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While tapered swept wings are widely used, the influence of taper on their post-stall
wake characteristics remains largely unexplored. To address this issue, we conduct
an extensive study using direct numerical simulations to characterize the wing taper
and sweep effects on laminar separated wakes. We analyse flows behind NACA 0015
cross-sectional profile wings at post-stall angles of attack α = 14◦–22◦ with taper ratios
λ = 0.27–1, leading-edge sweep angles 0◦–50◦ and semi aspect ratios sAR = 1 and 2
at a mean-chord-based Reynolds number of 600. Tapered wings have smaller tip chord
length, which generates a weaker tip vortex, and attenuates inboard downwash. This
results in the development of unsteadiness over a large portion of the wingspan at high
angles of attack. For tapered wings with backward-swept leading edges, unsteadiness
emerges near the wing tip. On the other hand, wings with forward-swept trailing edges
are shown to concentrate wake-shedding structures near the wing root. For highly swept
untapered wings, the wake is steady, while unsteady shedding vortices appear near the
tip for tapered wings with high leading-edge sweep angles. For such wings, larger wake
oscillations emerge near the root as the taper ratio decreases. While the combination of
taper and sweep increases flow unsteadiness, we find that tapered swept wings have more
enhanced aerodynamic performance than untapered and unswept wings, exhibiting higher
time-averaged lift and lift-to-drag ratio. The current findings shed light on the fundamental
aspects of flow separation over tapered wings in the absence of turbulent flow effects.
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1. Introduction

Flow separation over aerodynamic lifting bodies has been a subject of research interest for
decades, especially for small-scale air vehicles (Mueller 2001; Anderson 2010). To further
understand the post-stall wake dynamics, it is important to analyse the influence of wing
planform geometry. This characterization is challenging for high-Reynolds-number flows,
due to the multiscale nature of the wakes. Nevertheless, for massively separated flows,
the large vortex structures observed in higher-Reynolds-number flows are topologically
analogous to the core structures in low-Reynolds-number flows (Hunt et al. 1978;
Dallmann 1988; Délery 2001). To examine the fundamental aspects of unsteady
three-dimensional (3-D) flow separation, we study post-stall flows in the absence of
turbulence (Taira & Colonius 2009; Zhang et al. 2020a,b). This characterization has been
largely unexplored for low-Reynolds-number flows over tapered wings.

In aircraft design, tapered wings are used to approximate the elliptic aerodynamic
loading over the wingspan. Tapered wings are more feasible to manufacture due to their
less complex geometry compared with elliptic wings (Prandtl 1920; McCormick 1995).
The usage of tapered wings in aeronautics led to initial studies that explored the wing
taper effect, especially for high-Reynolds-number flows (Anderson 1936; Millikan 1936;
Irving 1937; Soule & Anderson 1940; Falkner 1950). For the laminar flow regime, the
effect of wing taper on the wake dynamics is critical as the local Reynolds number is
drastically reduced near the tip. For flows over wings at a chord-based Reynolds number
Rec = O(104), taper affects the aerodynamic loading with an increase in the pressure drag
(Traub 2013; Traub et al. 2015). For Rec = O(103), the aerodynamic characteristics are
affected significantly by the viscous effects and the influence of wing taper on the wakes
remains elusive, especially for massively separated flows.

Post-stall wake dynamics has attracted the attention of aeronautical researchers for many
decades. The early efforts to understand post-stall flows over wings were performed over
two-dimensional (2-D) spanwise homogeneous wings (Abbott & Von Doenhoff 1959;
Gaster 1967; Tobak & Peake 1982). Valuable insights were obtained from 2-D analysis
characterizing the behaviour of the separated laminar boundary layer (Horton 1968) and
describing the relation between vortex-shedding structures, adverse pressure gradient and
shear-layer characteristics (Pauley, Moin & Reynolds 1990). Moreover, the emergence of
wake patterns associated with 3-D separation bubbles, as predicted in topological studies
(Hornung & Perry 1984; Perry & Hornung 1984), was shown by global linear stability
analysis to arise from self-excitation of the laminar separation bubble (Theofilis, Hein &
Dallmann 2000).

The analysis of 2-D flows around canonical wings continues providing fundamental
insights into the effect of angle of attack and Reynolds number on the wake-shedding
structures (Lin & Pauley 1996; Huang et al. 2001; Yarusevych, Sullivan & Kawall 2009;
Rossi et al. 2018; Durante, Rossi & Colagrossi 2020). For separated flows, an increase in
Reynolds number and the angle of attack yields a 3-D flow field even around infinite and
spanwise homogeneous wings (Bippes & Turk 1980; Winkelman & Barlow 1980; Braza,
Faghani & Persillon 2001; Schewe 2001; Hoarau et al. 2003; Pandi & Mittal 2019). In such
cases, spanwise fluctuations emerge, producing 3-D vortices in the wake, as a result of the
growth of 3-D structures associated with secondary linear instability (He et al. 2017a).

For finite wings, 3-D wakes result from tip effects, as a strong streamwise vortex is
formed rolling up around the wing tip (Winkelman & Barlow 1980; Freymuth, Finaish &
Bank 1987; Toppings & Yarusevych 2022). While turbulence has an important influence
on the 3-D wake (Pandi & Mittal 2019), some of the core global flow structures remain
coherent over a broad range of Reynolds numbers, including the quasi-spanwise midspan
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shedding and the tip vortex (Neal & Amitay 2023; Pandi & Mittal 2023). Tip vortices
induce downwash inboard over the wing, which reduces the effective angle of attack
near the tip, even suppressing stall formation (Dong, Choi & Mao 2020; Toppings &
Yarusevych 2021) and the wake shedding for low-aspect-ratio wings (Taira & Colonius
2009; Zhang et al. 2020b). The tip vortex has been extensively studied to reveal its
influence on the wake dynamics, aerodynamic forces and pitch moments (Francis &
Kennedy 1979; Green & Acosta 1991; Devenport et al. 1996; Pelletier & Mueller 2000;
Birch et al. 2004; Torres & Mueller 2004; Buchholz & Smits 2006; Yilmaz & Rockwell
2012; Ananda, Sukumar & Selig 2015; He et al. 2017b). Beyond understanding the tip
vortex formation and evolution, a characterization of its instabilities has enabled the
development of control techniques that improve the aerodynamic performance around
finite wings (Edstrand et al. 2018; Gursul & Wang 2018; Navrose, Brion & Jacquin 2019).

Wing sweep also has a strong influence on post-stall wake dynamics. For laminar flow
regimes, a number of experimental and numerical efforts were made to examine the
effects of backward and forward wing sweep (Yen & Hsu 2007; Yen & Huang 2009;
Zhang et al. 2020a) and identify global modes (Burtsev et al. 2022; Ribeiro, Yeh & Taira
2023b) that give rise to fundamental global coherent structures of flow separation around
swept wings. It is noteworthy that some of the wing-sweep effects on laminar post-stall
flows are topologically analogous over a wide range of Reynolds numbers. For instance,
for low-Reynolds-number flows over swept wings, some of the core coherent structures
emerging in the near wake, such as the ‘ram’s horn’ vortex and the canard leading-edge
vortices, were also identified in experiments performed at higher Reynolds numbers (Black
1956; Breitsamter & Laschka 2001; Neal et al. 2023a). Moreover, the stabilizing effect of
the sweep-induced spanwise flow on the wake structures, which significantly impacts stall
characteristics, as observed at low-Reynolds-number flows (Zhang et al. 2020a; Ribeiro
et al. 2022, 2023b), is further noticed in both experiments and high-fidelity large-eddy
simulations performed at a higher-Reynolds-number regime (Harper & Maki 1964; Visbal
& Garmann 2019).

The aforementioned studies highlight the importance of the low-Reynolds-number
post-stall wake characterization for revealing fundamental aspects of the unsteady 3-D
flow separation physics. In fact, the insights obtained from studies of post-stall laminar
flows have been important for expanding our knowledge of the stalled flow physics over
a wide range of Reynolds numbers. Thus far, however, most studies have not considered
wing-taper effects on low-Reynolds-number flows at high angles of attack. Only recently,
a combined experimental, numerical and theoretical effort has been initiated towards
the understanding of the laminar flow over tapered wings in post-stall flow conditions
(Burtsev et al. 2023; Neal et al. 2023b; Ribeiro et al. 2023a). Effects of taper have
been analysed for planforms with tubercles to analyse swimming of whales (Wei, New
& Cui 2018), for flows over tapered cylinders (Piccirillo & Van Atta 1993; Techet, Hover
& Triantafyllou 1998; Valles, Andersson & Jenssen 2002) and for separated wakes over
tapered plates (Narasimhamurthy, Andersson & Pettersen 2008). For wing planforms with
continuously variable chord length over the wingspan, delta wings have also received
substantial attention (Rockwell 1993; Gursul, Gordnier & Visbal 2005; Taira & Colonius
2009). For laminar post-stall flows, wing taper was studied using trapezoidal plates (Huang
et al. 2015). Nonetheless, there still is a lack of fundamental studies for understanding the
role of taper ratio, and how it interplays with leading-edge (LE) and trailing-edge (TE)
sweep-angle effects for massively separated laminar flows.

For laminar separated flows, the combined effect of wing taper and sweep remains
elusive. In the present work, we aim to reveal the effects of taper in the laminar wake
dynamics and the influence of LE and TE sweep angles on the vortical interactions through
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a comprehensive campaign of direct numerical simulations of 3-D flows over finite NACA
0015 wings. We characterize the stalled wakes of wings with backward-swept LE and
forward-swept TE, identifying the combined effects of taper and sweep on the post-stall
wake dynamics. Our work is organized as follows. In § 2, we present our wing planform
geometry definitions and the set-up for direct numerical simulations. In § 3, we offer
a detailed analysis and classification of the wake structures, highlighting the effects of
taper and sweep on the wakes and aerodynamic forces. Finally, we conclude our study by
summarizing our findings in § 4.

2. Problem set-up

We consider laminar flows over tapered wings with a NACA 0015 cross-sectional profile.
The spatial coordinates of streamwise, transverse and spanwise directions are denoted by
(x, y, z), respectively. The origin is placed at the LE of the wing root, as shown in figure 1.
The NACA 0015 profile is defined on the (x, y) plane, which is extruded from the wing root
in the spanwise direction to form the 3-D wing. Wing taper is defined by the taper ratio
λ = ctip/croot, where ctip and croot are tip and root chord lengths, respectively, as shown in
figure 1(a). For all wings considered herein, the chord length decreases linearly from root
to tip. The non-dimensional mean chord length c at the spanwise location of z = b/2 is
taken to be the characteristic length used to non-dimensionalize all spatial variables. The
mean chord c is fixed and independent of λ for all wing planforms studied herein.

The semi aspect ratio of the wings is set as sAR = b/c = 1 and 2, where b is the
half-span length, as shown in figure 1(d). We consider half-span wing models with
symmetry imposed at the root. The angles of attack, α = 14◦, 18◦ and 22◦, are defined
between the airfoil chord line and the streamwise direction. The present wing geometries
have sharp TE and straight-cut wing tip. The mean-chord-based Reynolds number is set
to Rec = 600 and the free-stream Mach number is set to M∞ = 0.1. Taper changes the
local Reynolds number ReLc , defined as a function of the spanwise location (Traub et al.
2015). For the present study, the difference between ctip and croot accounts for a maximum
variation of 60 % on ReLc along the span, from min(ReLc) = 250 to max(ReLc) = 950 at
the lowest taper ratio.

For tapered swept wings, the 3-D computational set-up is sheared in the chordwise
direction and the LE sweep angle is defined between the z direction and the LE. Tapered
wings have different LE and TE sweep angles (ΛLE and ΛTE, respectively), as shown in
figure 1(a). Note that the wing planform can be specified with two parameters out of the
three parameters of taper ratio (λ), LE and TE sweep. Given that (ctip + croot)/2 = c, for
a chosen λ, ΛLE and sAR we have

λ = ctip

croot
,

croot

c
= 2

1 + λ and ΛTE = arctan
[
− 2

sAR

(
1 − λ
1 + λ

)
+ tan (ΛLE)

]
.

(2.1a–c)

In this work, we explore the combined effects of the LE and TE sweep angles on the
wake dynamics for LE sweep angles 0 ≤ ΛLE ≤ 50◦ and taper ratios 0.27 ≤ λ ≤ 1. The
corresponding TE sweep angles take −30◦ ≤ ΛTE ≤ 50◦. Herein, negative sweep angles
indicate a forward sweep, as shown in figure 1(a), while a positive sweep angle represents
a backward sweep.

Traditionally in aeronautics, tapered swept wings have wing-sweep angles observed with
respect to the quarter-chord line (Anderson 1936, 2010; Falkner 1950) denoted by Λc/4, as
shown in figure 1(a). Anderson (1999) considered the half-chord sweep angle Λc/2, such
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Figure 1. Problem set-up for tapered wings. (a) Geometrical parameters shown in a wing planform with sAR =
b/c = 2, α = 18◦, λ = 0.27 and ΛLE = 18.4◦. (b) For a (λ, ΛLE) = (0.5, 0◦) wing, we show the computational
domain and (c,d) grids with 2-D planes at z/c = 1 and y/c = −0.5, respectively.

that aerodynamic load distribution becomes independent of the taper ratio. Straight tapered
wings with Λc/4 = 0◦ were studied by Traub et al. (2015). On the other hand, Irving (1937)
considered the effect of the LE and TE sweep angles. For the present laminar post-stall
wakes, due to the crucial role played by the LE vortex in defining the wake characteristics
(Videler, Stamhuis & Povel 2004; Eldredge & Jones 2019), we focus on the distinct effects
of ΛLE and ΛTE in our analysis and describe their influence on the wake dynamics. We
note, however, that it is also possible to translate the findings reported herein with respect
to the traditional quarter-chord and half-chord sweep angles, Λc/4 and Λc/2, respectively.

2.1. Direct numerical simulations
We conduct direct numerical simulations with a compressible flow solver, CharLES
(Khalighi et al. 2011; Brès et al. 2017), which uses a second-order-accurate finite-volume
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method in space with a third-order-accurate total-variation diminishing Runge–Kutta
scheme for time integration. The computational domain is discretized with a C-type grid
with mesh refinement near the wing and in the wake. With the origin at the airfoil LE on
the symmetry plane (x/c, y/c, z/c) = (0, 0, 0), the computational domain extends over
(x/c, y/c, z/c) ∈ [−20, 25] × [−20, 20] × [0, 20], which yields a maximum blockage
ratio of 0.8 % for the wing with λ = 0.27, sAR = 2 and α = 22◦. The computational set-up
is shown in figure 1(b–d).

We have prescribed a Dirichlet boundary condition of (ρ, ux, uy, uz, p) = (ρ∞, U∞, 0,

0, p∞) at the inlet and far-field boundaries, where ρ is density, p is pressure and ux, uy and
uz are velocity components in x, y and z directions, respectively. The subscript ∞ denotes
the free-stream values. A symmetry boundary condition is prescribed along the root plane,
z/c = 0. We have evaluated the applicability of the root-symmetry boundary condition by
conducting direct numerical simulations of flows over full wing configurations, without
root symmetry, for wings at α = 22◦ and λ = 0.27 and 1. For both wings, we note that the
wake exhibits root-concentrated vortex shedding and remains symmetric with respect to
the wing root over large computational times.

A no-slip adiabatic boundary condition is set on the airfoil surface. For vortical
structures to convect out of the domain, a sponge layer is applied over x/Lc ∈ [15, 25]
with the target state being the running time-averaged state over 5 convective time units
(Freund 1997). Simulations start from uniform flow and are performed with a constant
acoustic Courant–Friedrichs–Lewy (CFL) number of 1 until transients are washed out
of the computational domain. The time to flush out the transients varies depending on the
wing planform and angle of attack, generally ranging from 50 to 300 convective time units.
After the transients are washed out of the domain, flows are simulated with a constant time
step defined such that the CFL number is smaller than one. Flow statistics are collected
for 100 to 300 convective time units, depending on the flow-field characteristics and
spectral content to ensure convergence. A detailed discussion on verification is provided
in Appendix A.

3. Results

3.1. Overview of tapered wing wakes
In figure 2, we present instantaneous post-stall flows over tapered wings, which exhibit
a rich diversity of wake structures through the combined effects of LE and TE sweep.
Taper effects on laminar separated flows are entwined with the effects of LE and TE
sweep angles. However, by studying straight tapered wings, that is, wings with Λc/2 and
Λc/4 approximately zero, we can distinguish the effects of taper from other geometrical
parameters.

For instance, let us explore the flows over wings with (λ, ΛLE) = (1, 0◦) and compare
them with the wake structures around (λ, ΛLE) = (0.27, 10◦) wings; these flows have
Λc/4 = 0◦ and 1.8◦, respectively. For the tapered wing, we note a significant reduction
of the tip vortex length caused by the smaller ctip. The downstream root shedding,
however, exhibits similar hairpin-like structures for both wings. In the near-wake region,
for the tapered wing, the spatial spanwise flow fluctuations emerge near the root, over
the spanwise vortex on the suction side. Such wake oscillations are absent in the vortical
structure that forms over the untapered wing.

We can further explore the distinct taper effects on the wake dynamics by considering
wings with Λc/2 ≈ 0◦, as shown for the similar flow patterns that develop at the root
region for (λ, ΛLE) = (1, 0◦) and (0.27, 18.4◦) wings. Here, with a lower taper ratio, tip
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Figure 2. Instantaneous flows around tapered wings with sAR = 2, 0.27 ≤ λ ≤ 1 and 0◦ ≤ ΛLE ≤ 30◦, at
α = 18◦ visualized using grey-coloured isosurfaces of Q = 1.

vortices are considerably weakened when compared with the structures near the free end
of the untapered wing. The vortical roll structures emerging over the tapered wing appear
slanted and aligned with ΛLE, suggesting that the LE sweep angle plays an important role
in defining the behaviour of the near-wake shedding structures.

For tapered wings, the backward-swept LE effect can be observed by fixing ΛTE =
0◦ while the LE is swept backwards with ΛLE = 18.4◦ and 30◦ for λ = 0.5 and 0.27,
respectively. For such wings, taper shifts the wake-shedding structures closer to the wing
tip. An opposite effect is shown in the top row of figure 2, for flows over forward-swept TE
wings. These planforms have fixed ΛLE = 0◦, while ΛTE = −18.4◦ and −30◦ for λ = 0.5
and 0.27, respectively. For these cases, we observe that taper reduces the tip vortex length
and changes the topology of the root shedding structures. Let us further study the taper
effect for highly swept wings, shown in the bottom row of figure 2, with fixed ΛLE = 30◦,
while ΛTE = 13.7◦ and 0◦ for λ = 0.5 and 0.27, respectively. Here, taper increases the
amplitude of wake oscillations. We further detail the discussions of the effects of taper,
LE and TE sweep in § 3.3.

The variety of wake structures that appear around tapered wings, as seen in figure 2,
calls for a proper characterization of the wake dynamics that associates its behaviour
with the wing planform geometry. The above discussions suggest that taper affects the
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location where unsteadiness emerges and the characteristics of the vortical structures. In
the following section, we provide a map that characterizes the wakes of tapered wings.

3.2. Wake classification and aerodynamic forces
We now classify the flow patterns with respect to the wing geometry. Our criterion is based
on the examination of the flow characteristics downstream of the airfoil on a 2-D plane at
x/c = 4, where we identify the spatial location of maximum time-averaged Q̄ and the
maximum fluctuating component of Q′ = Q − Q̄, where Q is the second invariant of the
velocity gradient tensor used to identify the vortical structures (Hunt, Wray & Moin 1988;
Jeong & Hussain 1995). Maximum Q̄ and Q′ located between 0 ≤ z/(c sAR) < 0.5 are
labelled root-dominant, while points with maximum Q̄ or Q′ between 0.5 ≤ z/(c sAR) ≤ 1
are named tip-dominant. We consider the flow as steady when the maximum fluctuating
value of Q′ is smaller than 0.1 at x/c = 4. Using the root and tip locations of Q̄ and Q′,
we classify their wakes into three unsteady and two steady regimes, as shown in figure 3,
where the steady–unsteady threshold (black dotted line) is computed via biharmonic spline
interpolation. We further verify our classification criterion by carefully inspecting the flow
fields. Instantaneous flow fields for all tapered wings shown in figure 3 are provided in
Appendix B using isosurfaces of Q = 1 coloured by streamwise velocity ux.

The first flow regime (�) is composed of tapered wing wakes that have both maximum
Q̄ and Q′ found near the root region. Such wakes appear for tapered wings with low LE
sweep angles. For such wings, the tip vortex tends to be short in length and the taper and
forward-swept TE effects concentrate shedding at the wing root, as shown in figure 3(a) for
(λ, ΛLE) = (0.27, 20◦) at α = 22◦. The second flow regime of unsteady wakes (�) occurs
when both maximum Q̄ and Q′ are found over the tip region. Such wakes are observed
around tapered wings over a broad range of λ values, being present for wings with high LE
sweep angles. The flow over such wings often exhibits hairpin-like vortices downstream
in the wake aligned with the wing tip, as shown in figure 3(b) for (λ, ΛLE) = (0.27, 50◦)
at α = 22◦.

The third flow regime of unsteady wakes (�) around tapered wings presents maximum
Q̄ at the wing tip with maximum Q′ at the root. This wake characteristic is often present
for slightly tapered and swept wings, that is, wings with high λ and low LE sweep angles.
Such wings exhibit a distinct tip vortex formation, at the location of the maximum Q̄, and
wake shedding near the root. On some occasions, the tip vortex exhibits weak unsteady
flow oscillations, as shown in figure 3(c) for (λ, ΛLE) = (1, 10◦) at α = 22◦, while the
most energetic vortices are generally observed over the root region.

There are two distinct flow regimes of steady wakes shown herein, as seen in
figure 3(d,e). The first one (�) is comprised of wakes with a steady streamwise vortex
that develops into the wake. Such flows are mainly exhibited around highly swept sAR = 2
wings with high and moderate taper ratios, λ ≥ 0.5, as shown in figure 3(d) for (λ, ΛLE) =
(0.5, 50◦) at α = 22◦. The second steady wakes regime (�) is comprised of flows with
no significant wake structures, with maximum Q̄ ≤ 0.1 in the wake and are commonly
observed for sAR = 1 wings, as shown in figure 3(e) for a (λ, ΛLE) = (1, 30◦) wing at
α = 14◦, and for sAR = 2 wings at lower angles of attack, low taper ratios and high LE
sweep angles.

In figure 3( f –k), we present the classification for all wings studied herein. For sAR = 1
wings, whose classification is shown in figure 3( f –h), there are fewer changes in wake
class, when compared with sAR = 2 wings. For the higher-aspect-ratio wings, with a fixed
ΛLE, we often notice two or three distinct classes of wake behaviour as λ changes. On the
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Figure 3. Classification of laminar flows over tapered wings into five distinct wake patterns (a–e)
shown for sAR = 2 wings visualized with time-averaged Q̄ = 1 in grey and instantaneous Q′ = 0.2
coloured by u′

x. Classification map for ( f –h) sAR = 1 and (i–k) sAR = 2 coloured by CL/CD. Black
dashed lines mark transition from steady to unsteady flows. (a) (λ, ΛLE, α) = (0.27, 20◦, 22◦),
(b) (λ, ΛLE, α) = (0.27, 50◦, 22◦), (c) (λ, ΛLE, α) = (1, 10◦, 22◦), (d) (λ, ΛLE, α) = (0.5, 50◦, 22◦),
(e) (λ, ΛLE, α) = (1, 30◦, 14◦), ( f ) sAR = 1, α = 14◦, (g) sAR = 1, α = 18◦, (h) sAR = 1, α = 22◦,
(i) sAR = 2, α = 14◦, ( j) sAR = 2, α = 18◦ and (k) sAR = 2, α = 22◦.

other hand, for sAR = 1 wings, the same class for all λ is observed regularly. Taper effects
become increasingly important for sAR = 2 wings to alter their wake characteristics, as
shown in figure 3(i–k), not only affecting the steady–unsteady wake behaviour, but also
producing distinct wakes as a function of λ. For sAR = 2 wings with high LE sweep angles,
the transition from steady to unsteady wakes is dependent on λ. Generally, untapered wings
with high LE sweep angle wakes remain steady, while unsteady flow structures emerge in
the wakes of tapered swept wings.

The combination LE sweep angle increase and taper ratio decrease is shown to promote
wake unsteadiness. In addition, tapered wings with high LE sweep angles exhibit enhanced
aerodynamic performance when compared with untapered and unswept wings, as shown in
figure 3( f –k). To visualize this trend, each symbol associated with a wake class is coloured
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Figure 4. Time-averaged lift, drag and lift-to-drag coefficients, CL, CD and CD, respectively, for sAR = 2
tapered wings with 0.27 ≤ λ ≤ 1 at (a–c) 14◦ ≤ α ≤ 22◦. Blue downward-pointing triangles, wings with
unswept LE and forward-swept TE; red upward-pointing triangles, wings with backward-swept LE and unswept
TE; yellow diamonds, wings with ΛLE = 40◦. (a) α = 14◦, (b) α = 18◦ and (c) α = 22◦.

by the time-averaged lift-to-drag ratio, CL/CD, showing that the higher lift-to-drag ratio
coefficients, for all sAR and α combination, appear for the wings with lower λ and
higher backward-swept LE. Here, the aerodynamic forces are reported with lift and drag
coefficients defined as

CL = Fy

1
2
ρU2∞bc

and CD = Fx

1
2
ρU2∞bc

, (3.1a,b)

where Fx and Fy are the x and y components of the force on the wing, respectively.
Furthermore, we study the aerodynamic loads through the time-averaged CL, CD and
CL/CD for selected sAR = 2 wings, as shown in figure 4, to reveal the influence of taper
and sweep on the aerodynamic forces. The blue symbols present the aerodynamic loads for
tapered wings with unswept LE and forward-swept TE. The red symbols show the results
for tapered wings with backward-swept LE and unswept TE, while the yellow symbols
represent tapered wings with ΛLE = 40◦.

The effects of wing taper on the wakes and aerodynamic forces are strongly dependent
on the combination of taper and sweep angle. Let us start from the untapered and unswept
wings, marked by blue downward-pointing triangles at λ = 1. The flow fields around these
wings are characterized by root shedding and a strong tip vortex, as seen in figure 2.
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While keeping the LE unswept, the TE is forward-swept for low λ. In the wake, such taper
produces a concentration of both steady and fluctuating wake structures near the root, as
shown in figure 3(i–k). A root-concentrated wake with a small tip vortex substantially
decreases CL, CD and CL/CD with λ. It is noteworthy that at the same λ, tapered wings
having backward-swept LE and unswept TE exhibit a higher CL and CL/CD, as shown in
figure 4. For such wings, we recall that taper shifts wake structures towards the tip region,
as shown in figure 2.

Backward-swept LE enhances the aerodynamic efficiency of tapered wings in post-stall
laminar flow conditions. This LE-sweep-induced improvement in aerodynamic loads also
occurs for tapered wings with high LE sweep angles. For instance, untapered swept wings
present lower values of CL for all angles of attack, as shown by the diamond-shaped yellow
symbols for λ = 1 in figure 4, while significantly reducing wake oscillations, as shown in
figures 2 and 3(d– f ).

For sAR = 2 wings with high LE sweep at high incidence α ≥ 18◦, taper causes a
change in the wake regime, as shown in figure 3(i–k). For such wings, wake shedding
emerges near the wing tip. The change in wake flow regime for tapered wings at high
incidence causes an increase in CL/CD. At lower incidence, α = 14◦, the wake regime
remains steady without noticeable vortices for tapered wings and the aerodynamic forces
remain fairly constant for all λ, as shown in figure 4(a). Let us now describe in detail the
taper effects on the wake characteristics in the following section and relate the wakes to
the lift distribution over the wing.

3.3. Wake characteristics

3.3.1. Tapered wings with unswept LE and forward-swept TE
Let us take a closer look at the effect of wing taper for unswept LE wings with
forward-swept TE, as it allows us to isolate the ΛTE effect on the wake dynamics. For
tapered wings with λ = 0.27, 0.5, 0.7 and 1, the planforms we study in this section have
ΛTE = −30◦, −18.4◦, −10◦ and 0◦, respectively. The negative ΛTE indicates forward
sweep. The LE is fixed with ΛLE = 0◦. For such wings, taper has a negative impact on the
aerodynamic performance, while concentrating the unsteady shedding to a narrow region
near the root, and significantly reducing the tip vortex strength, as shown in figure 5(a).

Tapered wings have a smaller ctip, which weakens the tip vortices and decreases their
length, alleviating the inboard downwash over the wing. Such tip vortex attenuation and
the aforementioned concentration of shedding over the root region occur for all angles of
attack shown herein. The influence of the incidence angle appears on the formation of
secondary vortices near the wing tip. For wings at high incidence angle, a secondary tip
vortex is known to emerge from the LE, as shown in figure 6 (DeVoria & Mohseni 2017;
Zhang et al. 2020b). For the tapered wings with forward-swept TE at α = 22◦, there is
also another core vortex that emerges near the wing tip from the TE. This structure is seen
over the vortex sheet rolling up the TE as a slanted vortex pointing towards the root for the
lower taper ratio, as visualized in figure 6.

To gain further insights into the characteristics of wake vortices, we study the unsteady
flow behaviour over the wingspan using probe measurements of velocity fluctuations
over x/c ∈ [3, 4], y/c ∈ [−1.5, 0.5]. The x/c location is arbitrary and does not affect
significantly the results. The y/c range encompasses the region where vortical structures
appear. Over this region, we probe the norm of the root mean square of the velocity, ‖u′‖2.
This measurement represents the spanwise distribution of flow unsteadiness, as shown in
figure 5(b).
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Figure 5. (a) Isosurfaces of flow fields around tapered wings with sAR = 2, ΛLE = 0◦, λ = 0.27 and 1, α =
14◦ and 22◦. Time-averaged Q̄ = 1 isosurface is shown in grey. Instantaneous Q′ = 0.2 isosurface is shown
coloured by u′

x. (b) Spanwise distribution of ‖u′‖2 for different λ for ΛLE = 0◦ wings. (c) Spatial–temporal
(top) and PSD (bottom) of uy distribution over the spanwise direction from probes located at (x, y)/c =
(3, −0.5) for the λ = 0.27 and 1 tapered wings at α = 22◦ shown above. (d) Sectional lift distribution over
wingspan for tapered wings at α = 22◦.

By examining at the spanwise ‖u′‖2 distribution in figure 5(b) for untapered wings
(blue), we notice that the flow unsteadiness peaks at z/c ≈ 0.5 and decays towards the wing
tip for both angles of attack. For tapered wings, the spanwise ‖u′‖2 curves are independent
of the taper ratio for λ ≤ 0.7. For such wings, taper yields an attenuation of the ‖u′‖2 peak.
The peak of ‖u′‖2 also moves towards z/c ≈ 0, showing a concentration of unsteadiness
towards the wing root for tapered wings.

Next, we analyse the spatial–temporal distribution of uy from probes located at
(x, y)/c = (3, −0.5) over the spanwise direction, to investigate how wing taper affects
the shedding behaviour. Herein, temporal frequency is characterized through the Strouhal
number defined as St = f (c sin α/U∞), where f is the frequency. For comparison, the wake
spectrum for the flow over an untapered wing is shown on the left of figure 5(c). For this
wing, there is a narrow peak of oscillations at St ≈ 0.14. The wake spectrum is clean with a
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Figure 6. Vortical structures emerging near the wing tip around tapered wings with unswept LE and
forward-swept TE. Top view of time-averaged flow fields around sAR = 2 tapered wings at α = 14◦ and 22◦,
with ΛLE = 0◦, visualized using grey-coloured time-averaged isosurfaces of Q̄ = 2.

vortex-shedding pattern comprised of spanwise-dominated vorticity near the root, forming
hairpin vortices and a steady streamwise vortex at the wing tip. For the tapered wing, the
spectrum is broadband as a result of the mixing of streamwise and spanwise vortices near
the wing root. Even though the wake exhibits more mixing, the spanwise structures remain
dominant, being related to the power spectral density (PSD) peak at St ≈ 0.13. We note
that the PSD peak occurs at a lower St than that observed for the untapered wing, as the
core unsteady structures that populate the downstream wake arise from the root region of
the wing, where the chord length is large.

As the post-stall wakes around tapered wings with forward-swept TE concentrate
shedding near the root, they also alter the sectional load distribution as the near-wake
vortices play an important role in generating lift and drag over the wing. While untapered
wings exhibit a peak in sectional lift near the tip region, we note that the root contribution
to lift is higher for tapered wings, as shown in figure 5(d). Such load distribution is
generally positive for flight stability (Anderson 2010). For laminar post-stall flows over
wings, the emergence of near-wake vortices closer to the wing surface can provide added
lift (Lee et al. 2012; Zhang & Taira 2022). As shown in figure 5(a), there are fewer large
near-wake structures over the wing for the lower λ. This is a possible reason of the decrease
in Cl over the entire wingspan experienced by the λ = 0.27 wing.

3.3.2. Tapered wings with backward-swept LE and unswept TE
Next, let us analyse the taper effects of wings with backward-swept LE and fixed unswept
TE, to understand and separate the effects of ΛLE on the global wake. For such wings with
λ = 0.27, 0.5, 0.7 and 1, the planforms have ΛLE = 30◦, 18.4◦, 10◦ and 0◦, respectively.
The positive ΛLE indicates backward sweep. The TE is fixed with ΛTE = 0◦. For such
wings, taper yields an opposite effect on the wake characteristics, when compared with
those discussed in § 3.3.1. As shown in figure 4, such wake pattern results in a better
aerodynamic performance for wings with the same λ but distinct LE and TE sweep angles.
Herein, taper shifts the unsteadiness region towards the wing tip, as shown in figure 7(a).

Concurrently, the tip vortex weakens for tapered wings with the shortened ctip, which
alleviates the inboard downwash near the tip, similar to what was observed for the wings
in § 3.3.1. This increases the effective angle of attack near the tip and allows for the
flow to detach from the wing surface and form wake-shedding structures near z/c ≈ 1,
as shown in figure 7(a). We quantify the effect of wing taper on flow unsteadiness through
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Figure 7. (a) Isosurfaces of flow fields around tapered wings with sAR = 2, ΛTE = 0◦, λ = 0.27 and 0.7, α =
14◦ and 22◦. Time-averaged Q̄ = 1 isosurface is shown in grey. Instantaneous Q′ = 0.2 isosurface is shown
coloured by u′

x. (b) Spanwise distribution of ‖u′‖2 for different λ for ΛLE = 0◦ wings. (c) Spatial–temporal
(top) and PSD (bottom) of uy distribution over the spanwise direction from probes located at (x, y)/c =
(3, −0.5) for the λ = 0.27 and 0.7 tapered wings at α = 22◦ shown above. (d) Sectional lift distribution over
wingspan for tapered wings at α = 22◦.

the winsgpan distribution of ‖u′‖2, as shown in figure 7(b). For both angles of attack,
taper affects the wake-shedding distribution over the wingspan. For λ = 0.27 (purple), at
α = 22◦, the peak of ‖u′‖2 appears near the quarter-span at z/c ≈ 1.25, with a gradual
transition towards z/c ≈ 0.5 from λ = 0.27 to 1.

As seen in figure 7(b), tapered wings with backward-swept LE and unswept TE exhibit
unsteadiness over a larger spanwise length than untapered wings. For instance, let us
observe the spanwise ‖u′‖2 distribution for wings at α = 22◦. For the untapered wing
(blue), u′ ≥ 0.02 over 0 ≤ z/c ≤ 1, which is the region where significant unsteady wake
structures appear. Now, for the tapered wing with λ = 0.27, u′ ≥ 0.02 over 0 ≤ z/c ≤ 1.6,
hence large unsteady structures can be observed over a larger spanwise portion of the wake.

The spatial–temporal distribution of the transverse velocity uy over the spanwise
direction also shows that the wake of backward-swept LE and unswept TE tapered wings
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z/c = 0.1:
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–1

(u × ω) · ∇φy

(b)(a)

Figure 8. Lift elements around λ = 0.27 tapered wings at α = 22◦ at the time of maximum lift.
(a) Backward-swept LE with unswept TE and (b) unswept LE with forward-swept TE . Perspective view shown
with isosurfaces of Q = 1 coloured by (u × ω) · ∇φy. Slices at selected z/c locations with isocontours of lift
elements and a black solid line over ux = 0.

exhibits 3-D vortical structures that result in a broadband wake spectrum, as shown in
figure 7(c). The wake, however, is mainly dominated by large quasi-2-D spanwise aligned
vortex rolls observed for all taper ratios. For λ = 0.27, as unsteadiness appears over a
larger portion of the wingspan, the stronger shedding structures are hairpin-like vortices
that appear between 0.5 ≤ z/c ≤ 1.5, as shown on the right of figure 7(c).

The sectional lift distribution, shown in figure 7(d), reveal that tapered wings with
backward-swept LE and unswept TE significantly increase the root contribution and reduce
the influence of the near-tip region on the overall lift. The increase in root contribution to
lift results from the shifting of the separation bubble towards the tip. This shifting causes a
pair of near-wake vortices to emerge over the wing surface at the root region, as shown in
figure 7(a). Using force element analysis (Chang 1992), we reveal the near-wake structures
that contribute to lift. In this approach, the volume force elements are identified by the dot
product of the Lamb vector u × ω and an auxiliary potential ∇φi (details in Appendix C).
Force element analysis shows a vortex pair emerging near the root, which increases the
local contribution to the total lift over the wing.

In figure 8, force elements further show that vortical structures with major contribution
to lift appear over the separation bubble. Here, this region is illustrated by a black solid
line contour at ux = 0 on the 2-D slices at z/c = 0.1 and 0.3. In particular, the emergence
of the near-root vortex pair is persistent for wings with backward-swept LE as similar
structures have been identified for backward-swept untapered wings by Zhang & Taira
(2022). These structures are absent for unswept LE wings, both tapered and untapered, as
shown in figure 8(b). In fact, force elements over tapered unswept LE wings show that the
lift elements emerging over the wing are much smaller than those over tapered wings with
backward-swept LE. As the separation bubble near the root becomes larger over tapered
wings with unswept LE, the wake structures are shifted far from the wing, reducing their
contribution to the total lift.

The tip vortex is also substantially affected by wing taper, becoming smaller than the tip
vortex around untapered wings, as shown in figure 9(a). Tip vortices have high importance
in terms of the aerodynamic characteristics of the wing (Francis & Kennedy 1979; Green &
Acosta 1991; Devenport et al. 1996; Birch et al. 2004; Taira & Colonius 2009; Dong et al.
2020; Zhang et al. 2020b; Toppings & Yarusevych 2021, 2022) and, in the case of tapered
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Figure 9. Streamwise circulation |Γx| of tip vortex around (a) an untapered wing and tapered wings with
λ = 0.5 with (b) unswept LE and forward-swept TE and (c) backward-swept LE and unswept LE at α = 22◦.
Flow field visualized with grey-coloured isosurfaces of ω̄x = −2 and 2-D slices with isolines of ω̄x at specific
(x − xtip,LE)/c locations. The magnitude of |Γx| computed for the isocontour of (d) ωx = −2 for tapered swept
wings with different planform configurations.

wings, due to the small ctip, tip vortices are attenuated, as a result of the reduced pressure
differences between upper and lower sides of the wing near the tip. Beyond that, even for
wings with the same λ, the tip vortex behaviour can be shifted in the x direction depending
on how the wing is tapered, whether it has a backward-swept LE or a forward-swept TE,
as shown in figure 9(b,c). For this reason, we must also analyse the tip vortex at a distance
x/c from the LE at the wing tip, which is identified herein as xtip,LE.

We can observe how wing taper affects the strength of the tip vortex by analysing ωx
near the tip, as shown in figure 9(a–c). The isosurfaces of ωx and the contour lines at
representative (x − xtip,LE)/c locations show the decay of vorticity magnitude for tapered
wings with λ = 0.5. However, the effect of taper is not the same for both wings, even
though they share the same taper ratio. This difference can be quantified as we compute
the streamwise circulation Γ = ∫

C = u · dl. Here, C is the isocontour of ωx = −2, as
shown in figure 9(d). The choice of ωx level is carefully chosen to isolate the tip vortex.

The tip vortex diffuses downstream of the wing, which makes the |Γx| profiles decay
slowly (Edstrand et al. 2018; Zhang et al. 2020b). In general, for tapered wings the
reduction in ctip is the main cause of the tip vortex weakening; thus the |Γx| circulation
decays with λ at any distance from the wing tip. The circulation |Γx| further reveals
how different types of wing taper can affect the strength of the tip vortex, as shown in
figure 9(d). At any given streamwise distance from the wing tip at the LE, (x − xtip,LE)/c,
for λ = 0.5, the streamwise circulation decay is similar for both tapered wings. For
λ = 0.27, the tip vortex strength decays considerably depending on the LE and TE sweep
angles. For tapered wings with backward-swept LE and unswept TE, the root shedding is
shifted towards the tip region and reduces the tip vortex strength at any distance from the
TE, when compared with the wing with same λ and forward-swept TE. For forward-swept
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Figure 10. (a) Isosurfaces of flow fields around tapered swept wings with sAR = 2, ΛLE = 40◦, λ = 0.27
and 0.7, α = 18◦ and 22◦. Time-averaged Q̄ = 1 isosurface is shown in grey. Instantaneous Q′ = 0.2
isosurface is shown coloured by u′

x. (b) Spanwise distribution of ‖u′‖2 for different λ for ΛLE = 0◦ wings.
(c) Spatial–temporal (top) and PSD (bottom) of uy distribution over the spanwise direction from probes located
at (x, y)/c = (3, −0.5) for the λ = 0.27 and 0.7 tapered wings at α = 22◦ shown above. (d) Sectional lift
distribution over wingspan for tapered wings at α = 22◦.

TE wings, as vortex shedding is concentrated near the wing root, it has a minor influence
on the tip vortex.

3.3.3. Tapered wings with high LE sweep angles
The final class of tapered wing shapes we consider are those with high LE sweep. For the
swept wings discussed herein, with ΛLE > 30◦, wake oscillations are strongly attenuated.
For laminar flows over untapered wings with high sweep angles at moderate angles of
attack, the wake becomes steady, while at high angles of attack, unsteadiness may develop
in the wing tip region (Zhang et al. 2020a; Ribeiro et al. 2023b). For highly swept and
tapered wings, the flow exhibits wake shedding for small λ, as shown in figure 10(a).
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Here, we analyse wings with a fixed ΛLE = 40◦, while the TE is swept with ΛTE =
10◦, 21.6◦, 30◦ and 40◦ for λ = 0.27, 0.5, 0.7 and 1, respectively. The onset of shedding
for highly swept and tapered wings results from the distinct effects of ΛLE and ΛTE. For
the present tapered swept wings, the vortical structures emerging from the TE promote
unsteadiness in the wake near the wing tip. For lower taper ratios, wings have a low ΛTE,
which causes wake oscillation to appear and become large towards the root. Such effects
show that while high ΛLE has the effect of stabilizing wake oscillations for untapered
wings, the combination of wing taper and sweep can promote wake unsteadiness.

For instance, at α = 18◦ the wake is steady for λ = 0.7 with long steady streamwise
vortices developing from both LE and TE. At λ = 0.5, unsteadiness appears with vortex
rolls at the wing tip, with wake shedding appearing for λ = 0.27. We quantify the wing
taper effect in figure 10(b). For instance, for the wings with λ ≥ 0.7 at α = 18◦, the flow is
steady and ‖u′‖2 is negligible in the wake. At α = 22◦, ‖u′‖2 is small for untapered wings,
increasing considerably in magnitude and spanwise length as the taper ratio decreases. For
highly swept tapered wings, the flow fluctuations are exhibited at the tip, further appearing
over the midspan for the lower taper ratios.

The unsteady vortices exhibited in the wakes of tapered wings with high LE sweep
angles behave as vortex-shedding structures, as shown by the probed uy in the wake in
figure 10(c). For λ = 0.7, the vortices appear as a consistent flow oscillation departing
from the wing tip. For λ = 0.27, the wake is dominated by spanwise-aligned roll structures
that occupy a large portion of the wingspan. As these structures develop from the wingspan
region near the wing tip, which has a reduced chord length, their frequency St ≈ 0.15 is
slightly higher than the shedding frequency of untapered wings.

The sectional lift distributions around tapered wings with high LE sweep, seen in
figure 7(d), show how wing taper substantially increases the root contribution to the overall
lift. Backward-swept wings have a higher contribution of lift from the root region due
to the pair of vortical structures near the midspan that attach closer to the wing surface
(Zhang & Taira 2022) similar to the structures shown in figure 8(a). For tapered wings,
the combined effect of the midspan vortex pair and the development of shedding structures
near the wing results in a considerable increase of the overall lift over the entire wingspan
for the λ = 0.27 wing.

4. Conclusions

We have examined the influence of taper and sweep on the dynamics of wake structures
for finite NACA 0015 wings with straight-cut tip at a Reynolds number of 600 and a
Mach number 0.1. For this study, we performed an extensive campaign of direct numerical
simulations of flows over half-span wings with symmetry boundary condition imposed
at the wing root. The present numerical study spans over a wide parameter space with
angles of attack between 14◦ ≤ α ≤ 22◦, aspect ratios sAR = 1 and 2, LE sweep angles
0◦ ≤ ΛLE ≤ 50◦ and taper ratios between 0.27 ≤ λ ≤ 1. This parameter space was chosen
to characterize the effects of wing taper as well as the LE and TE sweep angles on the wake
dynamics.

Through direct numerical simulations, we observe that the flow over unswept and
untapered wings forms a strong tip vortex, which interacts with the spanwise vortex
detaching from the wing surface at the root region. This flow yields a 3-D and unsteady
wake for all angles of attack considered herein. Untapered and swept wings are observed
to advect the shedding region towards the wing tip for lower angles of sweep. At higher
sweep angles, the wake oscillations are attenuated, yielding a steady wake around wings
at lower angles of attack.
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Wing taper has a strong influence on the wake dynamics. For tapered wings, the
LE and TE are not parallel and have a distinct influence on the flow structures within
the stalled flow region. For tapered wings with unswept LE and forward-swept TE,
taper concentrates shedding structures towards the wing root and yields a broadband
spectral content downstream in the wake as a result of increased mixing in that region.
Beyond the unsteady wake shedding, the tip vortex is heavily affected by wing taper,
reducing its length considerably for tapered wings, as the chord length decreases towards
the tip.

For tapered wings with backward-swept LE and unswept TE, the spanwise length where
wake unsteadiness is observed increases as shedding is promoted over a larger portion of
the wingspan. For this type of tapered wing planform, in contrast to the forward-swept
wing effect, the peak of wake unsteadiness moves towards the wing tip region for lower
taper ratios. Moreover, for wings with high LE sweep, although the flow is steady for
λ = 1, taper causes wake unsteadiness to appear. The wake oscillations develop near the
wing tip for moderate taper ratios. For low λ, wings with high LE sweep angles exhibit
strong wake-shedding structures occupying a large portion of the wingspan.

Through the detailed analysis of the wake structures, we also provide a map that
classifies the wake behaviour of tapered wings associating the behaviour with the wing
planform geometry and the angle of attack. The map provides a unique description of the
overall flow physics of the wakes around tapered wings and reveals, for each semi aspect
ratio and angle of attack, how the steady–unsteady flow behaviour is related to the wing
taper and LE sweep angle. The present study shows the effect of taper, as well as the effects
of LE and TE sweep and evaluates its impact on the formation of the wake structures.

Lastly, we show how the wing taper affects the aerodynamic forces over the wing. We
show that wings with the same taper ratio may present distinct overall lift and aerodynamic
performance, as these characteristics are also influenced by the LE sweep of the wing. Our
findings show that the combination of wing taper and high LE sweep can considerably
improve lift and the aerodynamic performance of the wing in laminar post-stall flows
conditions. The present insights gained into the effect of wing taper in the absence of
turbulence serve as a stepping stone for future efforts that aim to study, interpret and
control higher-Reynolds-number post-stall flows over tapered wings.
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Appendix A. Grid verification

We verify the convergence of grid resolution for the numerical results using a wing
with (sAR, α, ΛLE, λ) = (2, 22◦, 40◦, 0.27). This planform combines a high LE sweep
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Figure 11. Lift coefficient over time and instantaneous flow-field structures visualized using Q = 1 coloured
by instantaneous velocity component ux at the lift peak for the two sets of meshes used for grid verification for
the wing with (sAR, α, ΛLE, λ) = (2, 22◦, 40◦, 0.27).

angle and the lowest taper ratio considered in the present study. Herein, we report the
aerodynamic forces through their lift coefficients CL. Two meshes are used for verification:
a medium and a refined mesh. The medium mesh refinement is the one used throughout the
present work. This mesh has 80 grid points on both pressure and suction sides of the wing
and 48 grid points along the wingspan, with a total of approximately 3.1 × 106 control
volumes. The refined mesh has 120 grid points on pressure and suction sides, with 64
grid points along the wingspan, resulting in approximately 4.3 × 106 control volumes in
total. For the refined mesh we have increased the temporal resolution by setting the CFL
number to 0.5. The quality of our medium mesh is assessed through the forces exerted
over the wing and the instantaneous vortical elements as shown in figure 11.

Appendix B. A portfolio of flow fields around tapered wings

In this appendix, we provide flow-field visualizations of the wake structures around all
tapered wings considered in the present study. Flows around sAR = 1 wings at α = 14◦,
18◦ and 22◦ are shown in figures 12, 13 and 14, respectively. Similarly, flows around sAR =
2 wings at α = 14◦, 18◦ and 22◦ are shown in figures 15, 16 and 17, respectively. All flows
are visualized using isosurfaces of Q = 1, coloured by the streamwise velocity ux.

Appendix C. Force element analysis

Force element analysis (Chang 1992) is a method used to identify vortical structures
emerging near the wake that play a significant role in exerting aerodynamic loads over
the wing. We note that force element theory is similar in spirit to other force element
methods derived through a variational approach (Quartapelle & Napolitano 1983), as well
as to vortex force maps (Li, Zhao & Graham 2020) and force partition approaches (Menon
& Mittal 2021). The present force element analysis was previously employed to analyse
incompressible flows over wings in multiple configurations (Lee et al. 2012; Zhang et al.
2020b; Zhang, Shah & Bilgen 2022; Zhang & Taira 2022).

Initially, we define an auxiliary potential with a specific boundary condition of −n ·
∇φi = n · ei set on the wing surface, where φ is the auxiliary potential, n is the unit
wall normal vector and ei is the unit vector in the ith direction. The inner product of the
Navier–Stokes equations with ∇φ and performing an integral over the fluid domain, the
forces exerted in the ith direction may be expressed as

Fi =
∫

V
ω × u · ∇φi dV + 1

Re

∫
S
ω × n · (∇φi + ei) dS, (C1)
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Figure 12. Instantaneous flow fields around wings of sAR = 1 at α = 14◦ visualized using isosurfaces of
Q = 1 coloured by streamwise velocity ux.
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Figure 13. Instantaneous flow fields around wings of sAR = 1 at α = 18◦ visualized using isosurfaces of
Q = 1 coloured by streamwise velocity ux.
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Figure 14. Instantaneous flow fields around wings of sAR = 1 at α = 22◦ visualized using isosurfaces of
Q = 1 coloured by streamwise velocity ux.
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Figure 15. Instantaneous flow fields around wings of sAR = 2 at α = 14◦ visualized using isosurfaces of
Q = 1 coloured by streamwise velocity ux.
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Figure 16. Instantaneous flow fields around wings of sAR = 2 at α = 18◦ visualized using isosurfaces of
Q = 1 coloured by streamwise velocity ux.
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Figure 17. Instantaneous flow fields around wings of sAR = 2 at α = 22◦ visualized using isosurfaces of
Q = 1 coloured by streamwise velocity ux.
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where the first integral represents the volume force elements and the second integral term
is comprised of the surface force elements. For Rec = 600 flows, the volume elements are
responsible for the major contribution to the total force over the wing. We note that the
auxiliary potential velocity field φi decays rapidly far from the surface. For this reason, the
structures that have a higher contribution to lift are the ones that emerge near the surface.

To visualize the vortical structures associated with lift generation, one can take the
Hadamard product of ∇φi and the Lamb vector (ω × u), as shown in figure 8. The
resulting (u × ω) · ∇φy variable is often called the lift element. Lastly, we recall that
the force element theory used herein considers incompressible Navier–Stokes equations.
Nevertheless, important insights into the flow structures may still be obtained for weakly
compressible flows, such as the ones considered herein and in previous studies as well
(Ribeiro et al. 2022).
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