =0
and if |a| £ K, then

DAL 66,80 = Y afV (€A (L)AL (&,6) = 0.
PEB,
Also the vanishing moment condition of A,ﬁ which we are going to prove is equivalent to
this condition (M*): If &,& € R"\ {0} and & + & = 0 and if || < K — m,, then
A, (&5, &) = 0, where m, = [fin + i, — pf" — pf™V]. We write

f=pn+fn and p,=pf" 2 (pe B)).
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Thus m, = [t — p,].

Theset E = {u, | p € B;} isafinite set of real numbers in which the maximum element
is f1. We shall prove (M*) by an induction on this set E.

First we shall prove (M*) for those p € Bj with p1, maximum, i.e., with 4, = fi. For
such p, we have m, = 0.

Let &, & € R\ {0} and & + & = 0 and let a be a multi-index with |a| < K.

Take arbitrary &, & € R"\ {0}. Then for all sufficiently small € > 0, the condition (M)
implies

> V() ()AL (&, 6 — €61 — €6) = 0.
1 2 P

PEBy

By the homogeneity of a}, we have

(5.5) 3 etV (E)as? (€)ALY (&, & — €61 — &) = 0.

PEBy

We multiply (5.5) by € and take the limit as e — 0. Then, since f1 = max{fx,}, we get

S aAfMEaP (&)A€ = 0.

PEB pp=pt

Since the last equality holds for all £}, &, € R™\ {0} and since the functions a (¢;)a;(£,)
are linearly independent, we have Aﬁf‘) (&3,&4) = 0 for each p € Bj with u, = f1. This
proves (M*) for p € B with p1, maximum.

Next, we assume (M*) holds for all those p € B with p, > v and shall prove (M*) for
p € Bjwith 1, = v. Here v is an element of the set E.

Fix & and &, such that &, &, € R\ {0} and & + &, = 0. Also fix a multi-index « such
that |a] £ K — [t — v]. What we have to show is Aﬁf‘)(@,&) = 0 for each p € B; with
Wy = V.

As above, the equality (5.5) holds for all £;,& € R” \ {0} and for all sufficiently small
€ > 0. For the moment, we shall simply write 67“#/&67 » to denote each term on the left hand
side of (5.5), i.e.,

e A, = e alV(€)aS P (LA (&, & — ebr — €&).

We multiply (5.5) by €” and take the limit as € — 0.
For p with u, = v, we have, clearly,

A, — aV(€)aP (E)AN (&, ).

We shall show that €/ ~#A, , — 0 for p € B with y, # v. Since this is clear when p1, < v,
it is sufficient to consider the case p1, > v.

Suppose p, > v. The induction hypothesis implies that Ap(m(&, &) = 0for |B] <
K — m,. Hence, by Taylor’s formula, we have

A (&5, 8 — ety — e&y) = O(e et el
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(This estimate holds even if || > K — m,, since in this case the estimate is weaker than the
obvious estimate O(1).) Thus

ezlf,u/,AE , = O(6K+1+Vf,uﬂfm,,7|a|)‘
This implies e’ ~* A, , — 0 since
lo| S K- [p—v]<K+1—p+v<SK+1+v—p,—m,
Thus

€ x (the left hand side of (5.5)) — Z a’f‘”(51)a§‘2)(§2)A(p“)(§3,54).
PEB  pp=v
Therefore we obtain

> VP (&)AN (&, &) = 0.

PEB,pp=v

By the linear independence of the functions a} (¢; )aﬁ(fz), we have Aff“) (&,&4) = 0 for each
p € Bjwith 1, = v, as desired. Lemma 5.1 is proved.

Proof of the Part (b) of Theorem The main idea is the same as in the proof of the part (a).
We write A as in (5.1) with (5.2), (5.3), and (5.4). We also write

B* = {r € B| b, £0}.

The conditions (1.5), (1.6), and (1.7) can now be written as follows:
k .
Z,u;(]) =\ foreveryT € BX,
i=1
1 i .
oo > — > — foreveryj€X,
pj n

7(j)
1 i 1
E (——’u]—>:— for every T € B*.
i q

= \Pi

As in Section 4, we write N = [n/q — n] + 1.
We shall prove that there exist real numbers v} (1 € B>, j € X) satisfying

(5.6) 0<vi<p; (T€B*,jeX)

with which the pointwise estimate

k
(5.7) MY (A f) @) S e D (bl [T Gun(F ST 07 (0

TEBX j=1
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holds for every m € NU {0} and for all fi,..., fi € 8. (As for the notation G,,(-,-,-),
see Section 4.) By the same reason as in the proof of the part (a), this pointwise estimate
implies the desired HY estimate.

By translation invariance, it is sufficient to show (5.7) for x = 0. We set

K =N+n+2+max{[f;] | j € X}.

We decompose f; (j € X) asin (4.3)—(4.4). Let p € T9%(0,t). The integral

[ o,

which we shall estimate, can be written as the sum of 2 terms each of which is the form

/SOA(flaafk) Wlthf]:g]oru]

We shall estimate each term separately.
We shall prove that for each one of the above 2* terms we can take Vi (reB*,jeX)
satisfying (5.6) and

‘/ WA(fi,..., fi)| £ (the right hand side of (5.7) with x = 0).

Our (v}) may be different for each term; i.e., our (v]) may depend on the set {j e X|
f]- = gj}. This, however, is sufficient for our purpose. Indeed, the maximal function

(MO,

can only be bigger, except for a constant factor, when one replaces v7 by a bigger number
(by Holder’s inequality). Hence we have only to fix v}, for each (7, j), to be the maximum

one of the possibly 2* different vis.

First we shall estimate the term with f] = gj forall j € X. We can choose ] and s}
(t € B*, j € X) such that

T T =
T i T im1
and — + s —
j n Pj n

We define v7 by 1/v] = 1/1] +s§/n+,u;(j)/n (reB*, jeX).
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Then (5.6) holds and, by Lemma 3.7 and Lemma 3.2 (b), we have

k
<c 3 I [T IM (£ s mioaon

TEBX j=1

‘/soA(gl,...,gk)

k

<c Z |b-] H(Mgl(fj)):?j>7v;(0)-

TEBX j=1

Next we estimate the term with f] = ujforall j € X. We take v; such thatn/(K+1+n) <
v} < p;. Then, by Lemma 3.6, we have

k
oA, w) € ¢ S Jbel [ [T G517 7800,
j=1

TEBX

and hence

k
< 3 b [ Gt £, 87V v0)00).

TEBX j=1

’/@A(H],...,uk)

Finally we estimate the terms with f; = u; for some j € X and f; = g; for some
other j € X. As a typical example of such terms, we shall treat the case where k = 4 and
(A, f25 f3, fa) = (u1,u2,83,84). (General case can be treated in a similar way.) We write
J=1{1,2}.

We can write

2
A1, 12, 85,81) = @[H(Sf(j)uj)} Al(gs,80)-

pEB;  j=1
Fix a pE B].
By Lemma 3.6, we have
(5.8) e T168w) € e[ TT Gut £ 87, @] 780,11,
i=1 j=1

where we take p’ such that n/(K + 1+ n) < p// < pj.

By Lemma 5.1, the operator A,ﬁ satisfies the vanishing moment condition up to order

N —1—m,where m, = [fi1 + fi, — ,uf(l) — ,u'f(l)]

(b), the estimate

. Hence, by Lemma 3.7 and Lemma 3.2

4
Sc > blJTe

TEBX 7|]=p j=3

(5.9) ‘/¢A£(g3,g4) M%(fj)”v},B(oAOr)
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holds for all ¢ € T%(0, t) and for s,V (T € B>, 7|] = p, j = 3,4) satisfying

(5.10)

(5.11)

and 1/v] = 1/r;+s§/n+u§(j)/n.
If 7 € B and 7|] = p, then

We have

Hence, for 7 € B* with 7|] = p, we have

4 7(7)

1 i N —
S (=-5)<ae

pj n

j=3

1
0<F<
J

L
1, Zr—T
j=3 '

A

L,
j=3

4
0< 57 < 00, Zs; < max{N — m,,0},
=3

mp

Therefore we can choose 77 and s7 (1 € B*, T|J = p, j = 3,4) which satisfy (5.10)
and (5.11) and also satisfy 1/r7 +s7/n > 1/p; — u;(j)/n. Choosing r] and s7 in this way,
wehave 0 <vi < p; (1 € B, 7|]=p, j=3,4).

Now, using (5.8) and (5.9), we obtain

2
‘/@[H(Sﬁ(”uj)} Mg, g)
j=1

2
< e|[LGntfi- S, p00)]
j=1

A

2
e\ I1 G587, )]
j=1

[IA
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TE€BXT|]=p

4
G g7
Yo b T " IM )l sioaon

j=3

4
> \bTIH(M&(fj)):;mW;(O)

j=3

(the right hand side of (5.7) with x = 0).
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The part (b) of Theorem is proved.

Remark In the arguments of this section, the homogeneity of T7 was used only in the
proof of Lemma 5.1. Therefore the part (b) of Theorem still holds if we replace the assump-
tion “all the operators T7 are homogeneous” by the following assumption: A is written as
in (5.1) with (5.2), (5.3), and (5.4), in which each cofactor A£ with 1 < |J| £ k— 1 satisfies
the vanishing moment condition up to order

] e

1 j€J

6 Examples

In this section we give some examples of the operators A of Theorem with A = Zk-: P A >
0. Examples with A = 0 can be found in [CRW, Theorem II], [M1], [CLMS], [CG],
and [G].

Example 1 (Product of functions in Sobolev spaces) For 0 < p < coand m € N, let
WP be the set of all those f € D’(R") for which 9% f € H? for all multi-indices « with
|| = m. We shall consider the case m/n < 1/p < 1+ m/n. In this case, if f € W™, then
there exists a unique polynomial P¢ € P,,_; such that f — Pf € Liwith1/q=1/p—m/n
and

(6.1) If = Prlla < ¢ Y 110 fllmo

|a|=m

(see, e.g., [M4, Theorem 4.3 and Section 1, Remark (1°)]). We define W(f"m as the set of all
f € W™ with Py = 0.

Suppose f € WE" and g € W' with 1/n < 1/p; < 1+1/n (i = 1,2). We set
1/qi=1/p; —1/n(i =1,2)and 1/r = 1/p; + 1/p, — 1/n. Then formal application of
the Leibniz rule and Holder’s inequality, together with (6.1), gives

10;(f@)llr = 1(0; g + fO58ll = c([10fllpy lIglla. + 1 fllas 105]1p.)

< (Z 10l ) (Z |08l

Thus we may well expect that 9;(fg) € L". If r 2 1, this is indeed true (rigorous proof is
easy). But, in the case r = 1, we have in fact a stronger conclusion that 9;(fg) € H'.

More generally, the following is true: If m € N, m/n < 1/p; < 1+m/n (j = 1,2),and
1/r=1/p1+1/py—m/n < 1+m/n,andif f € W' and f, € W[*", then ff, € L] _
and fi f, € W™ and

(62) S0l = e( 30 10 fillam ) (D2 07 flln)-

|a|=m |a|=m |a|=m
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For this fact, see [F], [M3, Theorems 1.1 and 4.1], or [SiT].
Now, apart from limiting arguments, the above fact is a consequence of our theorem. To
see this, assume fi, f, € §¢ and set

Fi = |V|"f; = (|27€]"f;(€))" (j=1,2).
Then Y
fi = IV|7"Fj = (|2x¢]~"F;(9))

and

1Ei Nz = V1" fillzs = D 110% il

la|=m
For |a| = m, the derivative 9°(fi f,) can be written as

i =3 (5)@ e
fa

=3 (g) (0°|V| " F)(0* P |V |~ Ey),
Bl

which is the form A(F;, F,) with a bilinear operator A of (1.3)—(1.4). This A satisfies the
condition (1.5) with A = m and also satisfies the moment condition

A(F), F) =0%(fif) LPur (Jaf =m).

Hence our theorem gives the estimate (6.2).
In the following examples, we give general methods to define the operator A satisfying
the vanishing moment condition.

Example2 Leta; € G()}),0 < X\j < oo (j = 1,...,N). Define the bilinear operator A
by

N
(AF.9)"© = [t = maon T[ (a6 =) = ay-m) dn

j=1

for f,g € 8. Itis easy to see that A is of the form (1.3)—(1.4) and the assumption (1.5)
is satisfied with A = Z?j: L Aj. Itis also easy to see that A satisfies the vanishing moment

condition up to order N — 1 (observe that the integrand in the above integral is O(|£|V) as
£ —0).
This operator was treated in [M1] and [M2] under the restriction 0 £ \ < n.
Example 3 Suppose A is defined by (1.3). If there exists a closed half space
E={¢cR"|u 20}, ueck"\{0},

(where u€ denotes the usual inner product of two vectors in R") such that all the supports
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of the multipliers of T7 are included in E, then A satisfies the vanishing moment condition
of all orders. This can be easily seen by checking the condition (2.2).

Example 4 For integers i, set
Di={(cR" |27 S ¢l <2
Take A, B € N such that A > 10B and B > 10. Set

E,= |J D (m=1,..10).
i=mB (mod A)

If A is defined by (1.3) with k < 10 and if the support of the multiplier of T7 is included in
Ejforevery o € Aandfor j = 1,...,k, then A satisfies the vanishing moment condition
of all orders. This is also easily checked by means of the condition (2.2).

To the above A, the part (b) of Theorem in its original form can not be applied except
for the trivial case A = 0, since homogeneous operator T7 7 0 does not satisfy the above
support condition. But, the modified (b) as given in Remark at the end of Section 5 can be

applied.
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