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A PROBLEM OF GELFAND ON RINGS OF OPERATORS
AND DYNAMICAL SYSTEMS

ROBERT R. KALLMAN

0. Introduction. Let G be a separable locally compact group (separable
in the sense that the topology of G has a countable base). Let S be a standard
Borel space on which G acts on the right such that:

(1) s-g1g2 = (- g1) - g

(2) s-e=s;

(3) (s,g) — s gisa Borel function from S X G to .S.

If u is a Borel measure on S, let u, be the Borel measure on S defined by
uo(E) = u(E - g).

Let u be a Borel measure on .S which is quasi-invariant under the action of
G; i.e., p, and u are absolutely continuous (g € G). The triple (G, S, u) is
called a dynamical system [11; 8].

Consider the following general problem. Let (G,.S, u) be a dynamical
system. G has a natural strongly continuous unitary representation V' (g) on
L2(S, u) given by

d[l. 1/2

(V(g)f)(s) = f(s- g)(ﬁ (8)>

(see [9]). For ¢ € L®(S, u), let M, be multiplication by ¢ on L2(S, u). Let
R(g) be the right regular representation of G. Form the Hilbert space
S = L*(G) ® L2(S, u) and look at the von Neumann algebra % (G, S, 1) on
S generated by R(g) ® V(g) and I @ M, (g € G, ¢ € L™(S, u)).

(%) Problem. What is the type of this von Neumann algebra?

Many results on this general problem were given by Dixmier in [3]. The
algebras Z (G, S, u), for G discrete, were intensively studied by Murray and
von Neumann in their classic papers [12; 13; 14]; cf. also Dixmier (4, pp. 127—
137].

The problem (x) is of interest in the classification of dynamical systems.
Two dynamical systems (G, S1, u1) and (G, Sy, ue) are said to be isomorphic
if there exist: (1) G-invariant Borel subsets S/ C S; (z = 1,2) such that
wi(S; —S/) =0; (2) a Borel isomorphism y¢: Sy — S»’ such that u, - ¢!
and ui’ are absolutely continuous (i’ is the restriction of u; to the Borel
subsets of Si’); and (3) ¥(s-g) = ¢¥(s) - g (s € S/, g € G).

One may easily check that if (G, Si, u1) and (G, Ss, u2) are isomorphic
dynamical systems, then % (G, S1, u1) and # (G, S,, u2) are unitarily equi-
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valent. Hence, given a dynamical system (G, S, u), the Murray-von Neumann
type of Z (G, S, u) is an isomorphism invariant.

In a survey on functional analysis [5], Gelfand posed the problem (%) for
two cases of special interest. In the first case, G = R! and S = circle group =
RY/Z'. In the second case, G = SL(2, R!) and S = SL(2, R')/SL(2, Z1).
Notice that in these two special cases S = G/H for some closed subgroup
H of G. Denote by (*x) the sub-problem of () in case S is a quotient space
of G. The main result of this note is to reduce the problem (%) to a more
tractable problem. This reduction is accomplished in an easy manner using
well-known results of Mackey of systems of imprimitivity. Using this reduc-
tion, it is then a simple matter to give a complete solution of the problem (sx)
in the cases of interest to Gelfand.

1. A Problem of Gelfand. In what follows, G is a separable locally compact
group, H is a closed subgroup of G, and G/H is the set of right H-cosets with
the quotient topology. There is a unique quasi-invariant measure class on
G/H [9]. Let u be an element of this measure class. Then (G, G/H, ) is a
dynamical system.

If Z is a von Neumann algebra, then %’ is the commutant of Z. If K is
a locally compact group, % (K) denotes the von Neumann algebra generated
by the right regular representation of K.

The main result of this note is the following theorem.

TueoreM 1.1. # (G, G/H, u)’ s algebraically x-isomorphic to X (H). In
particular, if R (H) has components of type 1, 11, or 111, then X (G, G/H, u)
also has components of type 1, 11, or I11.

Let #Z and ¥ be von Neumann algebras. Recall that if # and ¥ are
algebraically *-isomorphic, then # and . have the same type. Recall also
that Z and %’ have the same type. Hence, the last statement of Theorem 1.1
follows from the first statement.

The first statement of Theorem 1.1 will be proved in a sequence of lemmas.

If W is a strongly continuous unitary representation of 5, denote by
U% the representation of G induced by W [9]. Let 5 be a separable Hilbert
space and (S, u) a standard Borel measure space. Let L2(S, u,5#) denote
u-equivalence classes of all weakly measurable functions f: S —.# such that
[If(s)]|? is mw-summable. Recall that the map x ® f(s) — f(s)x extends to a
unitary equivalence between S ® L2(S, u) and L2(S, u,5¢). Of particular
interest is the case S = G/H. In this case, L*(S, u,5#) may be identified with
all equivalence classes of weakly measurable functions f: G —J# such that f
is constant on right H-cosets and ||f(g)||? is summable on G/H.

LEmMA 1.2. Let R' (k) be the right regular representation of G restricted to H.
Then R(g) ® V(g) is unitarily equivalent to UF' (g).

Proof. The proof of this lemma merely consists in checking the proper
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definitions. R(g) ® V(g) acts on the Hilbert space L%(G) ® L2(G/H, u),
which, as noted above, is unitarily equivalent in a natural manner to
L2(G/H, u, L*(G)). Let f be a typical element of L*(G/H, u, L*(G)), i.e.,
f: G— L?(G) is weakly measurable, is constant on right H-cosets, and
[|f(x)]|? is w-summable on G/H. Let m: G — G/H be the canonical quotient
mapping. In this representation,

1/2
®@) ® V&) = Ry (2 (ro)

m

Recall that S£(U?) = [g: G — L*(G), g weakly measurable, and g(hx) =
R'(h)(g(x)) (h € H,x € G)].
Define a unitary mapping T: L2(G/H, u, L*(G)) —#(U®') by

(Tf)(x) = R(x)(f(x))-
T has its range in 3 (U®’) since
(Tf) (hx) = R(hx)(f(hx)) = R(R)R(x)(f(x)) = R(h)(Tf) (x).

Hence,

1/2
(T7U¥ @TH @ = REH U @TF) ) = R (TN (xa)(‘fl—‘: (m (x)))

1/2
= R(x YR (xa) (f(xa))(%f W(x))>

1/2
- R Ge(2 () " = R © V@G
Next, note that R(g) ® V(g) and I ® M, form a system of imprimitivity

for G based on G/H.

Lemma 1.3. Z (G, G/H, p)’ is algebraically s-isomorphic to the von Neumann
algebra generated by [R'(h)| h € H].

Proof. This follows immediately from the imprimitivity theorem [10 or 1]
and Lemma 1.2.

LemMMA 1.4. The wvon Neumann algebra generated by [R'(h)|h € H] is
*-isomorphic to X (H).

Proof. We apply [9, Theorem 12.1] with G; = (e¢), Gy = H, and L the
one-dimensional representation of (e¢). Hence, R’(%) is a direct integral of
representations of H, each unitarily equivalent to R(%). The lemma now
follows from [4, p. 173, théoréme 2].

Theorem 1.1 now follows by combining Lemmas 1.2-1.4.

Now some applications of Theorem 1.1.

https://doi.org/10.4153/CJM-1970-058-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-058-x

RINGS AND DYNAMICAL SYSTEMS 517

Let G be an arbitrary separable locally compact group and H = (e). Hence
X (G, G, w)' is #-isomorphic to % (H), which is the scalars. Hence, % (G, G, n)
is of type I. This proves [3, the last remark on p. 321].

Let G be a vector group and H any discrete subgroup. Since H is abelian,
Z (H) is of type I, and hence Z (G, G/H, u) is of type 1. This solves the first
problem posed by Gelfand.

Let G = SL(2, R') and H = SL(2, Z'). Claim that Z(H) is a type 1I;
von Neumann algebra. Let H, be the subgroup of H consisting of those
elements with finite conjugacy classes. # (H) will be of type II, if H/H, is
infinite {7, p. 253, Theorem 5]. One may check that H,, the centre of H, is a
two-element group. Since H itself is infinite, H/H, is infinite. Hence, &% (H)
is of type II;. Therefore, Theorem 1.1 shows that

& = A (SL(2, RY), SL(2, R')/SL(2, Z"), u)

is a type II von Neumann algebra. Furthermore, . has no portion of type II;.
For g — R(g) ® V(g) is a faithful unitary representation of the open simple
Lie group SL(2, R!). But an open simple Lie group has no faithful unitary
representations into a finite von Neumann algebra [6]. Hence, . is actually
a type I, von Neumann algebra.
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