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Abstract

Hickie et al. (2023) pose the question “Are sleep and circadian rhythm disturbances (SCRD) the
cause or simply the consequence of depression or other mood disorder sub-types?” and suggest
strategies to better understand the role of SCRD in depression. Here, we contribute to the
discussion by highlighting state-of-the-art computational omics methods (and the data sets
needed to use these methods) which have potential for improving our understanding of the role
of circadian biology in mood disorders.

Introduction

It is well recognized that it is difficult to disentangle sleep dysfunction from disruption of
circadian rhythms. For example, a recent review of experimental approaches designed to
demonstrate independent sleep and circadian rhythm mechanisms concludes that the
conceptual framework of independent mechanisms is simplistic and that the joint role of
sleep and circadian rhythms serves homeostasis of essential physiological variables (Franken &
Dijk, 2024). This conclusion is supported by a recent analysis of gene expression data (Jan et al.
2024). However, the knowledge that sleep disruption has a negative impact on depression
through disrupting circadian physiology still leaves open the question of whether circadian
disruption could be a causal driver of depression, or particular depressive subtypes, in some
people. In addition, circadian phase can vary among individuals, which can lead to behavioral
differences known as chronotypes that can also influence depression and mental health (Jones
et al. 2019). Traditionally, circadian phase is measured by the gold standard tool Dim Light
Melatonin Onset, which is defined as the start of melatonin production in the evening during
dim light conditions. However, very frequent collection of blood samples over several hours can
be inconvenient for participants, is labor and cost-intensive and hence leads to studies of small
sample size. Moreover, such studies may be unethical for those with major depression.

Circadian rhythms are genetically governed by “clock genes,” which regulate rhythmic
changes throughout the whole body (Piggins, 2002). In mammals, the core clock genes are
expressed in all cells and circadian oscillations have been identified in different tissue and cell
types (Takahashi, 2017; Zhang et al. 2014). The primary transcriptional–translational negative
feedback loop (TTFL) involves the CLOCK and BMAL1 (also named ARNTL) genes. Their
products function as a heterodimeric transcriptional activator that binds to regulatory elements
containing E-box motifs of other clock genes such as PER (Period) and CRY (Cryptochrome).
These proteins then translocate into the nucleus and repress their own transcription by
interacting with the CLOCK-BMAL1 heterodimer. With the decline of the protein level of PER
and CRY, the repression is relieved and a new rhythmic cycle starts (Takahashi, 2017). The
TTFL results in thousands of clock-controlled genes showing a circadian pattern in expression
level (Takahashi, 2017; Zhang et al. 2014). At the organismal level, the circadian system
functions as a hierarchical network with the “central clock” located in the suprachiasmatic
nucleus (SCN) of the hypothalamus, which synchronizes clocks present in peripheral tissues.
The tissue- or cell-specific internal clock can be shifted from the central clock but coordinates
with it (Menet & Hardin, 2014; Yeung & Naef, 2018). Hence, clock-controlled genes show
rhythmic patterns of expression in many tissues, but the times of maximum and minimum
expression can vary between tissues (Zhang et al. 2014; Talamanca et al. 2023; Mure et al. 2018).

Experimental studies have demonstrated that some genes have robust circadian patterns at
cellular and tissue levels (Zhang et al. 2014; Panda et al. 2002; Ruben et al. 2018; Noya et al. 2019;
Weger et al. 2021) regardless of disruption to sleep, while the expression of other rhythmic genes
can be disrupted when sleep desynchrony regimes are enforced. Specifically, in a study of
insufficient sleep (26 participants studied in both unrestricted and restricted sleep conditions),
the number of genes with a rhythmic expression profile after 7 nights of only 5 hours of sleep was
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reduced from 1,855 (8.6%) to 1,481 (6.9%) (Möller-Levet et al.
2013). In a forced multi-day desynchrony study, 22 volunteers
were scheduled to a 28-hour sleep–wake schedule with associated
fasting–feeding and dark–dim light cycles (Archer et al. 2014). The
study showed that delaying sleep by 4 hours for 3 consecutive days
led to a six-fold reduction of rhythmic transcripts in the human
blood transcriptome (from 6.4% to just 1%), whereas the centrally
driven circadian rhythm of melatonin was unaffected. The genes
(N= 39 transcripts) that remained rhythmic after sleep desyn-
chrony are interpreted as those associated with signals from the
SCN, and represent cellular, metabolic, and homeostatic blood-
specific processes. In contrast, the transcripts driven by sleep alone
(N= 234) or by both circadian rhythmicity and the sleep–wake
cycle (N= 286) were linked with the regulation of transcription
and translation which, in turn, provide powerful reinforcement of
rhythmicity in peripheral tissue. In a 90-day constant bed rest
protocol (20 male participants, 2 weeks baseline, 60-day bed rest, 2
weeks recovery) 91% of the transcriptome was shown to have
changed compared to the baseline state with 76% of the
transcriptome still affected after 10 days of recovery, with most
impacted transcripts associated with mRNA translation and
immune function (Archer et al. 2024). Together these results
imply that decoupling of the sleep-wake cycle from circadian
rhythmicity (as occurs in jetlag, shift work and likely mood
disorders) results in a profound disruption of the temporal
organization at the level of the transcriptome.

While the SCN is the central “pacemaker,” the hypothalamus-
pituitary-adrenal (HPA) axis plays a key role in controlling
circadian dynamics in peripheral tissues (Li et al. 2024). The HPA
regulates many other physiological processes (e.g., immune
response, cell cycle, energy metabolism) including the cortisol
and the stress response (Belvederi Murri et al. 2014). The extent to
which peripheral and central rhythmicity are decoupled in SCRD-
associated depression is unclear. Analysis of time-of-death gene
expression data of 6 brain regions from major depressive disorder
(MDD) (N= 34) patients and controls (N= 55) reported that gene
expression rhythmicity was attenuated in MDD patients in terms
of peak timing (Li et al. 2013). Emerging computational
approaches applied to omics data that allow estimation of the
internal body clock regardless of sample collection time are
logistically attractive and could facilitate collection of larger clinical
cohorts to study circadian changes under different conditions.
Hence, we now review novel computational methods applied to
omics data that have clear potential for advancing mechanistic
understanding in circadian-associated mood disorders.

Characterizing internal circadian time using omics data
and computational tools

Many computational tools have been developed to infer circadian
phase from gene expression data (microarray/bulk RNA-seq).
These methods provide circadian pattern metrics (i.e., period,
amplitude, and phase) quantified using statistical approaches.
Period refers to the time between peaks in expression (tau),
amplitude is the difference between the highest and the lowest
point over a cycle (sometimes divided by 2), and phase shift refers
to a horizontal shift in the peaks of expression from a reference
while maintaining the same period difference between peaks. Since
many genes show rhythmic patterns (but with peaks at different
times), rhythmic parameters can be inferred through their joint
analysis. Generating predictors that can be applied to single

timepoint data is an active area of research trained on data sets that
have longitudinal sampling within individuals (not possible for
many tissues in human), or on large cross-sectional data sets where
tissue from different individuals is sampled across the 24-hour
period. Data training methods are classified as supervised or
unsupervised.

Supervised learning methods (e.g., molecular time-table (Ueda
et al. 2004), ZeitZeiger (Hughey et al. 2016), BIO_CLOCK
(Agostinelli et al. 2016)) use ground-truth data sets with known
time of sampling to generate prediction models tested in other
independent ground-truth data sets and then applied in data sets
where sampling time was unknown. These methods identify a core
set of “time-indicating genes,” (e.g., 13 genes in ZeitZeiger) and
train statistical models on the expression of these core genes. A
limitation of supervised learning methods is the need for ground-
truth samples since few data sets have samples documented with a
collection “timestamp.” Unsupervised machine learning methods
(e.g., CYCLOPS (Anafi et al. 2017), CHIRAL (Talamanca et al.
2023)) use underlying modeling and joint analysis across multiple
genes to infer circadian phase i.e., sincemany genes are rhythmic in
their expression in a coordinated manner, the expression levels of
many genes infer circadian phase more accurately than can be
inferred from expression of a single gene. For example, CHIRAL
uses a new mathematical method to infer circadian time applied to
the Genotype-Tissue Expression (GTEx) data, which allows a
comprehensive analysis of rhythmic patterns on the whole
organism (since GTEx data comprise gene expression data from
multiple organs from the same post-mortem donors). Briefly, the
algorithm first assigns tissue internal phase (TIP) for each sample
in each tissue type with a selected set of seed genes. Donor internal
phase is estimated from TIPs, which assumed that each TIP is
determined by the donor and the tissue. With this approach,
differences across donors and tissues can be captured.
Technological advances that allow generation of large data sets
that can be interrogated for circadian phase, have been
accompanied by an explosion in computational methods
(Table 1). With adequate variation in sampling times across
individuals, methods such as CYCLOPS and CHIRAL can achieve
a high accuracy with a mean absolute error between 1~2 h
(Talamanca et al. 2023). When new methods are presented,
comparisons with standard methods are provided (and show
improvements in accuracy of assignments in ground-truth data
sets or computational efficiency), but independent systematic
comparisons of methods across multiple data sets are now needed.
Hughes et al. (2017) provide “Guidelines for genome-scale analysis
of biological rhythms” and a web-based application (CircaInSilico)
to generate ground-truth synthetic genome biology data to
facilitate benchmarking of methods.

Both supervised and unsupervised methods need samples
collected across the 24-hour period, with better prediction
accuracy achieved if each time point has more samples. While
such time series sample collections are achieved in sleep laboratory
studies or in post-mortem (i.e., across samples the full 24-hour
period is represented), samples collected in clinics or volunteer
studies are likely to represent only a fraction of the 24-hour period.
A new method, has been developed to predict circadian time from
bulk RNA-seq without needing to collect samples in a complete
time series.

Beyond using bulk tissue gene expression data to study
circadian biology, chronobiology at the single-cell level will give
much deeper insights into potential differences in circadian pattern
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across different cell types. Many computational tools have been
developed to infer cell-cycle state, which is a periodic biological
process (Leng et al. 2015; Liu et al. 2017; Riba et al. 2022). However,
circadian rhythms and the cell cycle are independent processes.
Characterizing circadian rhythm using single-cell data has been
rarely documented but is likely to be an area of active research as
more and more single-cell gene expression data sets are generated.
One published method has used scRNA-seq data applying an
unsupervised Bayesian algorithm developed to estimate circadian
phase with a prior knowledge of core clock genes to initialize the
model (Auerbach et al. 2022). The model uses the posterior
distribution of cell circadian phase to identify new rhythmic genes.
This offers an opportunity to identify cell-type specific circadian
patterns and ultimately cell therapies for chronobiological
disorders. Disruption of circadian clocks in tumor vs non-tumor
tissue in adenocarcinomas has already been demonstrated
(Ananthasubramaniam & Venkataramanan 2024).

Although gene expression data are currently the most
abundant, computational methods have been developed or
adapted for applications to proteomic (Weger et al. 2021; Specht
et al. 2023) and metabolomics (Minami et al. 2009) data.
Understanding circadian rhythms in genes, proteins and metab-
olites targeted directly or indirectly by drugs underpins the
emerging field of chronopharmacology (Li et al. 2024).

Potential for application of computational methods to
infer sleep and circadian disruption in depression

Methods to infer circadian phase from a single routinely collected
blood sample (the easiest tissue to access) measured for gene
expression offer the possibility of cost-effective investigation of
circadian parameters in people with severe mental illness
compared to those without. These scalable technologies will allow
generation of large data sets which are needed to draw robust
conclusions. To take advantage of these newmethods, key data sets
need to be generated. First, post-mortem brain samples are needed
to demonstrate circadian disruption in a cell type relevant to
depression (e.g., excitatory neurons, inhibitory neurons, astro-
cytes). Second, matched post-mortem blood and brain samples are
needed to demonstrate that circadian disruption is detectable in
blood. If these two steps were to be established, then it would pave
the way to identification of disruption of circadian functions in a
subset of living patients. Investigations could be conducted
longitudinally within a person comparing mental ill health
episodes to periods of euthymia and good health. Since a meta-
analysis of randomized clinical trials (Scott et al. 2021) has shown
that improved sleep quality leads to better mental health,
quantification of the changes in circadian rhythm before and
after sleep improvement using omics data could provide a direct
test of the causal role of circadian disruption separated from sleep

Table 1. Computational methods to assign circadian rhythm parameters to samples based on omics data

Name S/Ua Data type Notes

Oscope (Leng et al. 2015) U scRNA-seq Developed for cell-cycle detection and adapted for circadian rhythmicity

ZeitZeiger (Hughey et al. 2016) S microarray or
bulk RNA-seq

Learns a sparse representation of the variation associated with the periodic variable in
the training observations, then uses maximum likelihood to make a prediction for a test
observation.

BIO_CLOCK (Agostinelli et al.
2016)

S microarray or
bulk RNA-seq

Developed alongside BIO_CYCLE for cell-cycle stage detection

CYCLOPS (Anafi et al. 2017) U microarray Cyclic ordering by periodic structure.

reCAT (Liu et al. 2017) U scRNA-seq Recover cell cycle along time. Can be used to analyze almost any kind of unsynchronized
scRNA-seq data set to obtain a high-resolution cell-cycle time series

Tempo (Auerbach et al. 2022) U scRNA-seq data Estimate circadian phase using single-cell RNA data

PLSR (Woelders et al. 2023) S metabolomics Partial least squares regression. Estimates dim light melatonin onset (DLMO). Needs 2 - 3
blood samples per person.

CHIRAL (Talamanca et al.
2023)

U bulk RNA-seq Circular Hierarchical Reconstruction Algorithm. Developed and applied an unsupervised
learning method to GTEx data to uncover tissue-specific rhythmic genes. More accurate
than CYCLOPS.

CIRCUST (Larriba et al. 2023) U bulk RNA-seq CIRCular-robUST. Based on circular statistics

TimeTeller (Vlachou et al.
2024)

S bulk RNA-seq Aims to estimate circadian clock function from a single transcriptome by modeling the
multi-dimensional state of the clock. Can globally compare clocks across individuals,
tissues and conditions.

COFE (Ananthasubramaniam &
Venkataramanan, 2024)

U bulk RNA-seq Cyclic Ordering with Feature Extraction. Data-driven approach to simultaneously
reconstruct the time ordering of data and identify the list of rhythmic features that
contribute to the reordering.

tauFisher (Duan et al. 2024) S bulk RNA-seq
and scRNA-seq

tauFisher claims to improve on previous methods in several ways: (1) training data does
not need to be a complete time series; (2) the within-sample normalization step leads to
an accurate prediction from just one sample; (3) computationally efficient; (4) predictors
can be applied to data generated on any platform (5) can be applied to single-cell RNA
sequencing (scRNA-seq) data, and used to investigate circadian phase heterogeneity in
different cell types.

aSupervised (uses ground-truth data to train the model)/Unsupervised.
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disruption. Over the next 5-10 years we expect to see a rapid
growth both in statistical and computational methods and of data
sets. This emerging area of research could help provide the
evidence base to address the question posed by Hickie et al. (2024).
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