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MODEL COMPLETIONS FOR UNIVERSAL CLASSES OF ALGEBRAS:
NECESSARY AND SUFFICIENT CONDITIONS

GEORGE METCALFE AND LUCA REGGIO

Abstract. Necessary and sufficient conditions are presented for the (first-order) theory of a universal
class of algebraic structures (algebras) to have a model completion, extending a characterization provided
by Wheeler. For varieties of algebras that have equationally definable principal congruences and the
compact intersection property, these conditions yield a more elegant characterization obtained (in a
slightly more restricted setting) by Ghilardi and Zawadowski. Moreover, it is shown that under certain
further assumptions on congruence lattices, the existence of a model completion implies that the variety has
equationally definable principal congruences. This result is then used to provide necessary and sufficient
conditions for the existence of a model completion for theories of Hamiltonian varieties of pointed
residuated lattices, a broad family of varieties that includes lattice-ordered abelian groups and MV-algebras.
Notably, if the theory of a Hamiltonian variety of pointed residuated lattices has a model completion, it
must have equationally definable principal congruences. In particular, the theories of lattice-ordered abelian
groups and MV-algebras do not have a model completion, as first proved by Glass and Pierce, and Lacava,
respectively. Finally, it is shown that certain varieties of pointed residuated lattices generated by their
linearly ordered members, including lattice-ordered abelian groups and MV-algebras, can be extended with
a binary operation to obtain theories that do have a model completion.

§1. Introduction. The main aim of this paper is to understand what it means
in algebraic terms for the (first-order) theory of a universal class of algebraic
structures (algebras) to have a model completion. For classes that have finite
presentations—including all quasivarieties, but not, for example, ordered abelian
groups—a complete characterization was provided by Wheeler in [38] (see also [39])
using the well-studied properties of amalgamation and coherence together with
a more complicated property referred to as the conservative congruence extension
property. However, as we show in Section 3, replacing coherence and the conservative
congruence extension property with a variable projection property and conservative
model extension property yields necessary and sufficient conditions for all universal
classes of algebras (Theorem 3.2).

Although the mentioned properties can be used to confirm that the theories of
ordered abelian groups and linearly ordered MV-algebras have a model completion
[29, 36], the conservative model extension property is, in general, rather difficult
to prove or refute. We therefore also provide, in Section 4, a more elegant
characterization for varieties (equational classes) of algebras that have equationally
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definable principal congruences and the compact intersection property, where the
conservative model extension property is replaced by a more amenable equational
variable restriction property (Theorem 4.5). This result generalizes slightly a
characterization given by Ghilardi and Zawadowski in [19] (see also [20]) by covering
varieties such as lattice-ordered abelian groups for which there exists no equation
that entails all other equations.

In Section 5, we prove that for any congruence distributive variety V that has
both the congruence extension property and a “guarded” deduction theorem, if the
theory of V has a model completion, then V has equationally definable principal
congruences (Theorem 5.7). Our approach is inspired by the work of Glass and
Pierce on lattice-ordered abelian groups in [22] and indeed yields both their result
that the theory of this variety does not have a model completion, and the same
result for MV-algebras, first proved by Lacava in [28]. More generally, in Section 6,
we use this theorem to show that the theory of a Hamiltonian variety of pointed
residuated lattices—spanning varieties of algebras for substructural logics as well
as lattice-ordered abelian groups and MV-algebras (see, e.g., [5, 16, 31])—has a
model completion if, and only if, the variety is coherent and has equationally
definable principal congruences, the amalgamation property, and the equational
variable restriction property (Theorem 6.6).

Finally, in Section 7, we associate with any varietyV generated by a class of linearly
ordered pointed residuated lattices, a variety V� of algebras with an additional
binary operation that has equationally definable principal congruences and the
same universal theory as V in the original language. We then show that if V satisfies
a certain syntactic condition, the theory of V� has a model completion (Theorem
7.6). Notably, this is the case for lattice-ordered abelian groups and MV-algebras, the
second case yielding an alternative proof of the fact that the theory of MVΔ-algebras
has a model completion, first announced by X. Caicedo at a conference in 2008.

§2. Algebraic properties. Let us first recall some elementary material on universal
algebra, referring to [7] for proofs and references. For convenience, we will assume
throughout this paper that L is an algebraic language (i.e., a first-order language
with no relation symbols) containing at least one constant symbol c and that an
L-algebra A is an L-structure with universe A, calling A trivial if |A| = 1. We denote
by Con A the congruence lattice of A, and by CgA(S) the congruence of A generated
by S ⊆ A2.

The term algebra TmL(x) for L over a set x is an L-algebra with universe TmL(x)
consisting of L-terms with variables in x, such that for any L-algebra A and map
f : x → A, there exists a unique homomorphism f̃ : TmL(x) → A extending f.
Atomic L-formulas are L-equations, written s ≈ t, and L-equations and their
negations are L-literals. Conjunctions, disjunctions, negations, implications, and
bi-implications of L-formulas are built using the symbols &, �, ¬, →, and ↔,
respectively, with � := c ≈ c and ⊥ := ¬�. An L-quasiequation is an L-formula
�→ ε, where � is a conjunction of L-equations and ε is an L-equation, assuming
that the empty conjunction is �. For an L-term t or L-formula α, we denote by t(x)
or α(x) that its free variables belong to the set x, and for a conjunction of L-literals
�, we write �+ and �– for the conjunctions of L-equations occurring in � positively
and negatively, respectively.
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Let H, I, S, P, and PU denote the class operators of taking homomorphic images,
isomorphic images, subalgebras, products, and ultraproducts, respectively. A class
of L-algebras K is called a variety if it is closed under H, S, and P, and a quasivariety
if is closed under I, S, P, and PU . The class K is a variety if, and only if, it is an
equational class, and a quasivariety if, and only if, it is a quasiequational class.
Moreover, K is a universal class if, and only if, it is closed under I, S, and PU , and a
positive universal class if, and only if, it is closed under H, S, and PU .

The variety and quasivariety generated by a class ofL-algebras K are, respectively,
the smallest variety HSP(K) and quasivariety ISPPU (K) of L-algebras containing
K. An L-equation is valid in K if, and only if, it is valid in HSP(K), and an L-
quasiequation is valid in K if, and only if, it is valid in ISPPU (K). For future
reference, let us note also that any class of L-algebras K that is closed under taking
finite products satisfies the following disjunction property: for any conjunctions of
L-equations ϕ, �1, ... , �n,

K |= ϕ → �
1≤i≤n

�i ⇐⇒ K |= ϕ → �i for some i ∈ {1, ... , n}.

For a variety of L-algebras V, the V-free algebra FV(x) over a set x may be identified
with the quotient TmL(x)/�V(x), where �V(x) :=

⋂
{� ∈ Con TmL(x) | TmL(x)/�

∈ V}. For any L-equation ε ∈ TmL(x)2, we let ε̂ denote its image under the natural
surjection TmL(x)2 � FV(x)2. The following useful lemma shows that the valid
L-quasiequations of V can be described in terms of congruences of V-free algebras.

Lemma 2.1 (cf. [30, Lemma 2]). For any variety of L-algebras V, conjunction of
L-equations �(x), and L-equation ε(x),

V |= �→ ε ⇐⇒ ε̂ ∈ CgFV(x)({�̂ | � is an equation of �}).

A variety V has the congruence extension property if for all A ∈ V, any congruence
of a subalgebra of A extends to a congruence of A. The following lemma provides a
useful equivalent characterization of this property in terms of congruences of V-free
algebras.

Lemma 2.2 (cf. [30, Lemma 17]). A varietyV has the congruence extension property
if, and only if, for any � ∈ Con FV(x) and � ′ ∈ Con FV(x, y),

(� ′ ∨ CgFV(x,y)(�)) ∩ FV(x)2 = (� ′ ∩ FV(x)2) ∨ �.

In what follows, we will omit mention of the language L, assuming throughout
that a class of algebrasK is a class ofL-algebras, and that terms, equations, formulas,
etc. are defined over this language.

2.1. The variable projection property and coherence. Let us say that a class of
algebrasKhas the variable projection property if for any finite setx, y and conjunction
of equations ϕ(x, y), there exists a quantifier-free formula �(x) such that K |= ϕ →
� and for any equation ε(x),

K |= ϕ → ε =⇒ K |= � → ε.

If �(x) is required to be a conjunction of equations for each ϕ(x, y), we say that K
has the equational variable projection property.
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Remark 2.3. Since K satisfies the same quasiequations as the quasivariety
ISPPU (K) that it generates, K has the equational variable projection property if,
and only if, ISPPU (K) has this property.

For varieties, the variable projection property is equivalent both to the equational
variable projection property and to the widely studied algebraic property of
coherence. A variety V is said to be coherent if every finitely generated subalgebra
of a finitely presented member of V is finitely presented.

Proposition 2.4. The following statements are equivalent for any variety V:
(1) V is coherent.
(2) V has the equational variable projection property.
(3) V has the variable projection property.

Proof. The equivalence of (1) and (2) is established in [27, Theorem 2.3], and
(3) is an immediate consequence of (2). To show that (3) implies (2), we fix a finite
set x, y and a conjunction of equations ϕ(x, y), and let �(x) be a quantifier-free
formula such that V |= ϕ → � and for any equation ε(x), we have V |= ϕ → ε =⇒
V |= � → ε. Since ϕ is satisfiable in V (e.g., in any trivial algebra), we can assume
without loss of generality that � = �1 � ···� �m, where �1, ... , �m are conjunctions
of literals satisfiable in V.

Since V |= ϕ → �, also V |= ϕ →�1≤i≤m �
+
i . By the disjunction property for

varieties, V |= ϕ → �+
i for some i ∈ {1, ... , m}. Let �1, ... , �n be the equations of �–

i

and consider any equation ε(x) such that V |= ϕ → ε. By assumption, V |= � → ε,
so V |= �i → ε. Hence V |= �+

i → ε ��1≤j≤n �j and, by the disjunction property
for varieties, either V |= �+

i → ε or V |= �i → ⊥. But �i is satisfiable in V, so V |=
�+
i → ε. 

Following this last proposition, we will refer to a variety throughout this paper as
coherent whenever it has the (equational) variable projection property.

Remark 2.5. An algebra A is locally finite if every finitely generated subalgebra
of A is finite, and a class of algebras K is locally finite if each A ∈ K is locally finite.
Since any finitely presented algebra of a locally finite variety is finite and any finite
algebra of a locally finite variety is finitely presented, every locally finite variety is
coherent.

Below we introduce some well-known classes of algebras that will be employed as
running examples throughout the paper. These algebras all possess definable binary
operations ∧ and ∨ such that a ≤ b :⇐⇒ a ∧ b = a defines a lattice order with
binary meets and joins given by ∧ and ∨, respectively.

Example 2.6. Linear orders with endpoints may be considered as bounded lattices
〈L,∧,∨, 0, 1〉 where the defined lattice order is linear. The class DLc of linear orders
with endpoints is then a positive universal class of algebras that generates the variety
DL of bounded distributive lattices as a quasivariety. Since DL is locally finite, it is
coherent, and, by Remark 2.3, the class DLc has the equational variable projection
property.

Example 2.7. A Heyting algebra is an algebra 〈H,∧,∨,⊃, 0, 1〉 such that the
reduct 〈H,∧,∨, 0, 1〉 is a bounded distributive lattice and ⊃ is the right residual of
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∧; that is, a ≤ b ⊃ c if, and only if, a ∧ b ≤ c for all a, b, c ∈ H . The fact that the
variety HA of Heyting algebras is coherent is a direct consequence of Pitts’ uniform
interpolation theorem for intuitionistic propositional logic [35].

Example 2.8. A lattice-ordered abelian group is an algebra 〈L,∧,∨,+, –, 0〉 such
that 〈L,+, –, 0〉 is an abelian group, 〈L,∧,∨〉 is a lattice, and a ≤ b implies a + c ≤
b + c for all a, b, c ∈ L. Lattice-ordered abelian groups form a variety LA that is
coherent (see [27]) and generated as a quasivariety by the positive universal class
LAc of ordered abelian groups, i.e., the class of linearly ordered members of LA (see,
e.g., [1]). It follows from Remark 2.3 that LAc has the equational variable projection
property.

Example 2.9. An MV -algebra is an algebra 〈M,⊕,¬, 0〉 satisfying the equations

(MV1) x ⊕ (y ⊕ z) ≈ (x ⊕ y) ⊕ z, (MV4) ¬¬x ≈ x,
(MV2) x ⊕ y ≈ y ⊕ x, (MV5) x ⊕ ¬0 ≈ ¬0,
(MV3) x ⊕ 0 ≈ x, (MV6) ¬(¬x ⊕ y) ⊕ y ≈ ¬(¬y ⊕ x) ⊕ x.

The varietyMV of MV-algebras is coherent (see [27]), and generated as a quasivariety
by the positive universal class MVc of MV-algebras that are linearly ordered with
respect to the defined lattice operations x ∧ y := ¬(¬x ⊕ ¬(¬x ⊕ y)) and x ∨ y :=
¬(¬x ⊕ y) ⊕ y (see, e.g., [10]). Again, it follows from Remark 2.3 that MVc has the
equational variable projection property.

Notable varieties that are not coherent include the varieties of lattices, semigroups,
groups, and modal algebras (see [27] for proofs and references).

2.2. The conservative model extension property. Let us say that a class of algebras
K has the conservative model extension property if for any finite set x, y and
conjunction of literals 	(x, y), there exists a quantifier-free formula 
(x) satisfying

(i) K |= 	 → 
 and
(ii) for any A ∈ K generated by a ∈ Ax such that A |= 
(a) and for any equation
ε(x),

K |= 	+ → ε =⇒ A |= ε(a),

there exist an algebra B ∈ K extending A and b ∈ B such that B |= 	(a, b).

Remark 2.10. In the previous definition, we may assume without loss of
generality that 	 is satisfiable in K. Just observe that if this is not the case, then
K |= 	 ↔ ⊥ and we can let 
 := ⊥. Moreover, if there is precisely one definable
constant in K (which is the case, e.g., for lattice-ordered abelian groups), we can
assume that x is non-empty. To see this, suppose that x = ∅ and let 
 := �. Then
(i) is clearly satisfied and for (ii), any A ∈ K generated by ∅ is trivial and satisfies all
equations, so, since 	 is satisfiable in K, we can choose an algebra B ∈ K extending
A and b ∈ B such that B |= 	(b).

In the case where K is a universal class of algebras admitting finite presentations
(in particular, any quasivariety), the conservative model extension property is
implied by the conservative congruence extension property introduced by Wheeler
in [38] (see Proposition 8.3). The following proposition, proved here for the sake of
completeness, is then a direct consequence of [38, Corollary 1, p. 319].
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Proposition 2.11. Every locally finite variety has the conservative model extension
property.

Proof. Let V be a locally finite variety and consider a finite set x, y and
conjunction of literals 	(x, y). We can assume that 	 is satisfiable in V. Since
V is locally finite, the finitely generated free algebra FV(x) is finite and has finitely
many congruences �1, ... , �m. For each w ∈ FV(x)2, choose an equation εw such
that ε̂w = w. Now, for each j ∈ {1, ... , m}, let	j(x) be the conjunction of literals in
the set {εw | w ∈ �j} ∪ {¬εw | w /∈ �j}. Then, for any algebra A ∈ V generated by a
tuple a ∈ Ax , we have A |= 	j(a) if, and only if, the homomorphism FV(x)/�j → A
mapping xj to a, where xj is the image of the tuple x under the composite map
Tm(x) � FV(x) � FV(x)/�j , is an isomorphism.

Let S be the set of all j ∈ {1, ... , m} such that there exist B ∈ V extending
FV(x)/�j and b ∈ B satisfying B |= 	(xj, b). Since 	 is satisfiable in V, there exist
B ∈ V and (a, b) ∈ Bx,y such that B |= 	(a, b). The following claim then implies
that S �= ∅.

Claim. Suppose that B ∈ V and B |= 	(a, b) for some (a, b) ∈ Bx,y . Then there
exist j ∈ {1, ... , m} and an embedding FV(x)/�j ↪→ B mapping xj to a, and hence
j ∈ S.

Proof of Claim. By the homomorphism theorem for universal algebra (see,
e.g., [7]), it suffices to observe that the image of the homomorphism FV(x) → B
mapping the equivalence class of x to a is isomorphic to FV(x)/�j for some
j ∈ {1, ... , m}. 

We now prove that the quantifier-free formula


(x) := �
k∈S
	k

satisfies conditions (i) and (ii) in the definition of the conservative model extension
property. For (i), we must show V |= 	 → 
. By the Claim, if B ∈ V and
(a, b) ∈ Bx,y satisfy B |= 	(a, b), then there exist j ∈ {1, ... , m} and an embedding
FV(x)/�j ↪→ B mapping xj to a. So B |= 	j(a), which implies B |= 
(a). For (ii),
suppose that A ∈ V is generated by a tuple a ∈ Ax satisfying A |= 
(a). Let k ∈ S
be such that A |= 	k(a), and recall that there is an isomorphism FV(x)/�k → A
mapping xk to a. By the definition of S, there exist B ∈ V extending A and b ∈ B
such that B |= 	(a, b). 

Example 2.12. The class of ordered abelian groups LAc has the conservative
model extension property. Consider a finite set x, y and a conjunction of literals
	(x, y). We first assume that y appears in each literal of 	 and then settle the
general case. For any two terms s, t, write s < t for the formula (s ≤ t) & ¬(s ≈ t),
where ≤ is the definable lattice order. In view of Remark 2.10, we can assume
that x �= ∅. Moreover, without loss of generality (because the members of LAc are
linearly ordered), we can assume that 	 = 	1 � ···� 	m and that each disjunct is a
conjunction of formulas of the form

py ≤ t, py ≥ t, py < t, py > t,
where each t is a group term with variables in x = x1, ... , xn, and p is a fixed non-
zero natural number (e.g., the least common multiple of the coefficients of y in
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the conjuncts). Let tj1(x), ... , tju (x) be the terms appearing in 	j and let 
(x) be
the formula

&
{
�

1≤j≤m
tji�tjk | ji , jk ∈ {j1, ... , ju},� ∈ {<,≤}, and

LAc |= 	 → �
1≤j≤m

tji�tjk

}
&

&
{
�
i∈I

¬(xi ≈ 0) | I ⊆ {1, ... , n} and LAc |= 	 →�
i∈I

¬(xi ≈ 0)
}
.

Clearly, LAc |= 	 → 
, so condition (i) of the conservative model extension property
is satisfied. For (ii), consider A ∈ LAc together with a tuple a ∈ Ax such that A |=

(a). If A is the one-element group and there is no B ∈ LAc satisfying (ii), then
LAc |= 	 →�n

i=1 ¬(xi ≈ 0). So LAc |= 
 →�n
i=1 ¬(xi ≈ 0) by the definition of


, contradicting the fact that A |= 
(a). If A is non-trivial, let B be the divisible
hull of A and note that B is an infinite member of LAc. We claim that there is a
b ∈ B such that B |= 	(a, b). If no such b exists, then, for each 1 ≤ j ≤ m, a pair of
inequations tji (a)�py and py�tjk (a) of 	j(a, y) is unsatisfiable, for � ∈ {<,≤}.
We settle the case where all these inequations are of the form tji (a) < py and
py < tjk (a), the other cases being very similar. Since B is divisible and every divisible
ordered abelian group is densely ordered, we get tjk (a) ≤ tji (a). Moreover, tji < py
and py < tjk entail tji < tjk , and hence LAc |= 
 →�1≤j≤m tji < tjk . But then
A |= 
(a) implies tji (a) < tjk (a) for some 1 ≤ j ≤ m, a contradiction.

Finally, if we have a conjunction of literals of the form 	(x, y) & 	′(x), where
	′ is any conjunction of literals, the quantifier-free formula 
 & 	′ satisfies the
conditions for the conservative model extension property.

Example 2.13. The positive universal class DLc of linear orders with endpoints,
in the language of bounded lattices, has the conservative model extension property.
Consider a finite set x, y and a conjunction of literals 	(x, y) satisfiable in DLc.
Suppose that x = ∅. If there is a non-trivial member of DLc satisfying 	, then the
formula 
 := ¬(0 ≈ 1) satisfies the conditions for the conservative model extension
property. On the other hand, if 	 is satisfied only by the trivial algebra, we can set

 := 0 ≈ 1.

Hence, let x �= ∅. We assume that y appears in all literals of 	; the general case
then follows by reasoning as in Example 2.12. Since the members of DLc are linearly
ordered, 	 is equivalent to a formula 	1 � ···� 	m, where each 	j is a conjunction
of formulas of the form y ≤ x, y ≥ x, y < x, or y > x with x ∈ x = x1, ... , xn.

Assume first that the trivial algebra satisfies 	 and let 
(x) be the formula

&
{
�

(i,j)∈J
xi�xj | J ⊆ {1, ... , n}2,� ∈ {<,≤}, and DLc |= 	 → �

(i,j)∈J
xi�xj

}
.

Reasoning as in Example 2.12, it is not difficult to see that 
 satisfies the conditions
for the conservative model extension property. Just replace the divisible hull of an
ordered abelian group with any dense linear order with endpoints that extends the
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given linear order with endpoints A ∈ DLc (e.g., there is an embedding of A into the
lexicographic product of A and [0, 1] which preserves the bounds).

In the case where 	 is not satisfied in the trivial algebra, we replace 
 by

 & ¬(0 ≈ 1).

§3. Model completions. Let us first recall some relevant model-theoretic notions,
referring to [9, Section 3.5] for further details. By a theory we will always mean a
first-order theory, i.e., a set of sentences over some first-order language L. We let
Th(K) denote the theory of a class K of L-structures, i.e., the set of L-sentences that
are satisfied by all members of K. Two theories T and T ′ are called co-theories if
they entail the same universal sentences. Semantically, T ′ is a co-theory of T if, and
only if, every model of T embeds into a model of T ′ and vice versa. A theory T ∗

is model complete if every formula is equivalent over T ∗ to an existential formula;
that is, model complete theories are those in which alternations of quantifiers can
be eliminated. Semantically, a theory T ∗ is model complete if, and only if, every
embedding between models of T ∗ is elementary. A theory T ∗ is a model companion
of a theory T if it is a model complete co-theory of T. A model completion of a
theory T is a model companion T ∗ of T such that for any model M of T, the theory
of T ∗ together with the diagram of M is complete.

Let us also recall that a class K of L-structures has the amalgamation property if
given any A,B,C ∈ K and embeddings f : A → B and g : A → C, there exist D ∈ K
and embeddings h : B → D and k : C → D satisfying hf = kg.

Below, we collect some useful facts related to model completions.

Proposition 3.1 (cf. [9, Propositions 3.5.13, 3.5.15, 3.5.18, and 3.5.19]).

(a) A theory has at most one model companion up to logical equivalence.
(b) If a ∀∃-theory T has a model companion T ∗, then T ∗ is logically equivalent to

the theory of the existentially closed models of T.
(c) If T ∗ is a model companion of a theory T, then T ∗ is a model completion of T

if, and only if, the class of models of T has the amalgamation property.
(d) A theory T ∗ is a model completion of a universal theory T if, and only if, T ∗ is

a co-theory of T that admits quantifier elimination.

Our aim in this section is to prove the following characterization of universal
classes of algebras whose theories have a model completion.

Theorem 3.2. Let K be a universal class of algebras. The theory of K has a
model completion if, and only if, K has the amalgamation property, variable projection
property, and conservative model extension property.

For universal classes of algebras with finite presentations, Theorem 3.2 specializes
to [38, Theorem 5] (see Section 8). Observe also that for locally finite varieties,
Remark 2.5 and Proposition 2.11 yield the following simpler characterization.

Corollary 3.3 [38, Corollary 1, p. 319]. Let V be a locally finite variety. Then the
theory of V has a model completion if, and only if, V has the amalgamation property.

We first settle the “if” part of Theorem 3.2.
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Proposition 3.4. Let K be a universal class of algebras. If K has the amalgamation
property, variable projection property, and conservative model extension property, then
the theory of K has a model completion.

Proof. Fix a countably infinite set of variables z and let

J := {(	, y) | 	 is a conjunction of literals with variables in z, and y ∈ z}.

Consider j = (	, y) ∈ J . Let x be the set of variables occurring in 	 different from
y. Since K has the variable projection property, there exists a quantifier-free formula
�j(x) such that K |= 	+ → �j and for every equation ε(x),

K |= 	+ → ε =⇒ K |= �j → ε. (1)

Since K has the conservative model extension property, there also exists a quantifier-
free formula 
j(x) satisfying the following conditions:

(i) K |= 	 → 
j and
(ii) for any A ∈ K generated by a ∈ Ax such that A |= 
j(a) and for any equation
ε(x),

K |= 	+ → ε =⇒ A |= ε(a),

there exist an algebra B ∈ K extending A and b ∈ B such that B |= 	(a, b).

We define the first-order sentence

�j := ∀x [(�j & 
j) → ∃y.	].

Let T := Th(K) be the theory of K and set T ∗ := T ∪ {�j | j ∈ J}. We claim that
T ∗ is a model completion of T. In view of Proposition 3.1(d), it suffices to show
that T ∗ has quantifier elimination and is a co-theory of T.
T ∗ has quantifier elimination. We prove that for any (	, y) ∈ J ,

T � ∀x [(∃y.	) → (�j & 
j)]. (2)

It follows then from the definition of T ∗ and (2) that T ∗ entails that any formula
∃y.	, where	 is a conjunction of literals with variables in z and y ∈ z, is equivalent
to a quantifier-free formula. So T ∗ has quantifier elimination (see, e.g., [37, Lemma
3.2.4]).

For the proof of (2), fix an arbitrary j = (	, y) ∈ J . It suffices to show that for
any algebra A ∈ K and map g : x → A,

A, g |= ∃y.	 =⇒ A, g |= �j & 
j.

Suppose that A, g |= ∃y.	. Then A, f |= 	 for some map f : x, y → A extending
g. Moreover, since K |= 	+ → �j and K |= 	 → 
j , it follows that A, f |= �j and
A, f |= 
j . But �j and 
j have variables in x, so A, g |= �j and A, g |= 
j , yielding
A, g |= �j & 
j .
T ∗ is a co-theory of T. SinceT ⊆ T ∗, it suffices to show that any universal sentence

entailed by T ∗ is entailed by T. First we show that for any j = (	, y) ∈ J , algebra
A ∈ K, and map g : x → A,

A, g |= �j & 
j =⇒ there exist B ∈ K and  : A ↪→ B such that B, g |= ∃y.	. (3)
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Suppose that A, g |= �j & 
j . We will assume first that the unique homomorphism
g̃ : Tm(x) → A extending g is surjective, and hence that A is generated by the image
a of x under g. Note that A |= 
j(a). Moreover, if ε(x) is any equation such that
K |= 	+ → ε, then (1) yields K |= �j → ε and, since A |= �j(a), also A |= ε(a).
Hence, by (ii), there exist an algebra B in K extending A and b ∈ B such that
B |= 	(a, b). So B, g |= ∃y.	, where  : A ↪→ B is the inclusion map.

For the general case of (3), let A′ be the image of Tm(x) under g̃ in A. Since K
is a universal class and A′ embeds into A, also A′ ∈ K. By the previous argument,
there exist B′ ∈ K and ′ : A′ ↪→ B′ such that B′, ′g |= ∃y.	, witnessed by b ∈ B ′,
say. Since K has the amalgamation property, we obtain for the injection ′ and the
inclusion A′ ↪→ A, an extension  : A ↪→ B with B ∈ K and an embedding � : B′ ↪→ B
such that the following diagram commutes:

A′ B′

A B

′

�



Since 	 is quantifier-free, we have B, g |= ∃y.	 witnessed by �(b).
To conclude the proof, let α be a universal sentence such that T ∗ � α. By the

compactness theorem of first-order logic, there exists a finite subset F ⊆ J such that
T ∪ {�j | j ∈ F } � α. We prove that, in fact, T � α. Consider any A ∈ K. Let w
be the set of variables appearing in the scope of the universal quantifier in one of
the sentences {�j | j ∈ F } and let g : w → A be any map. By repeatedly applying
(3), we obtain B ∈ K and  : A ↪→ B such that B, g |= �j for each j ∈ F . Now,
since T ∪ {�j | j ∈ F } � α, we have B, g |= α. But A is a subalgebra of B and α is
universal, so A, g |= α. Hence T � α as required. 

Example 3.5. The positive universal class LAc of ordered abelian groups,
defined over the algebraic language with operation symbols ∧,∨,+, –, 0, has the
amalgamation property [34], variable projection property (see Example 2.8), and
conservative model extension property (see Example 2.12). Hence Proposition 3.4
yields the well-known fact that the theory of LAc has a model completion [36].1

Similarly, the class MVc of linearly ordered MV-algebras satisfies the conditions of
Proposition 3.4 and its theory therefore has a model completion [29].

Example 3.6. The positive universal class DLc of linear orders with endpoints,
defined over the algebraic language of bounded lattices, has the amalgamation
property, variable projection property (see Example 2.6), and conservative model
extension property (see Example 2.13). Hence Proposition 3.4 yields the well-known
fact that the theory of DLc has a model completion (see, e.g., [9]). It also follows
easily that the theory of the positive universal class HAc of linearly ordered Heyting
algebras has a model completion. Note that any linear order with endpoints A ∈ DLc

can be expanded to a linearly ordered Heyting algebra by defining a ⊃ b := 1 if
a ≤ b and a ⊃ b := b otherwise. Indeed, the theory ofHAc is a definitional extension

1Note that although the class of ordered abelian groups is often defined using other first-order
languages (e.g., with + and the relation ≤), this difference is immaterial for the existence of a model
completion.
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of the theory of DLc (in the sense of, e.g., [24]), where the binary function symbol
⊃ is defined by the formula

�(x, y, z) := (x ≤ y & z ≈ 1) � (y < x & z ≈ y).

Using the fact that � is quantifier-free, the existence of a model completion for the
theory of HAc follows directly from the existence of a model completion for the
theory of DLc.

We now prove the “only if” part of Theorem 3.2. Note first that if K is a universal
class of algebras whose theory has a model completion, thenKhas the amalgamation
property by Proposition 3.1(c). Next, we consider the variable projection property.

Proposition 3.7. Let K be a universal class of algebras. If the theory of K has a
model completion, then K has the variable projection property.

Proof. Let T := Th(K) be the theory of K, and let T ∗ be a model completion of
T. Fix a finite set x, y and conjunction of equations ϕ(x, y). Since T ∗ has quantifier
elimination, there exists a quantifier-free formula �(x) such that

T ∗ � ∀x [(∃y.ϕ) ↔ �]. (4)

It follows from (4) that T ∗ � ∀x, y (ϕ → �) and, since T and T ∗ have the same
universal consequences,T � ∀x, y (ϕ → �). That is,K |= ϕ → �. It remains to show
that for any equation ε(x) satisfying K |= ϕ → ε, also K |= � → ε.2

Suppose that K �|= � → ε. Then there is an algebra A in K and a tuple a ∈ Ax such
that A |= �(a) and A �|= ε(a). Since T and T ∗ are co-theories and T is universal,
there exists a model B of T ∗ extending A such that B ∈ K. Moreover, A |= �(a)
implies B |= �(a), and hence B |= ∃y.ϕ(a, y) by (4). Pick b ∈ B such that B |=
ϕ(a, b). Since A �|= ε(a), we get B �|= ε(a). Hence K �|= ϕ → ε as required.

To complete the proof of Theorem 3.2, it remains to prove that whenever the
theory of a universal class of algebras has a model completion, this class has the
conservative model extension property. In fact, we will show below that the existence
of a model completion is equivalent to a stronger property that directly implies the
conservative model extension property. This stronger property is difficult to check
in concrete cases, but will be useful in Section 5 for establishing consequences of the
existence of a model completion for the definability of principal congruences.

Proposition 3.8. Let K be a universal class of algebras. The theory of K has a
model completion if, and only if, for any finite sets x, y and conjunction of literals
	(x, y), there is a quantifier-free formula 
(x) satisfying the following conditions:

(i) K |= 	 → 
 and
(ii) for any A ∈ K and tuple a ∈ Ax satisfying A |= 
(a), there exist B ∈ K

extending A and b ∈ By such that B |= 	(a, b).

In particular, if the theory of K has a model completion, then K has the conservative
model extension property.

2As pointed out by the referee, this implication is satisfied in fact for any quantifier-free formula ε(x).
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Proof. Let T := Th(K) be the theory of K, and suppose that T ∗ is a model
completion of T. Fix finite sets x, y and a conjunction of literals 	(x, y). Since T ∗

admits quantifier elimination, there exists a quantifier-free formula 
(x) such that

T ∗ � ∀x [(∃y.	) ↔ 
]. (5)

It follows that T ∗ � ∀x, y (	 → 
), and since T and T ∗ are co-theories,

T � ∀x, y (	 → 
). (6)

We show now that 
 satisfies (i) and (ii).
Condition (i) is an immediate consequence of (6). For (ii), fix an algebra A ∈ K

and a tuple a ∈ Ax such that A |= 
(a). Since T and T ∗ are co-theories and T
is universal, there exists a model B ∈ K of T ∗ that extends A. Since B |= 
(a), it
follows by (5) that there is a tuple b ∈ By such that B |= 	(a, b). This settles (ii).

For the converse direction, we only sketch the proof, as it is an easy modification
of the proof of Proposition 3.4. As before, we consider the theory T ∗ := T ∪ {�j |
j ∈ J}, but in this case �j is defined as ∀x (
j → ∃y.	), where the quantifier-free
formula 
j satisfies (i) and (ii). To show that T ∗ has quantifier elimination, it
suffices to show that T � ∀x (∃y.	 → 
j) for all j = (	, y) ∈ J , which follows by
(i) (cf. the proof of Proposition 3.4). On the other hand, (ii) yields the following
property similar to (3): if A, g |= 
j , then there exist B ∈ K and  : A ↪→ B such
that B, g |= ∃y.	. Reasoning as in the last part of the proof of Proposition 3.4, we
conclude that T and T ∗ are co-theories. It follows then by Proposition 3.1(d) that
T ∗ is a model completion of T. 

Remark 3.9. The first part of Proposition 3.8 admits the following reformulation.
Let K be a universal class of algebras and let T := Th(K) be its first-order theory.
Then the following statements are equivalent:

(1) T has a model completion.
(2) For any finite setsx, y and conjunction of literals	(x, y), there is a quantifier-

free formula 
(x) with the same universal consequences, with respect to T,
as ∃y.	.

This equivalence was established (for arbitrary first-order languages) by Millar
in [32, Theorem 3.1] (see also [9, Theorem 3.5.20] for a related result) and has
recently been considered in the context of the verification of data-aware processes
[8, Theorem 3.2].

§4. Compact congruences. In this section, we show that for varieties of algebras
satisfying certain congruence lattice conditions, the rather complicated conservative
model extension property appearing in Theorem 3.2 can be replaced by a more
amenable equational variable restriction property. The resulting characterization is
a slightly more general version of a theorem proved by Ghilardi and Zawadowski
in [19, Theorem 4].

Recall that the compact (equivalently, finitely generated) congruences of an
algebra A ordered by set-theoretic inclusion always form a join-semilattice. A class
of algebras K is said to have the compact intersection property if the join-semilattice
of compact congruences of each A ∈ K forms a lattice, i.e., the intersection of
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any two compact congruences of A is compact. Recall also that K is said to
be congruence distributive if the congruence lattice of each A ∈ K is distributive.
The following lemma describes a useful syntactic consequence of these two
properties.

Lemma 4.1. Let V be a congruence distributive variety that has the compact
intersection property. For any finite set x and conjunctions of equations ϕ1(x), ϕ2(x),
there exists a conjunction of equations �(x) such that for any equation ε(x, y),

V |= (ϕ1 � ϕ2) → ε ⇐⇒ V |= �→ ε.

Proof. Let x be any finite set and let ϕ1(x), ϕ2(x) be conjunctions of equations.
We fix z to be any countably infinite set with x ∩ z = ∅ and define �i :=
CgFV(x,z)({�̂ | � is an equation of ϕi}) for i ∈ {1, 2}. Since �1 and �2 are compact,
so, by assumption, is their intersection; that is, there exist a finite setw ⊆ z and equa-
tions �1(x,w), ... , �n(x,w) such that {�̂1, ... , �̂n} generates �1 ∩ �2. Let f : x, z →
FV(x, z) be a map sending each x ∈ x to x and eachw ∈ w to some u ∈ FV(x), such
that the image of f contains x, z. Clearly, the unique homomorphism g : FV(x, z) →
FV(x, z) extending f is surjective. Define g∗ : Con FV(x, z) → Con FV(x, z) by
g∗(�) := CgFV(x,z)({(g(a), g(b)) | (a, b) ∈ �}). Since V is congruence distributive
and g is surjective, g∗ is a lattice homomorphism (cf. [2, Lemma 1.11]) and, in
particular, g∗(�1 ∩ �2) = g∗(�1) ∩ g∗(�2) = �1 ∩ �2. Hence also {g(�̂1), ... , g(�̂n)}
generates �1 ∩ �2, where g(�̂j) := (g(s), g(t)) for each �̂j = (s, t), and we let �(x)
be the conjunction of the equations �1(x, u, ... , u), ... , �n(x, u, ... , u).

For any equation ε(x, y), we may assume without loss of generality that y ⊆ z
and use Lemma 2.1 to obtain

V |= (ϕ1 � ϕ2) → ε ⇐⇒ V |= ϕ1 → ε and V |= ϕ2 → ε
⇐⇒ ε̂ ∈ �1 and ε̂ ∈ �2

⇐⇒ ε̂ ∈ �1 ∩ �2

⇐⇒ V |= �→ ε. 

Remark 4.2. The previous lemma can also be deduced from the fact that a variety
is congruence distributive and has the compact intersection property if, and only if,
it has equationally definable principal meets (cf. [4, Theorem 1.5]).

Recall next that a class of algebras K has first-order definable principal congruences
if there exists a formulaα(x1, x2, y1, y2) satisfying for all A ∈ K anda1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ A |= α(a1, a2, b1, b2),

where CgA(b1, b2) := CgA({(b1, b2)}) is the smallest congruence of A containing
the pair (b1, b2). If α can be chosen to be a quantifier-free formula or conjunction
of equations, then K is said to have, respectively, quantifier-free definable principal
congruences or equationally definable principal congruences. For a variety V, it is
known that having equationally definable principal congruences corresponds to
a property of the associated consequence relation of V (often referred to as a
deduction theorem) and a property of the join-semilattices of compact congruences
of members of V.
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Proposition 4.3 [26, Theorems 5 and 8], [3, Theorem 1.7]. The following
statements are equivalent for any variety V:

(1) V has equationally definable principal congruences.
(2) There exists a conjunction of equations ϕ(x1, x2, y1, y2) such that for any terms
s1, s2, t1, t2 and conjunction of equations �,

V |= (� & (s1 ≈ s2)) → (t1 ≈ t2) ⇐⇒ V |= �→ ϕ(s1, s2, t1, t2).

(3) The join-semilattice of compact congruences of each A ∈ V is dually Brouw-
erian, i.e., for any compact congruences �1, �2 of A, there exists a compact
congruence �1 – �2 of A such that for every compact congruence �3 of A,

�1 – �2 ⊆ �3 ⇐⇒ �1 ⊆ �1 ∨ �2.

Equationally definable principal congruences imply two further useful properties.

Proposition 4.4 [12, Corollary 2], [26, Corollary 6]. If a variety has equationally
definable principal congruences, then it has the congruence extension property and is
congruence distributive.

We say next that a class of algebras K has the equational variable restriction
property if for any finite set x, y and conjunction of equations �(x, y), there exists
a formula �(x) that is either ⊥ or a conjunction of equations such that K |= �→ �
and for any conjunction of equations ϕ(x),

K |= ϕ → � =⇒ K |= ϕ → �.
The main result of this section is the following characterization theorem.

Theorem 4.5. Let V be a variety that has the compact intersection property and
equationally definable principal congruences. The theory of V has a model completion
if, and only if,V is coherent and has the amalgamation property and equational variable
restriction property.

Remark 4.6. Theorem 4.5 provides a slightly more general algebraic reformu-
lation of [19, Theorem 4], which requires that the join-semilattice of compact
congruences of each algebra A ∈ V has a bottom element, or, equivalently, that
there is a variable-free conjunction of equations � such that V |= �→ ε for every
equation ε. This condition is not satisfied by all the varieties of interest in this paper,
in particular, the variety of lattice-ordered abelian groups.

We show first that the right-to-left direction of Theorem 4.5 holds even in the
absence of the compact intersection property.

Proposition 4.7. Let V be a variety that has equationally definable principal
congruences. If V is coherent and has the amalgamation property and the equational
variable restriction property, then the theory of V has a model completion.

Proof. Using Theorem 3.2, it suffices to prove that V has the conservative model
extension property. Consider a finite set x, y and conjunction of literals 	(x, y),
assuming without loss of generality that 	 is satisfiable in V (cf. Remark 2.10). By
coherence, there exists a conjunction of equations ϕ(x) such that V |= 	+ → ϕ and
for any equation ε(x),

V |= 	+ → ε =⇒ V |= ϕ → ε.
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Let �1, ... , �m be the equations of 	–. Since V has equationally definable principal
congruences, it follows by Proposition 4.3 that for each i ∈ {1, ... , m}, there exists
a conjunction of equations �i(x, y) such that for any conjunction of equations
�(x, y),

V |= (� & 	+) → �i ⇐⇒ V |= � → �i . (7)

The equational variable restriction property yields a formula �′i(x) for each i ∈
{1, ... , m} that is either ⊥ or a conjunction of equations such that V |= �′i → �i and
for any conjunction of equations ϕ′(x),

V |= ϕ′ → �i =⇒ V |= ϕ′ → �′i . (8)

We claim that the quantifier-free formula 
 := ϕ & ¬�′1 & ··· & ¬�′m satisfies the
conditions in the definition of conservative model extension property.

Note first that, since V |= 	 → 	+ and V |= 	+ → ϕ, also V |= 	 → ϕ. To
conclude that V |= 	 → 
, it remains to show that V |= 	 → ¬�′i for each i ∈
{1, ... , m}. Let i ∈ {1, ... , m}. Since V |= �′i → �i and V |= (�i & 	+) → �i , also
V |= (�′i & 	+) → �i . But then V |= (¬�i & 	+) → ¬�′i and hence V |= 	 → ¬�′i as
required.

Now, consider an algebra A ∈ V generated by a ∈ Ax such that A |= 
(a) and for
any equation ε(x),

V |= 	+ → ε =⇒ A |= ε(a). (9)

Let f : FV(x) � A be the surjective homomorphism mapping the generators of
FV(x) to the elements of a. Considering FV(x) as a subalgebra of FV(x, y), we
define

� ′ := CgFV(x,y)({�̂ | � is an equation of 	+}) and � := � ′ ∨ CgFV(x,y)(kerf).

Let B := FV(x, y)/� and let g be the natural homomorphism from FV(x, y) onto B.
Since kerf ⊆ � ∩ FV(x)2, the inclusion FV(x) ↪→ FV(x, y) yields a homomorphism
A → B mappingf(x) to g(x) for eachx ∈ x, as illustrated by the following diagram:

FV(x) FV(x, y)

A B

f g

To prove that this homomorphism is an embedding, it suffices to show that
� ∩ FV(x)2 ⊆ kerf. Since V has equationally definable principal congruences, by
Proposition 4.4, it has the congruence extension property. Hence, by Lemma 2.2,

� ∩ FV(x)2 = (� ′ ∨ CgFV(x,y)(kerf)) ∩ FV(x)2 = (� ′ ∩ FV(x)2) ∨ kerf.

It therefore suffices to prove that � ′ ∩ FV(x)2 ⊆ kerf. Consider any equation ε(x)
such that ε̂ ∈ � ′ ∩ FV(x)2. An application of Lemma 2.1 yields V |= 	+ → ε and,
by (9), we obtain A |= ε(a). Hence ε̂ ∈ kerf as required.

To conclude the proof, we show that B |= 	(a, b), where b is the image under g
of the equivalence class of y. Since � ′ ⊆ � = ker g, we have B |= 	+(a, b). Suppose
toward a contradiction that B |= �i(a, b) for some i ∈ {1, ... , m}. Then �̂i ∈ �, and
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so V |= (	+ & �) → �i for some conjunction �(x) of equations in kerf. By (7), we
have V |= � → �i and hence, by (8), also V |= � → �′i . Together with A |= �(a), this
entails A |= �′i(a), contradicting the fact that A |= 
(a).

We now complete the proof of Theorem 4.5 by establishing the necessity of the
stated conditions, recalling that a variety that has equationally definable principal
congruences is congruence distributive (Proposition 4.4).

Proposition 4.8. Let V be a congruence distributive variety that has the compact
intersection property. If the theory of V has a model completion, then V is coherent
and has the amalgamation property and equational variable restriction property.

Proof. If the theory of V has a model completion, then V is coherent and has the
amalgamation property by Theorem 3.2. Hence, it remains to settle the equational
variable restriction property. To this end, consider a finite set x, y and conjunction
of equations �(x, y). We must find a formula �(x) that is either ⊥ or a conjunction
of equations such that V |= �→ � and for any conjunction of equations ϕ(x),

V |= ϕ → � =⇒ V |= ϕ → �.

Let T := Th(V) be the theory of V, and let T ∗ be a model completion of T. Since
T ∗ has quantifier elimination, there exists a quantifier-free formula �(x) satisfying

T ∗ � ∀x [(∀y.�) ↔ �].

So T ∗ � ∀x, y (� → �) and, since T and T ∗ are co-theories, T � ∀x, y (� → �).
Assume without loss of generality that � = �1 � ···� �m where each �i is a
conjunction of literals. For each i ∈ {1, ... , m}, we have V |= �i → � and so, by
the disjunction property for varieties, either V |= �+

i → � or V |= ¬�i .
Now let J := {i ∈ {1, ... , m} | �i is satisfiable in V}. Then V |=�i∈J �

+
i → �,

noting that �i∈J �
+
i = ⊥ for J = ∅. By Lemma 4.1, or taking ⊥ if J = ∅, there

exists a formula �(x) that is either ⊥ or a conjunction of equations such that for any
equation ε(x, z),

V |=�
i∈J
�+
i → ε ⇐⇒ V |= �→ ε.

In particular, V |= �→ �. Now let ϕ(x) be any conjunction of equations such
that V |= ϕ → �. Then T � ∀x [ϕ → (∀y.�)] and, since T and T ∗ are co-theories,
T ∗ � ∀x [ϕ → (∀y.�)]. Hence T ∗ � ∀x (ϕ → �) and, again using the fact that
T and T ∗ are co-theories, T � ∀x (ϕ → �), yielding V |= ϕ → �. But then
V |= ϕ →�i∈J �

+
i and, since V |=�i∈J �

+
i → �, by the above equivalence,

V |= ϕ → � as required. 

Finally, in this section, we show that for varieties that have the congruence
extension property, a small generalization of the equational variable restriction
property implies the amalgamation property. Let us first recall the following well-
known relationship between amalgamation and deductive interpolation.

Proposition 4.9 (cf. [30, Theorem 22]). Let V be a variety that has the congruence
extension property.V has the amalgamation property if, and only if, it has the deductive
interpolation property; that is, for any finite sets x, y, z and conjunctions of equations
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ϕ(x, y), �(x, z) satisfying V |= ϕ → �, there exists a conjunction of equations �(x)
such that V |= ϕ → � and V |= �→ �.

It follows easily that the amalgamation property and equational variable
restriction property can be combined into a single “uniform interpolation” property.

Corollary 4.10. Let V be a variety that has the congruence extension property.
Then the following statements are equivalent:

(1) V has the amalgamation property and the equational variable restriction
property.

(2) For any finite set x, y and conjunction of equations �(x, y), there exists a
formula �(x) that is either⊥ or a conjunction of equations such thatV |= �→ �
and for any conjunction of equations ϕ(x, z),

V |= ϕ → � =⇒ V |= ϕ → �.
Proof. (1) ⇒ (2) Suppose that V has the amalgamation property and the

equational variable restriction property, and consider a finite set x, y and
conjunction of equations �(x, y). By the equational variable restriction property,
there exists a formula �(x) that is either ⊥ or a conjunction of equations such that
V |= �→ � and for any conjunction of equations ϕ(x),

V |= ϕ → � =⇒ V |= ϕ → �.
Now consider a conjunction of equationsϕ(x, z) satisfying V |= ϕ → �. Since V has
the congruence extension property and the amalgamation property, by Proposition
4.9, there exists a conjunction of equations �′(x) such that V |= ϕ → �′ and
V |= �′ → �. By the above implication, V |= �′ → � and hence also V |= ϕ → �
as required.

(2) ⇒ (1) The amalgamation property and the equational variable restriction
property both follow directly from condition (2) and Proposition 4.9. 

Relationships between uniform interpolation and the existence of model comple-
tions have been investigated in some depth by Ghilardi and Zawadowski in the setting
of intermediate and modal logics [19, 20]. In particular, Pitts’ uniform interpolation
theorem for intuitionistic propositional logic [35] is used to deduce that the variety
HA of Heyting algebras satisfies certain categorical conditions and therefore has a
model completion. In the terminology of this section: it follows from Pitts’ theorem
that HA is coherent and satisfies condition (2) of Corollary 4.10 and hence has
the amalgamation property and the equational variable restriction property; the
result then follows by Theorem 4.5 (a slight generalization of [19, Theorem 4]),
since HA has the compact intersection property and equationally definable principal
congruences. More generally, the theories of precisely eight varieties of Heyting
algebras (those that have the amalgamation property) have a model completion
[20]; finite axiomatizations of these model completions for the six locally finite cases
are provided in [11].

§5. Parametrically definable principal congruences. In this section, we show that if
a variety satisfies certain congruence lattice conditions and has a model completion,
then it must have equationally definable principal congruences. Our main technical
tool is a weaker condition for defining principal congruences that is inspired by work
of Glass and Pierce on existentially complete lattice-ordered abelian groups [22].
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We say that a class of algebrasK has parametrically definable principal congruences
if there exists a quantifier-free formula �(x1, x2, y1, y2, z) such that for each A ∈ K
and all a1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ any B ∈ K extending A satisfies

B |= ∀z.�(a1, a2, b1, b2, z).

Clearly, if a class of algebras has equationally definable principal congruences, it
has parametrically definable principal congruences. However, there are classes of
algebras that have parametrically definable principal congruences but do not even
have first-order definable principal congruences (see Example 5.8). The following
proposition shows that this cannot be the case for a universal class of algebras whose
theory has a model completion.

Proposition 5.1. Let K be a universal class of algebras with parametrically
definable principal congruences. If the theory of K has a model completion, then K
has quantifier-free definable principal congruences.

Proof. Suppose that K has parametrically definable principal congruences,
witnessed by a quantifier-free formula �(x1, x2, y1, y2, z), and that the theory of
K has a model completion. We can assume that ¬� = 	1 � ···� 	n, where each 	i
is a conjunction of literals. By Proposition 3.8, for each i ∈ {1, ... , n}, there exists a
quantifier-free formula 
i(x1, x2, y1, y2) such that

(i) K |= 	i → 
i and
(ii) for any A ∈ K, and a1, a2, b1, b2 ∈ A satisfying A |= 
i(a1, a2, b1, b2), there

exists an extension B ∈ K of A such that B |= ∃z.	i(a1, a2, b1, b2, z).
We claim that for each A ∈ K and all a1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ A |= &
1≤i≤n

¬
i(a1, a2, b1, b2),

and hence that K has quantifier-free definable principal congruences. Suppose first
that (a1, a2) ∈ CgA(b1, b2). By assumption, any B ∈ K extending A satisfies B |=
∀z.�(a1, a2, b1, b2, z) and hence B �|= ∃z.	i(a1, a2, b1, b2, z) for each i ∈ {1, ... , n}.
But then, by (ii), also A |= ¬
i(a1, a2, b1, b2) for each i ∈ {1, ... , n}. Now suppose
that (a1, a2) /∈ CgA(b1, b2). By assumption, there exists an extension B ∈ K of A such
that B �|= ∀z.�(a1, a2, b1, b2, z), and hence B |= ∃z.	i(a1, a2, b1, b2, z) for some i ∈
{1, ... , n}. But then, since K |= 	i → 
i , by (i), also B |= 
i(a1, a2, b1, b2). Finally,
as 
i is quantifier-free, it follows that A |= 
i(a1, a2, b1, b2). 

Example 5.2. It is easy to see that the variety of abelian groups does not have first-
order definable principal congruences. If this were the case, there would be a first-
order formula α(x, y) such that for any abelian group G, an element a ∈ G belongs
to the subgroup of G generated by an element b ∈ G if, and only if, G |= α(a, b). But
then the sentence ∃y∀x.α(x, y) would define the class of cyclic groups, contradicting
the fact that this class is not elementary. On the other hand, the theory of abelian
groups does have a model completion (cf. [13]). Proposition 5.1 therefore tells us
that the variety of abelian groups does not have parametrically definable principal
congruences.

We strengthen Proposition 5.1 by exploiting the following fact, due to Fried,
Grätzer, and Quackenbush [14].
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Proposition 5.3 [14, Theorems 4.5 and 6.9]. Let V be a congruence distributive
variety that has the congruence extension property. V has first-order definable principal
congruences if, and only if, it has equationally definable principal congruences.

Combining this fact with Proposition 5.1 yields the following result.

Proposition 5.4. Let V be a congruence distributive variety that has the
congruence extension property and parametrically definable principal congruences. If
the theory of V has a model completion, then V has equationally definable principal
congruences.

We now provide a sufficient syntactic condition for a variety with the congruence
extension property to have parametrically definable principal congruences that
is easier to establish in certain cases. We say that a variety V has a guarded
deduction theorem if there exist conjunctions of equations �(x1, x2, y1, y2, z)
and ϕ(x1, x2, y1, y2, z) such that for any finite set w with w ∩ z = ∅, terms
s1(w), s2(w), t1(w), t2(w), and conjunction of equations �(w),

(i) V |= (� & (t1 ≈ t2)) → (s1 ≈ s2) ⇐⇒ V |= �→ ∀z.(� → ϕ)(s1, s2, t1, t2, z)
and

(ii) V |= (� & �(s1, s2, t1, t2, z)) → � ⇐⇒ V |= �→ � for any equation �(w).

This property has the following algebraic characterization:

Proposition 5.5. The following statements are equivalent for any variety V:

(1) V has a guarded deduction theorem.
(2) There exist conjunctions of equations �(x1, x2, y1, y2, z) and ϕ(x1, x2, y1, y2, z)

such that for any finitely generated algebra A ∈ V and a1, a2, b1, b2 ∈ A,
there exists an embedding of A into some member of V satisfying
∃z.�(a1, a2, b1, b2, z), and

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ B |= ∀z.(� → ϕ)(h(a1), h(a2), h(b1), h(b2), z)

for any B ∈ V and homomorphism h : A → B.

Proof. (1) ⇒ (2) Let �(x1, x2, y1, y2, z) and ϕ(x1, x2, y1, y2, z) be conjunctions
of equations satisfying the conditions for a guarded deduction theorem, and fix a
finitely generated algebra A ∈ V and a1, a2, b1, b2 ∈ A. We claim that � and ϕ satisfy
the equivalence given in (2).

Note first that since A is finitely generated, there exists a surjective homomorphism
f : Tm(w) � A for some finite setw with w ∩ z = ∅. Let s1, s2, t1, t2 be terms in the
preimages under f ofa1, a2, b1, b2, respectively. Now consider (a1, a2) ∈ CgA(b1, b2).
Since A is isomorphic to Tm(w)/ kerf, by the correspondence theorem for
universal algebra, (s1, s2) ∈ kerf ∨ CgTm(w)(t1, t2). Moreover, since any congruence
is the directed union of the compact congruences below it, there exists a finite
subset S ⊆ kerf such that (s1, s2) ∈ CgTm(w)(S) ∨ CgTm(w)(t1, t2). Let �(w) be
the conjunction of the equations in S. It follows easily from Lemma 2.1 that
V |= (� & (t1 ≈ t2)) → (s1 ≈ s2). Hence V |= �→ ∀z.(� → ϕ)(s1, s2, t1, t2, z), by
condition (i) in the definition of a guarded deduction theorem. But A |= �(f(w)),
so for any B ∈ V and homomorphism h : A → B,

B |= ∀z.(� → ϕ)(h(a1), h(a2), h(b1), h(b2), z).
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Now suppose that B |= ∀z.(� → ϕ)(h(a1), h(a2), h(b1), h(b2), z) for any B ∈ V and
homomorphism h : A → B. Let D+(A) be the positive diagram of A, i.e., the set of
all atomic sentences in the language extended with names for the elements of A that
are satisfied in A. Then

Th(V) ∪D
+(A) � ∀z.(� → ϕ)(a1, a2, b1, b2, z),

and hence, by the compactness theorem for first-order logic, there exists a finite
subset Σ ⊆ D

+(A) such that Th(V) ∪ Σ � ∀z.(� → ϕ)(a1, a2, b1, b2, z). For each
member of Σ, consider an equation in its preimage under the surjection Tm(w)2 �
A2. This yields a finite subset of kerf, and letting �(w) denote the conjunction of the
equations in this set, we obtain V |= �→ ∀z.(� → ϕ)(s1, s2, t1, t2, z). By condition
(i) in the definition of a guarded deduction theorem, we obtain V |= (� & (t1 ≈
t2)) → (s1 ≈ s2). Now let q : A � A/CgA(b1, b2) be the natural quotient map.
Since A/CgA(b1, b2), qf |= � & (t1 ≈ t2), we have A/CgA(b1, b2), qf |= s1 ≈ s2, i.e.,
(a1, a2) ∈ CgA(b1, b2).

To conclude, it remains to show that A embeds into some member of V
satisfying ∃z.�(a1, a2, b1, b2, z). Let B be the quotient of FV(w, z) with respect to the
congruence CgFV(w,z)({ε̂ | ε ∈ kerf} ∪ {�̂ | � is an equation of �(s1, s2, t1, t2, z)}).
Then B satisfies ∃z.�(a1, a2, b1, b2, z) and it is not difficult to see, using condition
(ii) in the definition of a guarded deduction theorem, that B extends A.

(2) ⇒ (1) Let �(x1, x2, y1, y2, z) and ϕ(x1, x2, y1, y2, z) be conjunctions of
equations satisfying the conditions in (2). Letw be any finite set satisfyingw ∩ z = ∅
and consider terms s1(w), s2(w), t1(w), t2(w) and a conjunction of equations �(w).

Let A be the quotient of FV(w) with respect to CgFV(w)({ε̂ | ε is an equation of �}),
with quotient map f : FV(w) � A. Let q : Tm(w) � FV(w) denote the natural
quotient map and define a1 := f(q(s1)), a2 := f(q(s2)), b1 := f(q(t1)), and
b2 := f(q(t2)). By Lemma 2.1, (a1, a2) ∈ CgA(b1, b2) if, and only if,V |= (� & (t1 ≈
t2)) → (s1 ≈ s2). Hence, in order to settle condition (i) in the definition of a guarded
deduction theorem, it remains to show that V |= �→ ∀z.(� → ϕ)(s1, s2, t1, t2, z) if,
and only if, for any B ∈ V and homomorphism h : A → B,

B |= ∀z.(� → ϕ)(h(a1), h(a2), h(b1), h(b2), z).

This follows by reasoning as in the proof of (1) ⇒ (2).
With respect to condition (ii) in the definition of a guarded deduction theorem,

let B denote the quotient of FV(w, z) with respect to

CgFV(w,z)({ε̂ | ε is an equation of �(w)}
∪ {�̂ | � is an equation of �(s1, s2, t1, t2, z)}).

Note that there is a canonical homomorphism k : A → B. By assumption, there is an
embedding j : A ↪→ B′ with B′ ∈ V and B′ |= ∃z.�(a1, a2, b1, b2, z). It follows easily
that there is a homomorphism h : B → B′ such that j = hk. Since j is injective, so
is k. Hence, by Lemma 2.1, we have that V |= (� & �(s1, s2, t1, t2, z)) → �′ implies
V |= �→ �′ for any equation �′(w). 

Proposition 5.6. Let V be a variety that has the congruence extension property
and a guarded deduction theorem. Then V has parametrically definable principal
congruences.
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Proof. It suffices to show that V has parametrically definable principal
congruences whenever the property in condition (2) of Proposition 5.5 holds for
some � and ϕ. Let �(x1, x2, y1, y2, z) := � → ϕ. We claim that for all A ∈ V and
a1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ each B ∈ V extending A
satisfies B |= ∀z.�(a1, a2, b1, b2, z).

Suppose first that (a1, a2) ∈ CgA(b1, b2). By the congruence extension property,
(a1, a2) ∈ CgA′(b1, b2), where A′ is the subalgebra of A generated by a1, a2, b1, b2.
Since A′ is a finitely generated member of V, it follows from condition (2) of
Proposition 5.5 that B |= ∀z.�(a1, a2, b1, b2, z) for every B ∈ V extending A′, and
hence, in particular, for every B ∈ V extending A.

Now suppose that (a1, a2) /∈ CgA(b1, b2). We assume first that A is finitely
generated, and then deduce the general case. Letw be a finite set such thatw ∩ z = ∅
and there exists a surjective homomorphism f : Tm(w) � A. We can assume
without loss of generality that x1, x2, y1, y2 ∈ w, and also f(x1) = b1, f(x2) =
b2, f(y1) = a1, f(y2) = a2. Let B := FV(w, z)/�, where

� := CgFV(w,z)({ε̂ | ε ∈ kerf} ∪ {�̂ | � is an equation of �}).

We claim that B extends A. Let j : A → B be the canonical homomorphism mapping
a1, a2, b1, b2 to the equivalence classes of x1, x2, y1, y2, respectively. By assumption,
there exist B′ ∈ V and an embedding i : A → B′ such that B′ |= ∃z.�(a1, a2, b1, b2, z).
It is not difficult to see that i factors through j, and since i is injective, so is j.

Now, by assumption, there exist C ∈ V and a homomorphism h : A → C satisfying
C |= ∃z.(� & ¬ϕi)(h(a1), h(a2), h(b1), h(b2), z) for some equationϕi ofϕ. It follows
that there exists a homomorphism k : Tm(w, z) → C which factors through the
composition g : Tm(w, z) � FV(w, z) � B and satisfies ϕi /∈ ker k, as depicted in
the diagram:

Tm(w) Tm(w, z)

A B

C

f g

k

h

j

Soϕi /∈ ker g, showing that B is an extension of A satisfying B �|= ∀z.�(a1, a2, b1, b2, z).
To conclude, consider any A ∈ V and suppose that B |= ∀z.�(a1, a2, b1, b2, z) for

all B ∈ V extending A. Then Th(V) ∪D(A) � ∀z.�(a1, a2, b1, b2, z), where D(A)
is the diagram of A, i.e., the collection of all atomic sentences and negated atomic
sentences in the language extended with names for the elements of A that are satisfied
in A. By the compactness theorem for first-order logic, there is a finite subset
Σ ⊆ D(A) such that Th(V) ∪ Σ � ∀z.�(a1, a2, b1, b2, z). Let A′ be the subalgebra
of A generated by a1, a2, b1, b2 and the elements named by Σ. As the diagram
of A′ contains Σ, every B′ ∈ V extending A′ satisfies B′ |= ∀z.�(a1, a2, b1, b2, z).
Note that A′ is a finitely generated member of V and so, by the argument above,
(a1, a2) ∈ CgA′(b1, b2) ⊆ CgA(b1, b2). 
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Combining Propositions 5.4 and 5.6 yields the main result of this section.

Theorem 5.7. Let V be a congruence distributive variety that has the congruence
extension property and a guarded deduction theorem. If the theory of V has a model
completion, then V has equationally definable principal congruences.

Example 5.8. As first proved by Glass and Pierce in [22], the theory of the
variety LA of lattice-ordered abelian groups does not have a model completion. It
is well-known that LA is congruence distributive and has the congruence extension
property, but does not have equationally (or even first-order) definable principal
congruences. Hence it suffices, by Theorem 5.7, to observe that the formulas

� := (x1 – x2) ∧ (x2 – x1) ∧ 0 ≤ z & ((y1 – y2) ∧ (y2 – y1) ∧ 0) ∨ z ≈ 0 and

ϕ := z ≈ 0

satisfy conditions (i) and (ii) in the definition of a guarded deduction theorem
for LA.

§6. Varieties of pointed residuated lattices. In this section, we apply the results of
the last two sections to a family of varieties of algebras that provide algebraic
semantics for substructural logics, including (up to term-equivalence) lattice-
ordered groups, MV-algebras, and Heyting algebras (see, e.g., [5, 16, 31]).

A pointed residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, e, 0〉 such that
〈A,∧,∨〉 is a lattice, 〈A, ·, e〉 is a monoid, and \, / are left and right residuals,
respectively, of · in the underlying lattice order, i.e., for all a, b, c ∈ A,

b ≤ a\c ⇐⇒ a · b ≤ c ⇐⇒ a ≤ c/b.
It will be useful to define a further binary operation x ≡ y := (x\y) ∧ (y\x) ∧ e,
noting that (a ≡ b) = e for a, b ∈ A if, and only if, a = b. We also define for any
a ∈ A inductively a0 := e and an+1 := a · an (n ∈ N).

Pointed residuated lattices form a congruence distributive variety [5], and include
the subvariety CPRL of commutative pointed residuated lattices satisfying x · y ≈
y · x. In particular, a Heyting algebra is term-equivalent to a commutative pointed
residuated lattice satisfying x · y ≈ x ∧ y and x ∧ 0 ≈ 0, and a Boolean algebra is
term-equivalent to a Heyting algebra satisfying (x\0)\0 ≈ x.

Let V be a variety of pointed residuated lattices. We let Vc denote the class of
linearly ordered members of V, and call V semilinear if V = ISP(Vc). Semilinearity
can also be expressed equationally; in particular, a variety of commutative pointed
residuated lattices is semilinear if, and only if, it satisfies e ≈ ((x\y) ∧ e) ∨
((y\x) ∧ e) [5].

Example 6.1. The variety LA of lattice-ordered abelian groups is term-equivalent
to the variety of commutative pointed residuated lattices satisfying e ≈ 0 and
x · (x\e) ≈ e. More precisely, if 〈L,∧,∨,+, –, 0〉 ∈ LA and we define x · y := x + y,
x\y := y – x, and x/y := x – y, then 〈L,∧,∨, ·, \, /, 0, 0〉 ∈ CPRL satisfies e ≈ 0
and x · (x\ e) ≈ e. Conversely, if L ∈ CPRL satisfies e ≈ 0 and x · (x\ e) ≈ e and
we define x + y := x · y and – x := x\e, then 〈L,∧,∨,+, –, 0〉 ∈ LA. Recall also
that LA = ISP(LAc), so the corresponding variety of pointed residuated lattices is
semilinear.
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Example 6.2. The variety MV of MV-algebras is term-equivalent to the variety
of commutative pointed residuated lattices satisfying x ∨ y ≈ (x\y)\y and x ∧
0 ≈ 0. More precisely, if 〈M,⊕,¬, 0〉 ∈ MV and we define x · y := ¬(¬x ⊕ ¬y),
x\y := ¬x ⊕ y, x/y := x ⊕ ¬y, and e := ¬0, then 〈M,∧,∨, ·, \, /, e, 0〉 ∈ CPRL
satisfies x ∨ y ≈ (x\y)\y and x ∧ 0 ≈ 0. Conversely, if M ∈ CPRL satisfies x ∨
y ≈ (x\y)\y and x ∧ 0 ≈ 0 and we define x ⊕ y := (x\0)\y and ¬x := x\0, then
〈M,⊕,¬, 0〉 ∈ MV. Again, since MV = ISP(MVc), the corresponding variety of
pointed residuated lattices is semilinear.

Let us call a variety V of pointed residuated lattices Hamiltonian3 if for some
k ∈ N

>0,

V |= (x ∧ e)k · y ≈ y · (x ∧ e)k.

The following proposition collects some useful facts about such varieties.

Proposition 6.3 [15, Lemmas 3.14 and 3.17 and Proposition 3.15]. Let V be a
Hamiltonian variety of pointed residuated lattices.

(a) For any A ∈ V and a1, a2, b1, b2 ∈ A,

(a1, a2) ∈ CgA(b1, b2) ⇐⇒ (b1 ≡ b2)n ≤ a1 ≡ a2 for some n ∈ N.

(b) V has equationally definable principal congruences if, and only if, for some
n ∈ N,

V |= (x ∧ e)n ≈ (x ∧ e)n+1.

(c) V has the congruence extension property.

We show now that every Hamiltonian variety of pointed residuated lattices has
both the compact intersection property and a guarded deduction theorem, which,
combined with Theorems 4.5 and 5.7, will allow us to determine which of these
varieties have a theory that has a model completion.

Lemma 6.4. Let V be a Hamiltonian variety of pointed residuated lattices. Then V
has the compact intersection property.

Proof. Every compact congruence of an algebra A ∈ V is a finite join of principal
congruences of A and hence, by congruence distributivity, the intersection of any two
compact congruences of A is a finite join of intersections of principal congruences
of A. It therefore suffices to show that for all b1, b2, c1, c2 ∈ A,

CgA(b1, b2) ∩ CgA(c1, c2) = CgA(e, (b1 ≡ b2) ∨ (c1 ≡ c2)).

Suppose first that (a1, a2) ∈ CgA(b1, b2) ∩ CgA(c1, c2). Then Proposition 6.3(a)
yields (b1 ≡ b2)n1 ≤ a1 ≡ a2 and (c1 ≡ c2)n2 ≤ a1 ≡ a2 for some n1, n2 ∈ N. Let n :=
max (n1, n2). Then (b1 ≡ b2)n ∨ (c1 ≡ c2)n ≤ a1 ≡ a2 and, using some elementary
properties of pointed residuated lattices, also ((b1 ≡ b2) ∨ (c1 ≡ c2))2n ≤ a1 ≡ a2.
By Proposition 6.3(a) again, (a1, a2) ∈ CgA(e, (b1 ≡ b2) ∨ (c1 ≡ c2)). Now suppose

3An algebra A is usually called Hamiltonian if every non-empty subuniverse of A is an equivalence
class of some congruence of A. In [6], it is shown that a variety of pointed residuated lattices satisfying
x\e ≈ e/x consists of Hamiltonian algebras in this sense if, and only if, it has the property given in our
definition.
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that (a1, a2) ∈ CgA(e, (b1 ≡ b2) ∨ (c1 ≡ c2)). It follows easily, again using some
elementary properties of pointed residuated lattices, that (a1, a2) ∈ CgA(b1, b2) ∩
CgA(c1, c2). 

Lemma 6.5. Let V be a Hamiltonian variety of pointed residuated lattices. Then V
has a guarded deduction theorem.

Proof. We show that the formulas

� := (x1 ≡ x2) ≤ z & (y1 ≡ y2) ∨ z ≈ e and ϕ := z ≈ e

satisfy conditions (i) and (ii) in the definition of a guarded deduction theorem
for a finite set w with z /∈ w, terms s1(w), s2(w), t1(w), t2(w), and conjunction of
equations �(w).

For (i), suppose first that V |= (� & (t1 ≈ t2)) → (s1 ≈ s2). To show that V |=
�→ ∀z.(� → ϕ)(s1, s2, t1, t2, z), consider any A ∈ V and assignment f : w → A
such that A, f |= �, and let g : w, z → A be a map extending f such that A, g |=
�(s1, s2, t1, t2, z). Then A, g |= (s1 ≡ s2) ≤ z and A, g |= (t1 ≡ t2) ∨ z ≈ e. It follows
that also A, g |= z ≤ e and hence to show that A, g |= ϕ(s1, s2, t1, t2, z), it suffices to
prove the following:

Claim. A, g |= e ≤ z.
Proof of Claim. Let g̃ : Tm(w, z) → A be the unique homomorphism extending

g, and define a1 := g̃(s1), a2 := g̃(s2), b1 := g̃(t1), b2 := g̃(t2), and c := g̃(z). We
prove first that e ≤ (b1 ≡ b2)k ∨ c for all k ∈ N

>0, proceeding by induction on k.
The base case follows from the fact that A, g |= (t1 ≡ t2) ∨ z ≈ e. For the inductive
step, we obtain

e ≤ (b1 ≡ b2)k ∨ c by the induction hypothesis

≤ (((b1 ≡ b2) ∨ c) · (b1 ≡ b2)k) ∨ c since e ≤ (b1 ≡ b2) ∨ c
= ((b1 ≡ b2)k+1 ∨ c · (b1 ≡ b2)k) ∨ c by the distributivity of · over ∨
≤ (b1 ≡ b2)k+1 ∨ c since b1 ≡ b2 ≤ e.

Now let q denote the natural quotient map from A onto A/CgA(b1, b2). By
assumption, V |= (� & (t1 ≈ t2)) → (s1 ≈ s2), so A/CgA(b1, b2), qf |= s1 ≈ s2, i.e.,
(a1, a2) ∈ CgA(b1, b2). By Proposition 6.3(a), we obtain (b1 ≡ b2)n ≤ a1 ≡ a2 for
some n ∈ N. But A, g |= (s1 ≡ s2) ≤ z, so also (a1 ≡ a2) ≤ c and (b1 ≡ b2)n ≤ c.
Hence we get e ≤ (b1 ≡ b2)n ∨ c = c; that is, A, g |= e ≤ z.

Now suppose that V |= �→ ∀z.(� → ϕ)(s1, s2, t1, t2, z). To show that V |= (� &
(t1 ≈ t2)) → (s1 ≈ s2), consider any A ∈ V and assignment f : w → A such that
A, f |= � & (t1 ≈ t2). Since z /∈ w, we can extend f to an assignment g : w, z → A
by setting g(z) := f̃(s1 ≡ s2), where f̃ : Tm(w) → A is the unique homomorphism
extending f. Clearly, A, g |= � & �(s1, s2, t1, t2, z) and hence, by assumption, A, g |=
z ≈ e. It follows that A, f |= (s1 ≡ s2) ≈ e, and so A, f |= s1 ≈ s2.

For the non-trivial direction of (ii), suppose that V |= (� & �(s1, s2, t1, t2, z)) → �
for some equation �(w). To show that V |= �→ �, consider any algebra A ∈ V and
assignment f : w → A such that A, f |= �. Extend f to an assignment g : w, z → A
by setting g(z) := e. Then A, g |= � & �(s1, s2, t1, t2, z) and hence, by assumption,
A, f |= �. 
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Theorems 4.5 and 5.7 then yield the following description of Hamiltonian varieties
of pointed residuated lattices whose theories have a model completion.

Theorem 6.6. Let V be a Hamiltonian variety of pointed residuated lattices.
The theory of V has a model completion if, and only if, V is coherent and has
equationally definable principal congruences, the amalgamation property, and the
equational variable restriction property.

Example 6.7. Since the variety of lattice-ordered abelian groups is Hamiltonian
but does not have equationally definable principal congruences, it follows directly
from Theorem 6.6 that, as already mentioned in Example 5.8 and first proved in [22],
its theory does not have a model completion. Similarly, the variety of MV-algebras
does not have a model completion, as first proved in [28].

An analogous result to Theorem 6.6 was obtained in [27] for Hamiltonian varieties
of pointed residuated lattices that are closed under canonical extensions; for this
latter notion, we refer to [17, 18].

Proposition 6.8 [27, Theorem 5.11]. Let V be a Hamiltonian variety of pointed
residuated lattices that is closed under canonical extensions. If V is coherent, then it
has equationally definable principal congruences.

We use Proposition 6.8 to show that if a Hamiltonian semilinear variety V of
pointed residuated lattices is closed under canonical extensions and the theory of Vc

has a model completion, then V has equationally definable principal congruences.

Lemma 6.9. Let V be a semilinear variety of pointed residuated lattices. If Vc has
the variable projection property, then V is coherent.

Proof. The claim clearly holds if Vc is trivial (contains only trivial algebras), so
let us assume that this is not the case. Suppose that Vc has the variable projection
property and consider a finite set x, y and conjunction of equations ϕ(x, y). By
assumption, there exists a quantifier-free formula �(x) such that Vc |= ϕ → � and
for any equation ε(x),

Vc |= ϕ → ε =⇒ Vc |= � → ε.

We may assume without loss of generality that � is a conjunction of formulas of
the form �→ � where � is a (possibly empty) conjunction of equations and � is a
non-empty disjunction of equations. Using some elementary properties of pointed
residuated lattices, we may also assume that � is of the form e ≤ s1 � ···� e ≤ sn. But
also, using the fact that Vc consists of linearly ordered pointed residuated lattices,

Vc |= (e ≤ s1 � ···� e ≤ sn) ↔ (e ≤ s1 ∨ ··· ∨ sn).

Hence we may further assume that � is a conjunction of quasiequations. But then,
since V and Vc satisfy the same quasiequations, V also has the variable projection
property and, by Proposition 2.4, is coherent.

Proposition 6.10. Let V be a Hamiltonian semilinear variety of pointed residuated
lattices that is closed under canonical extensions. If the theory of Vc has a model
completion, then V has equationally definable principal congruences.
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Proof. Suppose that the theory of Vc has a model completion. By Proposition
3.7, the class Vc has the variable projection property. Hence, by Lemma 6.9, the
variety V is coherent and, by Proposition 6.8, has equationally definable principal
congruences. 

Example 6.11. Consider the class CRLc of linearly ordered commutative pointed
residuated lattices. The variety generated by CRLc is closed under canonical
extensions (cf. [16, Chapter 6]) and does not have equationally definable principal
congruences. So, by Proposition 6.10, the theory of CRLc does not have a model
completion.

Note that the Hamiltonian semilinear varieties LA and MV are coherent and do
not have equationally definable principal congruences, but are not closed under
canonical extensions. Moreover, as we have already seen, the theories of LAc and
MVc have a model completion, but this is not the case for LA and MV.

§7. Extending the language. Let L be the language of pointed residuated lattices
and let L� be L extended with an additional binary operation symbol �. In
this section, we show how to associate with any semilinear variety V of pointed
residuated lattices, a variety V� of L�-algebras that has equationally definable
principal congruences and satisfies the same universal L-sentences as V. We then
show that if V satisfies a certain syntactic property, the theory of V� has a model
completion. In particular, this is the case for the varieties of lattice-ordered abelian
groups and MV-algebras.

Given any semilinear variety V of pointed residuated lattices, let Vc
� denote

the class of linearly ordered members of V expanded with a binary operation �

defined by

x � y :=

{
y, if e ≤ x,
e, otherwise.

That is, Vc
� is the positive universal class consisting of L�-algebras that satisfy the

equational theory of V and the universal sentences

∀x, y (x ≤ y � y ≤ x) and

∀x, y [(e ≤ x → x � y ≈ y) & (e �≤ x → x � y ≈ e)].

Let V� be the variety generated by Vc
�. Since Vc

� is a positive universal class, it
follows from Jónsson’s Lemma [25] that V� = ISP(Vc

�). Moreover, we obtain the
following conservative extension result.

Proposition 7.1. Let V be any semilinear variety of pointed residuated lattices.
Then for any quantifier-free L-formula 
,

V� |= 
 ⇐⇒ V |= 
.

Proof. Since V and V� are both varieties, they satisfy the disjunction property
(see Section 2), and it therefore suffices to establish the equivalence for the case
where 
 is an L-quasiequation. Suppose first that V� �|= 
. Since the L-reduct
of any member of V� belongs to V, also V �|= 
. Now suppose that V �|= 
.
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Since V is semilinear, V = ISP(Vc), and hence Vc �|= 
. But every member of Vc

is the L-reduct of a member of V�, and therefore also V� �|= 
. 
For convenience of notation, let us define for any classK of algebras with a pointed

residuated lattice reduct and a finite set of L-terms or L�-terms Γ ∪ {t},

Γ |=K t :⇐⇒ K |= &{e ≤ s | s ∈ Γ} → e ≤ t.
It follows easily that for any conjunction of equations � and equation u ≈ v,

K |= �→ u ≈ v ⇐⇒ {s ≡ t | s ≈ t is an equation of �} |=K u ≡ v.
We now use this notation to describe a deduction theorem for V�.

Proposition 7.2. Let V be any semilinear variety of pointed residuated lattices.
Then for any finite set x and finite Γ ∪ {s, t} ⊆ TmL�(x),

Γ ∪ {s} |=V� t ⇐⇒ Γ |=V� s � t.

Proof. Using the fact that V� = ISP(Vc
�), it suffices to prove that for any finite

set x and finite Γ ∪ {s, t} ⊆ TmL�(x),

Γ ∪ {s} |=Vc
�
t ⇐⇒ Γ |=Vc

�
s � t.

Suppose first that Γ∪{s} |=Vc
�
t and consider any A∈Vc

� and assignment f : x→A
satisfying e ≤ f̃(u) for all u ∈Γ. If f̃(s)< e, then e = f̃(s) � f̃(t) = f̃(s � t);
otherwise e ≤ f̃(s) and, by assumption, e ≤ f̃(t) = f̃(s) � f̃(t) = f̃(s � t).
Hence Γ |=Vc

�
s � t.

Suppose now that Γ |=Vc
�
s � t and consider any A∈Vc

� and assignment

f : x→A satisfying e ≤ f̃(s) and e ≤ f̃(u) for all u ∈ Γ. Then, by assumption,
e ≤ f̃(s � t) = f̃(s) � f̃(t) = f̃(t). Hence Γ ∪ {s} |=Vc

�
t. 

The next result is then a direct consequence of Proposition 4.3.

Corollary 7.3. Let V be any semilinear variety of pointed residuated lattices.
Then V� has equationally definable principal congruences.

We also obtain a uniform method for transforming a disjunct in the conclusion
of a consequence into a premise. For a finite set x = {x1, ... , xn} and s ∈ TmL�(x),
let

∇s := s � ((0 ≡ e) ∧
∧

1≤j≤n
(xj ≡ e)).

Lemma 7.4. Let V be any semilinear variety of pointed residuated lattices. Then
for any finite set x and finite Γ ∪ {s, t} ⊆ TmL�(x),

Γ |=V� s ∨ t ⇐⇒ Γ ∪ {∇s} |=V� t.

Proof. Using the fact that V� = ISP(Vc
�), it suffices to prove that for any finite

set x = {x1, ... , xn} and finite set Γ ∪ {s, t} ⊆ TmL�(x),

Γ |=Vc
�
s ∨ t ⇐⇒ Γ ∪ {∇s} |=Vc

�
t.

Suppose first that Γ |=Vc
�
s ∨ t and consider any A ∈ Vc

� and assignment f : x →
A such that e ≤ f̃(∇s) and e ≤ f̃(u) for all u ∈ Γ. Then, by assumption,
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e ≤ f̃(s ∨ t). If e ≤ f̃(s), then e ≤ f̃(∇s) = f̃(( 0 ≡ e) ∧
∧

1≤j≤n(xj ≡ e)), yield-

ing 0 = f̃(x1) = ··· = f̃(xn) = e and, inductively, f̃(t) = e. Otherwise, e ≤ f̃(t).
Hence Γ ∪ {∇s} |=Vc

�
t.

Suppose next that Γ ∪ {∇s} |=Vc
�
t and consider any A ∈ Vc

� and assignment

f : x → A such that e ≤ f̃(u) for all u ∈ Γ. If e ≤ f̃(s), then e ≤ f̃(s ∨ t).
Otherwise, f̃(∇s) = e and, by assumption, e ≤ f̃(t), yielding e ≤ f̃(s ∨ t). Hence
Γ |=Vc

�
s ∨ t. 

The next lemma provides a uniform method for eliminating occurrences of �

from L�-quasiequations while preserving validity in V�. To avoid multiple case
distinctions, we introduce a new symbol Λ, fixing s ∨ Λ := s , Λ ∨ s := s , ∇Λ := e
for any L�-term s.

Lemma 7.5. Let V be any semilinear variety of pointed residuated lattices. For
any finite set x, s ∈ TmL�(x), and t ∈ TmL�(x) ∪ {Λ}, there exist a finite non-
empty set I and s ′i ∈ TmL(x), t′i ∈ TmL(x) ∪ {Λ} for each i ∈ I such that for any
u, v ∈ TmL�(x, y),

{u ∧ s} |=V� t ∨ v ⇐⇒ ∀i ∈ I : {u ∧ s ′i } |=V� t
′
i ∨ v.

Proof. Let s ′[t′] denote the result of replacing some distinguished occurrence of
a variable in a term s ′ by a term t′. For s = s ′[s1 � s2] and any u, v ∈ TmL�(x, y),

{u ∧ s} |=V� t ∨ v ⇐⇒ {u ∧ s ′[s2] ∧ s1} |=V� t ∨ v and

{u ∧ s ′[e]} |=V� t ∨ s1 ∨ v.

Similarly, for t = t′[t1 � t2] and any u, v ∈ TmL�(x, y),

{u ∧ s} |=V� t ∨ v ⇐⇒ {u ∧ s ∧ t1} |=V� t
′[t2] ∨ v and

{u ∧ s} |=V� t
′[e] ∨ t1 ∨ v.

Iterating these steps yields the required finite set I and s ′i , t
′
i ∈ TmL(x) for each

i ∈ I . 

We now provide sufficient conditions for a semilinear variety of pointed residuated
lattices V to ensure that the theory of V� has a model completion.

Theorem 7.6. Let V be any semilinear variety of pointed residuated lattices such
that for any finite set x, y and s(x, y) ∈ TmL(x, y), t(x, y) ∈ TmL(x, y) ∪ {Λ},
there exist a finite non-empty set K and s ′k(x) ∈ TmL(x), t′k(x) ∈ TmL(x) ∪ {Λ} for
each k ∈ K satisfying for any u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z) ∧ s(x, y)} |=V t(x, y) ∨ v(x, z)
⇐⇒ ∀k ∈ K : {u(x, z) ∧ s ′k(x)} |=V t

′
k(x) ∨ v(x, z).

Then the theory of V� has a model completion.

Proof. From Corollary 7.3, we know thatV� has equationally definable principal
congruences. Hence, to conclude using Proposition 4.7 that the theory of V� has a
model completion, it remains to prove thatV� is coherent and has the amalgamation
property and equational variable restriction property.
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For coherence, it suffices to show that for any finite set x, y and s(x, y) ∈
TmL�(x, y), there exists an s�(x) ∈ TmL�(x) such that for any v(x) ∈ TmL�(x),

{s(x, y)} |=V� v(x) ⇐⇒ {s�(x)} |=V� v(x).

By Lemma 7.5 (with t = Λ), there exist a finite non-empty set I and
s ′i (x, y) ∈ TmL(x, y), t′i (x, y) ∈ TmL(x, y) ∪ {Λ} (i ∈ I ) such that for any v(x) ∈
TmL�(x),

{s(x, y)} |=V� v(x) ⇐⇒ ∀i ∈ I : {s ′i (x, y)} |=V� t
′
i (x, y) ∨ v(x). (10)

By assumption, there exist for each i ∈ I , a finite non-empty set Ki and s ′′i,k(x) ∈
TmL(x), t′′i,k(x) ∈ TmL(x) ∪ {Λ} (k ∈ Ki) satisfying for any u′(x), v′(x) ∈
TmL(x),

{u′(x) ∧ s ′i (x, y)} |=V t
′
i (x, y) ∨ v′(x)

⇐⇒ ∀k ∈ Ki : {u′(x) ∧ s ′′i,k(x)} |=V t
′′
i,k(x) ∨ v′(x).

(11)

We define now

s�(x) :=
∨
i∈I

∨
k∈Ki

(
s ′′i,k(x) ∧∇t′′i,k(x)

)
.

Consider any v(x) ∈ TmL�(x). By Lemma 7.5 (with s = e), there exist a finite
non-empty set J and u′j(x) ∈ TmL(x), v′j(x) ∈ TmL(x) ∪ {Λ} (j ∈ J ) such that
for any s ′(x, y), t′(x, y) ∈ TmL�(x, y),

{s ′(x, y)} |=V� t
′(x, y) ∨ v(x)

⇐⇒ ∀j ∈ J : {u′j(x) ∧ s ′(x, y)} |=V� t
′(x, y) ∨ v′j(x).

In particular, for each i ∈ I and k ∈ Ki ,

{s ′i (x, y)} |=V� t
′
i (x, y) ∨ v(x)

⇐⇒ ∀j ∈ J : {u′j(x) ∧ s ′i (x, y)} |=V� t
′
i (x, y) ∨ v′j(x), (12)

{s ′′i,k(x)} |=V� t
′′
i,k(x) ∨ v(x) ⇐⇒ ∀j ∈ J : {u′j(x) ∧ s ′′i,k(x)} |=V� t

′′
i,k(x) ∨ v′j(x).

(13)

Putting these equivalences together, it follows that

{s(x, y)} |=V� v(x)

⇐⇒ ∀i ∈ I : {s ′i (x, y)} |=V� t
′
i (x, y) ∨ v(x) by (10)

⇐⇒ ∀i ∈ I, j ∈ J : {u′j(x) ∧ s ′i (x, y)} |=V� t
′
i (x, y) ∨ v′j(x) by (12)

⇐⇒ ∀i ∈ I, j ∈ J : {u′j(x) ∧ s ′i (x, y)} |=V t
′
i (x, y) ∨ v′j(x) Prop. 7.1

⇐⇒ ∀i ∈ I, j ∈ J, k ∈ Ki : {u′j(x) ∧ s ′′i,k(x)} |=V t
′′
i,k(x) ∨ v′j(x) by (11)

⇐⇒ ∀i ∈ I, j ∈ J, k ∈ Ki : {u′j(x) ∧ s ′′i,k(x)} |=V� t
′′
i,k(x) ∨ v′j(x) Prop. 7.1

⇐⇒ ∀i ∈ I, k ∈ Ki : {s ′′i,k(x)} |=V� t
′′
i,k(x) ∨ v(x) by (13)

⇐⇒ ∀i ∈ I, k ∈ Ki : {s ′′i,k(x) ∧∇t′′i,k(x)} |=V� v(x) Lem. 7.4

⇐⇒ {s�(x)} |=V� v(x).
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For the amalgamation property and equational variable restriction property, it
suffices by Corollary 4.10 to show that for any finite set x, y and t(x, y) ∈
TmL�(x, y), either {w(x)} �|=V� t(x, y) for all w(x) ∈ TmL�(x) (taking care of
the case in Corollary 4.10 where �(x) is ⊥) or there exists a t�(x) ∈ TmL�(x) such
that for any u(x, z) ∈ TmL�(x, z),

{u(x, z)} |=V� t(x, y) ⇐⇒ {u(x, z)} |=V� t
�(x).

Suppose then that {w(x)} |=V� t(x, y) for some w(x) ∈ TmL�(x). By iteratively
replacing w′[w1 � w2] with w′[w2] ∧ w1, we may assume without loss of generality
that w(x) ∈ TmL(x). Next, by Lemma 7.5 (with s = e), there exist a finite non-
empty set I and s ′i (x, y), t′i (x, y) ∈ TmL(x, y) (i ∈ I ) such that for any u(x, z) ∈
TmL�(x, z),

{u(x, z)} |=V� t(x, y) ⇐⇒ ∀i ∈ I : {u(x, z) ∧ s ′i (x, y)} |=V� t
′
i (x, y). (14)

Let us temporarily fix i ∈ I . By assumption, there exist a finite non-empty set
Ki and s ′′i,k(x) ∈ TmL(x), t′′i,k(x) ∈ TmL(x) ∪ {Λ} (k ∈ Ki) such that for any
u′(x, z), v′(x, z) ∈ TmL(x, z),

{u′(x, z) ∧ s ′i (x, y)} |=V t
′
i (x, y) ∨ v′(x, z)

⇐⇒ ∀k ∈ Ki : {u′(x, z) ∧ s ′′i,k(x)} |=V t
′′
i,k(x) ∨ v′(x, z).

(15)

Since {w(x)} |=V� t(x, y), by (14) and Proposition 7.1, also {w(x) ∧
s ′i (x, y)} |=V t

′
i (x, y). Let t′′′i,k(x) := t′′i,k(x) ∨ w(x) for each k ∈ Ki . Then for any

u′(x, z), v′(x, z) ∈ TmL(x, z),

{u′(x, z) ∧ s ′i (x, y)} |=V� t
′
i (x, y) ∨ v′(x, z)

⇐⇒ ∀k ∈ Ki : {u′(x, z) ∧ s ′′i,k(x)} |=V� t
′′′
i,k(x) ∨ v′(x, z).

(16)

The left-to-right direction of this equivalence is immediate. For the converse
direction,

∀k ∈ Ki : {u′(x, z) ∧ s ′′i,k(x)} |=V�
t′′′i,k(x) ∨ v′(x, z)

=⇒ ∀k ∈ Ki : {u′(x, z) ∧ s ′′i,k(x)} |=V t
′′′
i,k(x) ∨ v′(x, z) Prop. 7.1

=⇒ {u′(x, z) ∧ s ′i (x, y)} |=V t
′
i (x, y) ∨w(x) ∨ v′(x, z) by (15)

=⇒ {u′(x, z) ∧ s ′i (x, y)} |=V t
′
i (x, y) ∨ v′(x, z) since {w(x) ∧ s ′i (x, y)} |=V t

′
i (x, y)

=⇒ {u′(x, z) ∧ s ′i (x, y)} |=V�
t′i (x, y) ∨ v′(x, z) Prop. 7.1.

We define now

t�(x) :=
∧
i∈I

∧
k∈Ki

(
s ′′i,k(x) � t′′′i,k(x)

)
.
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Consider any u(x, z) ∈ TmL�(x, z). By Lemma 7.5 (with t = Λ), there exist a finite
non-empty set J and u′j(x, z) ∈ TmL(x, z), v′j(x, z) ∈ TmL(x, z) ∪ {Λ} (j ∈ J )
such that for any s ′(x, y), t′(x, y) ∈ TmL�(x, y),

{u(x, z) ∧ s ′(x, y)} |=V� t
′(x, y)

⇐⇒ ∀j ∈ J : {u′j(x, z) ∧ s ′(x, y)} |=V� t
′(x, y) ∨ v′j(x, z).

In particular, for each i ∈ I and k ∈ Ki ,
{u(x, z) ∧ s ′i (x, y)} |=V� t

′
i (x, y)

⇐⇒ ∀j ∈ J : {u′j(x, z) ∧ s ′i (x, y)} |=V� t
′
i (x, y) ∨ v′j(x, z),

(17)
{u(x, z) ∧ s ′′i,k(x)} |=V� t

′′′
i,k(x)

⇐⇒ ∀j ∈ J : {u′j(x, z) ∧ s ′′i,k(x)} |=V� t
′′′
i,k(x) ∨ v′j(x, z).

(18)

Putting these equivalences together, it follows that

{u(x, z)} |=V� t(x, y)

⇐⇒ ∀i ∈ I : {u(x, z) ∧ s ′i (x, y)} |=V� t
′
i (x, y) by (14)

⇐⇒ ∀i ∈ I, j ∈ J : {u′j(x, z) ∧ s ′i (x, y)} |=V� t
′
i (x, y) ∨ v′j(x, z) by (17)

⇐⇒ ∀i ∈ I, j ∈ J, k ∈ Ki : {u′j(x, z) ∧ s ′′i,k(x)} |=V� t
′′′
i,k(x) ∨ v′j(x, z) by (16)

⇐⇒ ∀i ∈ I, k ∈ Ki : {u(x, z) ∧ s ′′i,k(x)} |=V� t
′′′
i,k(x) by (18)

⇐⇒ ∀i ∈ I, k ∈ Ki : {u(x, z)} |=V� s
′′
i,k(x) � t′′′i,k(x) Prop. 7.2

⇐⇒ {u(x, z)} |=V� t
�(x). 

In particular, the conditions of Theorem 7.6 are satisfied when V is the variety LA
of lattice-ordered abelian groups.

Theorem 7.7. The theory of LA� has a model completion.

Proof. Recall that LA is generated as a quasivariety by the lattice-ordered abelian
group R = 〈R,min,max,+, –, 0〉 (see, e.g., [1]). Hence, to show thatLA� has a model
completion, it suffices to check the condition of Theorem 7.6 with |=V replaced by
|=R.

We proceed in two stages. Suppose first thatx, y is a finite set, s(x, y) ∈ TmL(x, y)
is a meet of group terms, and t(x, y) ∈ TmL(x, y) ∪ {Λ} is Λ or a join of group
terms. We prove that there exist s ′(x) ∈ TmL(x), t′(x) ∈ TmL(x) ∪ {Λ} satisfying
for any u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z)∧s(x, y)} |=R t(x, y)∨v(x, z) ⇐⇒ {u(x, z)∧s ′(x)} |=R t
′(x)∨v(x, z).

It is easily checked in R that for any L-terms u, v, w and k ∈ N
>0,

{u ∧ v} |=R w ⇐⇒ {u ∧ kv} |=R w and {u} |=R v ∨ w ⇐⇒ {u} |=R v ∨ kw.
Also, R |= x + (y ∧ z) ≈ (x + y) ∧ (x + z) and R |= x + (y ∨ z) ≈ (x + y) ∨
(x + z). Hence, reasoning in R, we may assume that there exist a k ∈ N

>0 and
s0(x), s1(x), s2(x), t1(x), t2(x) ∈ TmL(x), t0(x) ∈ TmL(x) ∪ {Λ} such that s(x, y)
is the meet of s0(x) and some members (possibly none) of {s1(x) + ky, s2(x) – ky},
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and t(x, y) is the join of t0(x) and some members (possibly none) of
{t1(x) + ky, t2(x) – ky}. We construct s ′(x) ∈ TmL(x), t′(x) ∈ TmL(x) ∪ {Λ}
as follows. Let s ′(x) := s0(x) ∧ (s1(x) + s2(x)) if s1(x) + ky and s2(x) – ky occur
in s(x, y); otherwise s ′(x) := s0(x). The term t′(x) is the join of t0(x) and (i)
t1(x) + t2(x) if t1(x) + ky and t2(x) – ky occur in t(x, y); (ii) t1(x) – s1(x) if
s1(x) + ky occurs in s(x, y) and t1(x) + ky occurs in t(x, y); and (iii) t2(x) – s2(x)
if s2(x) – ky occurs in s(x, y) and t2(x) – ky occurs in t(x, y).

We check the case where s(x, y) = (s1(x) + ky) ∧ (s2(x) – ky), t(x, y) =
(t1(x) + ky) ∨ (t2(x) – ky), s ′(x) = s1(x) + s2(x), and t′(x) = (t1(x) + t2(x)) ∨
(t1(x) – s1(x)) ∨ (t2(x) – s2(x)), other cases being very similar. Letu(x, z), v(x, z) ∈
TmL(x, z) and suppose first that {u(x, z) ∧ s ′(x)} |=R t

′(x) ∨ v(x, z). Since
{s(x, y)} |=R s

′(x) and {s(x) ∧ t′(x)} |=R t(x, y), it follows that {u(x, z) ∧
s(x, y)} |=R t(x, y) ∨ v(x, z). Now suppose that {u(x, z) ∧ s ′(x)} �|=R t

′(x) ∨
v(x, z); that is, some assignment f : x, z → R satisfies 0 ≤ f̃(u(x, z)), 0 ≤
f̃(s1(x)) + f̃(s2(x)), f̃(t1(x)) + f̃(t2(x)) < 0, f̃(t1(x)) < f̃(s1(x)), f̃(t2(x)) <
f̃(s2(x)), and f̃(v(x, z)) < 0. We extend f to an assignment g : x, y, z → R by
defining

g(y) :=
min (f̃(s2), – f̃(t1)) + max (– f̃(s1), f̃(t2))

2k
.

We obtain 0 ≤ g̃(u(x, z)), 0 ≤ g̃(s1(x)) + g̃(ky), g̃(ky) ≤ g̃(s2(x)), g̃(t1(x)) +
g̃(ky) < 0, g̃(t2(x)) < g̃(ky), and g̃(v(x, z)) < 0. So {u(x, z) ∧ s(x, y)} �|=R
t(x, y) ∨ v(x, z).

We now prove that for any finite set x, y and s(x, y) ∈ TmL(x, y), t(x, y) ∈
TmL(x, y) ∪ {Λ}, there exist a finite non-empty set K and s ′k(x) ∈ TmL(x), t′k(x) ∈
TmL(x) ∪ {Λ} (k ∈ K) satisfying for any u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z) ∧ s(x, y)} |=R t(x, y) ∨ v(x, z)
⇐⇒ ∀k ∈ K : {u(x, z) ∧ s ′k(x)} |=R t

′
k(x) ∨ v(x, z).

By the distributivity properties of R, we may assume that s(x, y) is s1(x, y) ∨
··· ∨ sn(x, y), where each si(x, y) is a meet of group terms, and that t(x, y) is
t1(x, y) ∧ ··· ∧ tm(x, y), where either each tj(x, y) is a join of group terms orm = 1
and t1(x, y) = Λ. Using the first part of this proof, for each i ∈ {1, ... , n} and
j ∈ {1, ... , m}, there exist s ′i,j(x) ∈ TmL(x) and t′i,j(x) ∈ TmL(x) ∪ {Λ} satisfying
for any u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z) ∧ si(x, y)} |=R tj(x, y) ∨ v(x, z)
⇐⇒ {u(x, z) ∧ s ′i,j(x)} |=R t

′
i,j(x) ∨ v(x, z).

Hence for any u(x, z), v(x, z) ∈ TmL(x, z),

{u(x, z) ∧ s(x, y)} |=R t(x, y) ∨ v(x, z)
⇐⇒ ∀i ∈ {1, ... , n}, j ∈ {1, ... , m} : {u(x, z) ∧ s ′i,j(x)} |=R t

′
i,j(x) ∨ v(x, z). 
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The varietyMV� of MV-algebras extended with� is term-equivalent to the variety
MVΔ of MVΔ-algebras (see, e.g., [23, 33]), generated by linearly ordered MV-algebras
extended with an additional unary operator Δ defined by

Δx :=

{
1, if x = 1,
0, otherwise.

For any algebra in MV�, we let Δx := (x � 0) � 0, and for any algebra in MVΔ, we
let x � y := ¬Δx ⊕ y. The following theorem may therefore be proved along the
same lines as Theorem 7.7, using the fact that MV is generated as a quasivariety
by the algebra 〈[0, 1],⊕,¬, 0〉, where x ⊕ y := min (1, x + y) and ¬x := 1 – x (see,
e.g., [10]).

Theorem 7.8. The theory of MVΔ has a model completion.

A different proof of this last result (obtained by giving an explicit axiomatization)
was presented by X. Caicedo at the conference Residuated Structures: Algebra
and Logic in 2008. Caicedo also presented a proof (again by giving an explicit
axiomatization) at the Latin American Algebra Colloquium in 2019 that the theory
of the class of so-called “pseudo-complemented” lattice-ordered abelian groups has
a model completion, which seems to bear some relation to our Theorem 7.7.

§8. Appendix. A comparison with Wheeler’s characterization theorem. In this
section, we relate our results in Section 3 to the necessary and sufficient conditions
provided by Wheeler in [38] (see also [39]) for the existence of model completions
for universal theories with finite presentations. Let us note that Wheeler considers
arbitrary first-order languages and, although we restrict ourselves here to algebraic
languages, it is not difficult to see that the results of this section can be generalized
to any first-order language by replacing equations with atomic formulas.

LetKbe a universal class of algebras. Following [38, Section 3], a finite presentation
of an algebra A ∈ K is a pair (a, �) where a ∈ Ax is a finite set of generators for A
and �(x) is a conjunction of equations such that A |= �(a) and for any equation
ε(x),

A |= ε(a) ⇐⇒ K |= �→ ε.

Observe that (a, �) is a finite presentation of A if, and only if, for any B ∈ K generated
by b ∈ Bx satisfying B |= �(b), there is a surjective homomorphism A � B mapping
a to b. An algebra A ∈ K is said to be finitely presented in K if it admits a finite
presentation.

Remark 8.1. If K is a variety, then an algebra A ∈ K is finitely presented in
K if, and only if, it is finitely presented in the usual sense, i.e., A is isomorphic
to the quotient of a finitely generated K-free algebra with respect to a compact
congruence. Moreover, if K is a positive universal class and the variety V generated
by K is congruence distributive, then A ∈ K is finitely presented in K if, and only if,
it is finitely presented in V. Just observe that by Jónsson’s Lemma [25], we have in
this case V = ISP(K).
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A class of algebrasKhas finite presentations if for every finite setx and conjunction
of equations �(x) that is satisfiable in K, there exist an algebra A ∈ K and a tuple
a ∈ Ax such that (a, �) is a presentation of A. All quasivarieties, and in particular
all varieties, have finite presentations (cf. [38, Corollary 1, p. 315]), but this is not
the case for all universal classes, as shown by the following example.

Example 8.2. The positive universal class LAc of ordered abelian groups does
not have finite presentations. To see this, recall that LAc generates the variety LA of
lattice-ordered abelian groups, which is congruence distributive (cf. Example 2.8).
Hence, by Remark 8.1, an ordered abelian group is finitely presented in the sense of
the above definition if, and only if, it is finitely presented as a lattice-ordered abelian
group in the usual sense. However, any finitely presented ordered abelian group is
simple (see, e.g., [21, Theorem 4.A and Corollary 5.2.3]) and there exist finitely
generated ordered abelian groups that are not simple, e.g., the lexicographic product
R−→×R generated by {(1, 0), (0, 1)}. It follows that there cannot be a 2-generated
finitely presented ordered abelian group with presentation �(x1, x2).

Let us now recall Wheeler’s conservative congruence extension property. Given
any algebra A ∈ K, let D+(A) be the positive diagram of A, i.e., the set of atomic
sentences in the language extended with names for the elements of A that are
satisfied in A. The class K has the conservative congruence extension property (for
finite presentations) if, whenever B admits a finite presentation ((a, b), �(x, y)), A
is the subalgebra of B generated by a, the tuple b does not lie in A, and �(x, y) is a
conjunction of negated equations such that B |= �(a, b), there exists a quantifier-free
formula 
(x) satisfying

Th(K) ∪D
+(B) � �(a, b) → 
(a),

and for every surjective homomorphism h : A � A′ such that A′ ∈ K and A′ |=

(h(a)) there exist a B′ ∈ K extending A′ and a surjective homomorphism h′ : B �
B′ whose restriction to A coincides with h, and such that B′ |= �(h(a), h′(b)).4

The following proposition shows that, for universal classes with finite pre-
sentations, the conservative congruence extension property is equivalent to a
strengthening of the conservative model extension property where the variable y
is replaced by a tuple y.

Proposition 8.3. Let K be a universal class of algebras with finite presentations.
Then K has the conservative congruence extension property if, and only if, for any finite
sets x, y and conjunction of literals	(x, y), there exists a quantifier-free formula 
(x)
satisfying

(i) K |= 	 → 
 and
(ii) for every A ∈ K generated by a ∈ Ax such that A |= 
(a) and for any equation
ε(x),

K |= 	+ → ε =⇒ A |= ε(a),

there exist an algebra B ∈ K extending A and b ∈ By such that B |= 	(a, b).

4Note that Wheeler does not assume that A′ ∈ K, but uses this in the proof of his main result.
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Proof. Suppose that K has the conservative congruence extension property. Fix
finite sets x, y and a conjunction of literals 	(x, y). If 	 is not satisfiable in K,
we can set 
 := ⊥. Hence, assume that 	 is satisfiable in K. Consider B ∈ K and
(a, b) ∈ Bx,y such that ((a, b), 	+) is a finite presentation of B and let A be the
subalgebra of B generated by a. If there is a bi ∈ b such that bi ∈ A, then K |=
	+ → yi ≈ t(x) for some term t. Replacing yi by t(x) in the formula 	 whenever
bi ∈ A, we can assume that no element of b belongs to A. Further, if B |= �(a, b) for
some equation � of	–, then K |= 	+ → �, contradicting the fact that	 is satisfiable
in K. Hence B |= �(a, b), where �(x, y) is the conjunction of the negated equations
¬� for � ranging over the equations of 	– (hence, 	 = 	+ & �), and so there
exists a quantifier-free formula 
(x) satisfying the conditions for the conservative
congruence extension property.

We prove that 
 satisfies (i) and (ii). For (i), consider any algebra C ∈ K and tuples
c ∈ Cx and d ∈ Cy such that C |= 	(c, d ). We must prove that C |= 
(c). Let C′ be
the subalgebra of C generated by c, d , and note that C′ |= 	(c, d ) as	 is quantifier-
free. Since C′ |= 	+(c, d ), there is a surjective homomorphism B � C′ mapping
a to c and b to d . Hence, with the obvious interpretation of the new constants,
C′ |= D

+(B). So Th(K) ∪D
+(B) � � → 
 and C′ |= �(c, d ) entail C′ |= 
(c), and

therefore C |= 
(c).
For (ii), consider any algebra A′ ∈ K generated by a tuple a′ ∈ (A′)x such that

A′ |= 
(a′) and, for all equations ε(x), K |= 	+ → ε entails A′ |= ε(a′). Then
there exists a (unique) homomorphism h : A → A′ mapping a to a′. Just observe
that, whenever s(a) = t(a) for two terms s(x), t(x), we have B |= s(a) ≈ t(a) and
hence also K |= 	+ → s(x) ≈ t(x), which implies A′ |= s(a′) ≈ t(a′). Moreover,
h is surjective because a′ generates A′. By the conservative congruence extension
property, there exist B′ ∈ K extending A′ and a surjective homomorphism h′ : B �
B′ that extends h and satisfies B′ |= �(a′, h′(b)). Using the fact that B |= 	+(a, b)
entails B′ |= 	+(a′, h′(b)), we conclude that B′ |= 	(a′, h′(b)), as was to be proved.

For the converse direction, let B ∈ K be an algebra admitting a finite presentation
((a, b), �(x, y)), let A be the subalgebra of B generated by a, and assume that b does
not lie in A. Further, let �(x, y) be a conjunction of negated equations such that
B |= �(a, b). Define the conjunction of literals 	(x, y) := � & �. Then there exists
a quantifier-free formula 
(x) satisfying the properties in (i) and (ii). Condition (i)
entails easily that

Th(K) ∪D
+(B) � �(a, b) → 
(a).

Consider next a surjective homomorphism h : A � A′ with A′ ∈ K and A′ |=

(h(a)). Note that h(a) generates A′ and, for any equation ε(x),K |= �→ ε implies
B |= ε(a) and hence also A |= ε(a) and A′ |= ε(h(a)). By (ii), there exist B′ ∈ K

extending A′ and a tuple b
′ ∈ (B ′)y such that B′ |= 	(h(a), b

′
). Let B′′ be the

subalgebra of B′ generated by h(a), b
′
and note that B′′ ∈ K because K is a universal

class. Since B′′ |= �(h(a), b
′
), there exists a surjective homomorphism h′ : B � B′′

mapping a to h(a) and b to b
′
. In particular, h′ extends h. Further, B′′ extends A′

and satisfies B′′ |= �(h(a), b
′
). Hence K has the conservative congruence extension

property. 
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We are now in a position to compare Wheeler’s characterization of universal
theories that have a model completion with our results from Section 3. Following
Wheeler, we say that a universal class of algebras with finite presentations K is
coherent if whenever B ∈ K is finitely presented in K and A is a finitely generated
subalgebra of B, then A is finitely presented in K. It is not difficult to see that a
universal class of algebras with finite presentations is coherent if, and only if, it has
the variable projection property.

In the case where K is a universal class of algebras, the following main result of
[38] is a direct consequence of Theorem 3.2 and Propositions 3.8 and 8.3.

Proposition 8.4 [38, Theorem 5]. Let K be a universal class with finite
presentations. The theory of K has a model completion if, and only if, K is coherent
and has the amalgamation property and conservative congruence extension property.
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