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Abstract
A vast amount of clinical data are still stored in unstructured text. Automatic extraction of medical infor-
mation from these data poses several challenges: high costs of clinical expertise, restricted computational
resources, strict privacy regulations, and limited interpretability of model predictions. Recent domain
adaptation and prompting methods using lightweight masked language models showed promising results
with minimal training data and allow for application of well-established interpretability methods. We are
first to present a systematic evaluation of advanced domain-adaptation and promptingmethods in a lower-
resource medical domain task, performing multi-class section classification on German doctor’s letters.
We evaluate a variety of models, model sizes (further-pre)training and task settings, and conduct extensive
class-wise evaluations supported by Shapley values to validate the quality of small-scale training data and
to ensure interpretability of model predictions. We show that in few-shot learning scenarios, a lightweight,
domain-adapted pretrained language model, prompted with just 20 shots per section class, outperforms
a traditional classification model, by increasing accuracy from 48.6% to 79.1%. By using Shapley values
for model selection and training data optimization, we could further increase accuracy up to 84.3%. Our
analyses reveal that pretraining of masked language models on general-language data is important to
support successful domain-transfer to medical language, so that further-pretraining of general-language
models on domain-specific documents can outperform models pretrained on domain-specific data only.
Our evaluations show that applying prompting based on general-language pretrained masked language
models combined with further-pretraining on medical-domain data achieves significant improvements
in accuracy beyond traditional models with minimal training data. Further performance improvements
and interpretability of results can be achieved, using interpretability methods such as Shapley values.
Our findings highlight the feasibility of deploying powerful machine learning methods in clinical settings
and can serve as a process-oriented guideline for lower-resource languages and domains such as clinical
information extraction projects.
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1. Introduction
Vast amounts of clinical data are stored in unstructured text, such as doctor’s letters. Natural lan-
guage processing (NLP) and machine learning (ML) can make their information available for
research and clinical routine. While supervised ML approaches rely on large amounts of manually
annotated training data, recent developments in NLP showed promising results in text classifica-
tion tasks using pretrained languagemodels (PLM) and prompting (Brown et al. 2020). Prompting
exploits the ability of PLMs tomake correct predictions if guided through context; in combination
with supervised methods, they achieve state-of-the-art results on various text classification tasks
(Liu et al. 2023).

Doctor’s letters are typically divided into sections, such as anamnesis (patient medical history),
diagnosis or medication, containing semantically related sentences. Typically, it is not necessary
to consider all sections to obtain specific medical information (Richter-Pechanski et al. 2021) or
medication information (Uzuner, Solti, and Cadag 2010). Instead, medical information extrac-
tion (MIE) tasks, such as medication extraction or patient cohort retrieval, can be improved by
contextualizing the information in a doctor’s letter (Edinger et al. 2017). However, automatic sec-
tion classification is non-trivial due to a high variability of the structuring of information across
physicians and time periods (Lohr et al. 2018).

In close collaboration with physicians from clinical routine, we identified four challenges of
MIE projects in the clinical domain (Hahn and Oleynik 2020) (Fig. 1).

Ch1 Domain-and-Expert-dependent: Annotation projects often require an active involvement
of domain experts for data annotation and model evaluation. This is particularly relevant
for lower-resource languages and domains such as the clinics and German language.

Ch2 Resource-constrained: Domain experts are costly and have only limited time resources.
By contrast, external expert involvement is difficult due to strict data protection measures
(Richter-Pechanski et al. 2021).

Ch3 On-premise: Personal data are confidential, which means that many MIE projects are
carried out entirely on premise, that is, in the clinical IT infrastructure. However, com-
putational resources in clinical infrastructures are often a limiting factor (Taylor et al.
2023).

Ch4 Transparency: Due to the sensitivity of clinical information, safety standards for using
MIE results in clinical routine are high: model predictions must be of high quality,
transparent, explainable, and as comprehensible as possible (Tjoa and Guan 2020).

We evaluate best-practice strategies to identify an ideal setup to address the multifaceted chal-
lenges of conducting a MIE task such as clinical section classification. Specifically, we identify and
propose the following solutions:

S1 We reduce the demand for clinical knowledge in MIE by exploiting existing domain
knowledge available in hospitals, such as clinical routine documents. We evaluate domain-
and task-adapted (Gururangan et al. 2020) general-use PLMs, as well as PLMs pretrained
on clinical data from scratch (Bressem et al. 2024) in combination with prompt-based
learning methods (Schick and Schütze 2021a), which require only limited training data.

S2 To reduce time investment and costs of manual data annotation through clinical experts,
we apply few-shot learning (Lake, Salakhutdinov, and Tenenbaumt 2015) and context-
enriched training data using prompt-based fine-tuning with pattern-exploiting training
(PET+PETAL) (Schick and Schütze 2021a; Schick, Schmid, and SchÃijtze 2020) and com-
pare the results with supervised sequence classification methods. We further evaluate the
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Figure 1. Challenges for MIE projects in clinics: Our proposed solutions to main challenges for MIE projects in a clinical
setting. Abbreviation: “par.” refers to parameters.

feasibility of null prompts (Logan et al. 2022), which have been shown to alleviate the
search for effective prompts while achieving improved results.

S3 While large language models (LLMs) have recently shown impressive medical capabili-
ties (Singhal et al. 2023), their demands of compute power, and currently unsolved issues
regarding automatic evaluation, faithfulness control, and trustworthiness make their use
in clinical contexts often impractical (Parnami and Lee 2022; Thirunavukarasu et al. 2023).
We, therefore, focus on smaller PLMs (110-345million learnable parameters) in a few-shot
learning setting. Notably, prompt-based fine-tuning already achieves higher accuracy with
smaller, encoder-based PLMs compared to PLMs fine-tuned for sequence labeling with a
full-fledged training dataset in German (Schick and Schütze 2021a).

S4 To address the need for transparent and trustworthy model predictions in clinical routine,
we use well-established masked-language-models. They allow application of state-of-the-
art interpretability methods that rely on saliency features computed with, for example,
Shapley values (Lundberg and Lee 2017), to explain our model predictions.

In what follows we conduct in-depth evaluations of these proposed solutions in a real-world sec-
tion classification task, applied to German doctor’s letters from the cardiovascular domain. To
our knowledge, this is the first in-depth evaluation of a prompt-based fine-tuning method such as
PET on real-world clinical routine data in German language.
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1.1 State of research
From fine-tuning to few-shot learning with prompting. Since 2017, most NLP tasks apply a
pretrain-then-finetune paradigm: neural models are pretrained with a language modeling objec-
tive on large amounts of unlabeled text and then fine-tuned for a down-stream task on a smaller
amount of annotated data. However, even fine-tuned PLMs often perform poorly with sparse
training data (Gao, Fisch, and Chen 2021) and require significant amounts of manually labeled
training data to perform well (Liu et al. 2023). Especially with low(er)-resource languages and
in special domains, we often face a scarcity of high-quality labeled data. With recent scaled-up
language models, we observe another shift to a pretrain-then-prompt paradigm, where tasks are
formulated using natural language prompts (Shin et al. 2020; Schick and Schütze 2021a; Reynolds
and McDonell 2021; Gao et al. 2021), revealing impressive zero-shot capabilities of these models
(Kojima et al. 2022; Liu et al. 2023). While in many applications at least a few training samples
are still required to guide model predictions, prompt-based learning soon matched and even sur-
passed the performance of fine-tuning in various few-shot learning settings (Liu et al. 2023; Taylor
et al. 2023).

Althoughmodel size played a critical role in this development (Chowdhery et al. 2023), smaller,
encoder-based PLMs have also been successfully applied in few-shot scenarios using prompt-
based fine-tuning in combination with a semi-supervised approach (Schick and Schütze 2021b;
Wang et al. 2022). Especially, framing text classification tasks as cloze-style problems using
pattern-exploiting training (PET) showed promising results for various classification tasks (Schick
and Schütze 2022) (cf. Section 2).

Domain adaptation through further-pretraining. Further-pretraining means training an
already pretrained languagemodel further on domain-specific texts using a languagemodel objec-
tive. This allows domain-adaptation of general-purpose language models. General-purpose LMs
achieve high performance across many tasks (Sun et al. 2019), yet performance typically drops in
out-of domain settings. Several studies explored further-pretraining on domain-specific data (Zhu
et al. 2021), in such cases, demonstrating that further-pretraining even on small-sized task-specific
data can improve results in out-of-domain down-stream tasks (Gururangan et al. 2020).

PLMs for the medical domain. Medical PLMs, pretrained on medical data from scratch and
further-pretrainedmedical PLMs, have outperformed general PLMs in several tasks (Sivarajkumar
and Wang 2022; Taylor et al. 2023). However, clinical routine texts, as used in this study, have
unique textual properties compared to biomedical texts on which such models are trained. This
increases the complexity of medical NLP tasks in clinical routine (Leaman, Khare, and Lu 2015;
Hahn and Oleynik 2020). Also, only a limited number of further-pretrained and clinical PLMs
have been published to date, mostly for English, primarily due to strict data protection regulations
(Lee et al. 2020; Li et al. 2023; Bressem et al. 2024).

Promptingmethods in clinical NLP.Despite extensive research on PLMs for medical domain,
previous research has mainly focused on supervised fine-tuning with full-fledged training data
approaches that use large amounts of training data (Wu et al. 2020; Taylor et al. 2023) with
the exception of Taylor et al. (2023) who investigated prompting on English clinical data. Thus,
there is a need to investigate how further-pretraining influences prompting methods in few-shot
scenarios.

PET performed well in various downstream tasks in English, i.a. in biomedical text classifica-
tion, where for adverse drug effect classification it outperformed GPT3 with an F1-score of 82.2%
versus 68.6% (Schick and Schütze 2022). This highlights the need for thorough evaluation of PET
in clinical routine tasks with medical domain PLMs, particularly for lower-resource languages
such as German (Leaman et al. 2015; Hahn and Oleynik 2020).

Clinical section classification. Identifying sections in clinical texts has been shown to enhance
performance on several MIE tasks (Pomares-Quimbaya, Kreuzthaler, and Schulz 2019). However,
this research field remains underdeveloped, partly due to the lack of benchmark datasets (cf. com-
prehensive survey Landolsi, Hlaoua, and Ben Romdhane 2023). Therefore, most studies focus on
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English clinical texts (Denny 2008; Edinger 2017). In-depth studies focusing on few-shot learn-
ing scenarios and prompting are still lacking (Ge 2023). Our work is the first to thoroughly
investigate these methods on a freely available clinical German benchmark corpus. Furthermore,
we extensively explore German PLMs (Bressem 2024) for clinical domains to detect suitable
(further-)pretraining methods for prompting and their effect on section classification.

Interpretability.Given the black-box nature of deep learning architectures, the interpretability
of model outputs is challenging and attracts much interest (Fan et al. 2021), especially in safety-
critical domains such as clinical routine. Various feature attributionmethods have been developed
to address these issues (Ribeiro, Singh, and Guestrin 2016; Sundararajan, Taly, and Yan 2017;
Lundberg and Lee 2017), but we still face challenges in assessing their quality (Jacovi and Goldberg
2020; Attanasio 2023). Shapley values provide a theoretically well-founded approach to determine
the contribution of individual input features to a model prediction. A computationally optimized
implementation called SHAP (Shapley et al. 1953) can be applied out-of-the-box on transformer-
based models. To our knowledge, we are the first to study the use of Shapley values for data and
model optimization in clinical tasks.

Progress in the area of LLMs. Recently, generative LLMs with billions of parameters deliver
impressive results in various general (Brown et al. 2020; Scao et al. 2022; Chowdhery et al. 2023;
Touvron et al. 2023) and biomedical and clinical NLP tasks (Singhal et al. 2023; Thirunavukarasu
et al. 2023; Clusmann et al. 2023; Peng et al. 2023). However, many challenges need to be addressed
before LLMs can be applied in clinical tasks (Wang, Zhao, and Petzold 2023): Running them via
external APIs is typically prohibited due to data protection regulations. Despite efforts to make
LLMs available for use in protected infrastructures (cf. https://github.com/bentoml/OpenLLM),
model deployment in clinical infrastructures is often not feasible (Taylor et al. 2023). Moreover,
out-of-the-box local GPT and Llama models have shown poor performance in biomedical tasks
(Moradi et al. 2021; Wu et al. 2023). Finally, due to the generated outputs of autoregressive PLMs,
their use in clinical NLP implies unsolved issues concerning automatic evaluation (Guo et al. 2023;
Chang et al. 2024) and judging the faithfulness of model predictions (Parcalabescu and Frank
2024), which are both critical in the clinical domain.

While evaluation of autoregressive LLMs will mature in the future, our study on encoder-
based models serves as a process-oriented guideline for MIE projects in clinical routine tasks for
lower-resource languages. All constraints discussed in this study: (1) expert-dependency, (2) data
protection regulations, (3) demand for on-premise solutions, and (4) transparency requirements,
invariably apply to popular local LLMs such as Llama (Touvron et al. 2023) or Mistral (Jiang et al.
2023), and can serve as guidelines for evaluating these models, too.

2. Methods
2.1 Pattern-exploiting training (S1 and S2)
In our experiments, we systematically evaluate methods for few-shot learning, that is, using min-
imal training data, in a lower-resource domain and language, in our case German clinical routine
(Hahn and Oleynik 2020; Jantscher et al. 2023; Idrissi-Yaghir et al. 2024). Specifically, we evaluate
PET, a semi-supervised prompting method optimized for few-shot learning scenarios (Schick and
Schütze 2021a) which is designed to recast classical text classification or information extraction
tasks as a language modeling problem. In our study, we classify paragraphs of German doctor’s
letters into a set of nine section categories (Table 1). The objective is, for instance, to accurately
categorize a paragraph such as The patient reports pressure pain in the left chest under the section
class Anamnese.

To conduct PET experiments, we need a pretrained masked language modelM with a vocabu-
lary V , a few-shot dataset with training instances xi ∈ X and target labels yi ∈ Y . We further need
a pattern function P that maps instances to a set of cloze sentences (templates) P : X �→V∗, and a
verbalizer function v : Y �→V that maps each label to a single token from the vocabulary ofM.

https://github.com/bentoml/OpenLLM
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Table 1. Distribution of section classes: Number of samples per section class per corpus split.
English translation in round brackets.

Training set Test set

Anrede (Salutation) 402 99
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diagnosen (Diagnosis) 8,023 1,738
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AllergienUnverträglichkeitenRisiken (AllergiesIntolerancesRisks) 1,031 236
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Anamnese (Patient Medical History) 1,188 281
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Medikation (Medication) 6,148 1,627
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Befunde (Findings) 15,396 3,914
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Zusammenfassung (Summary) 3,645 843
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mix (Mix) 945 242
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Abschluss (Closing Remarks) 2,805 695
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total 39,583 9,675

Figure 2. PET workflow: Three main steps: (a) Apply pattern function P(x) to all few-shot training instances X. Fine-tune a
PLM M using a language model objective on each pattern. The output of the PLM is mapped using a verbalizer function v(y).
(b) An ensemble of M trained on each pattern is used to annotate an unlabeled dataset D with soft labels. (c) A classifier C
with a classification head is trained on D.

The PET workflow contains three basic steps (see Fig. 2): (1) applying P to each input instance
xi and fine-tune a modelM for each template to obtain the most likely token for theMASK token
v(y), (2) use the ensemble of fine-tuned models M from the previous step and annotate a large
unlabeled dataset D with soft labels, and (3) train a final classifier C with a traditional sequence
classification head on the labeled dataset D.
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2.1.1 Creating templates
Template engineering is a crucial hyperparameter in a PET experiment. For the core experiments,
we used four different template types (including examples and English translations (in brackets)):

• Null prompt: SAMPLE [MASK]
Keine peripheren Ödeme [MASK]
(No peripheral edema [MASK])

• Punctuation: SAMPLE : [MASK] and SAMPLE - [MASK]
Keine peripheren Ödeme : [MASK]
(No peripheral edema : [MASK])

• Prompt: SAMPLE Sektion [MASK]
Keine peripheren Ödeme Sektion [MASK]
(No peripheral edema Section [MASK])

• Q&A: SAMPLE Frage: Zu welcher Sektion gehört dieser Text?
Antwort: [MASK]
Keine peripheren Ödeme Frage: Zu welcher Sektion gehört dieser Text? Antwort: [MASK]
(No peripheral edema Question: To which section does this text belong? Answer: [MASK])

To minimize engineering costs we also evaluated the feasibility of using exclusively null prompts,
by removing all tokens from prompt templates, as proposed by Logan et al. (2022). We defined
three null prompt templates: (1) SAMPLE [MASK]; (2) [MASK] SAMPLE; and (3) [MASK] SAMPLE
[MASK].

2.1.2 Verbalizer
Defining the verbalizer token can be tedious, because domain knowledge and technical expertise
about the used PLM is required. This can be a significant issue, as such a comprehensive knowl-
edge is uncommon in the clinical setting. Moreover, PET restricts the verbalizer token to a single
token. Hence, an appropriate and intuitive token may not be applicable for a label mapping, if it
is not included in the PLM’s vocabulary. For instance, the word Anamnese is not part of the gbert
vocabulary. This makes a verbalizer search for clinicians quite challenging. Therefore, we use PET
with automatic labels (PETAL) for all our experiments, except for the zero-shot baselines (Schick
et al. 2020). This can reduce engineering costs and makes our experimental setup more compara-
ble and reproducible. As visualized in Suppl. Fig. S2 PETAL calculates the most likely verbalizer
token per label, given the few-shot training data for each pattern and given a PLM. We created a
separate verbalizer for each few-shot size for each training set.

2.2 Pretrained languagemodels (S1 & S3)
To evaluate the feasibility of exploiting existing clinical domain knowledge by further-pretraining,
we used a set of three language models, all based on the BERT architecture (Devlin et al. 2019) and
available at Hugging Face Hub: (1) deepset/gbert-base (Chan, Schweter, and Möller 2020),
(2) deepset/gbert-large (gbert), (3) Smanjil/German-MedBERT (medbertde) (Bressem et al.
2024). The largest model gbert-large contains 340 million parameters. In our clinical infrastruc-
ture, which contains a maximum of two NVIDIA RTX6000 GPUs, we were able to perform all
further-pretraining experiments within a reasonable timeframe (cf. Suppl. Section S3). Compared
to current foundationmodels with billions of parameters, we consider thesemodels as lightweight.
For both gbert andmedbertde, we create medical-adapted variants by further-pretraining, as pro-
posed by Gururangan et al. (2020) to assess the impact of different pretraining datasets on section
classification results (Fig. 3). We defined datasets for three different pretraining approaches:

https://doi.org/10.1017/nlp.2024.52
https://doi.org/10.1017/nlp.2024.52
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Figure 3. Pretrained language models: We use two publicly available PLMs: gbert and medbertde. We evaluate base and
large gbert models. Four pretraining methods are used: (a) publicly available, (b) task-adapted, (c) domain-adapted, and
(d) task- and domain-adapted combined.

1. task-adaptation.Using CARDIO:DE, cf. Section 2.4.1. This dataset contains unlabeled data
extracted from the same source as the training and test data of the section classification
task. It is relatively small, only 5.8MB (megabytes). (PLMs appended with suffix -task)

2. domain-adaptation. Using 179,000 doctor’s letters from the Cardiology department at the
University Hospital, cf. Section 2.4.2. This dataset contains a broad range of texts from
clinical routine in cardiovascular domain. With 1.3 GB (gigabytes), it is significantly larger
than the task-adaptation dataset. (PLMs appended with suffix -domain)

3. combination of both approaches Further-pretrain a domain-adapted PLM on our task
specific data (PLMs appended with suffix -comb)

We performed pretraining using a masked language modelling objective (cf. https://tinyurl.
com/5n8bjnbh). For hyperparameters and further training details see Suppl. Section S3.

2.3 Shapley values (S4)
In many safety-critical domains, in particular in the clinical domain, it is crucial to (1) understand
the inner workings of a model (faithfulness) and to (2) evaluate how convincing a model interpre-
tation is for a human observer (plausibility) (Jacovi and Goldberg 2020). This can increase trust
in model predictions (explainable AI) by identifying which token contributed to a specific pre-
diction. Furthermore, if a model makes incorrect predictions, allocating such tokens can help to
understand and address these issues.

In recent years, Shapley values became a valuable tool in NLP for local model interpreta-
tions using saliency features (Attanasio et al. 2023). Shapley values offer a systematic approach
to attribute the impact of individual textual components (token, token sequences) on a model
prediction. In our setup, we apply Shapley values in two ways: (1) From a clinical routine perspec-
tive: to make deep learning model predictions more transparent and explainable and (2) from an
engineering perspective: to detect biases or errors in the training data and to support choosing

https://tinyurl.com/5n8bjnbh
https://tinyurl.com/5n8bjnbh
https://doi.org/10.1017/nlp.2024.52


Natural Language Processing 9

the most optimal model architecture. Shapley values, originating from cooperative game theory,
allocate the importance of each feature by averaging its marginal contribution across all possible
feature combinations in predicting an outcome (Lundberg et al. 2017). The Shapley value for a
feature i is given by

φi(f )=
∑

S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[
f (S∪ {i})− f (S)

]
(1)

Here f is the prediction function, S is a subset of all features without feature i, and N is the set of
all features.

In our experiments, we use SHAP (SHapley Additive exPlanations) because it offers an opti-
mized algorithm that approximates Shapley values with reduced computational costs, making its
application feasible for practical use (Mosca et al. 2022). Furthermore, we conducted experimental
explorations and compared several interpretability methods in advance with ferret, a framework
for benchmarking popular explainers on transformers (Attanasio et al. 2023), finding that SHAP
was the best-performing method for our setup.

2.4 Data
2.4.1 Annotated corpus
For our experiments, we used a German clinical corpus from the cardiovascular domain,
CARDIO:DE, encompassing 500 doctor’s letters from the Cardiology Department at the
Heidelberg University Hospital. For more details about the dataset, preprocessing steps, data
annotation, and data distribution, cf. Richter-Pechanski et al. (2023). The corpus can be accessed
via heiData, a public research repository; see Richter-Pechanski and Dieterich (2023). The com-
plete corpus contains 993, 143 tokens, with approximately 31, 952 unique tokens. The corpus was
randomly split into CARDIO:DE400 containing 400 letters (805, 617 tokens) for training and
CARDIO:DE100, containing 100 letters (187, 526 tokens) for testing. The corpus was automat-
ically de-identified, by replacing protected health information (PHI) containing patient sensitive
identifiers with placeholders using an in-house deep learning model (Richter-Pechanski et al.
2019). This was followed by a manual review involving domain experts to fix de-identification
errors. To increase readability and semantic consistency and to decrease the chance for re-
identification, all PHI placeholders were replaced with semantic surrogates, as proposed in Lohr,
Eder, and Hahn (2021).

We split the corpus by newline characters, which are part of the MS-DOC source documents.
Sentence splitting the corpus with publicly available sentence splitting methods or by pattern
heuristics showed unsatisfactory results. Furthermore, sequence length of newline split para-
graphs rarely exceed 512 token (min: 3, max: 599, mean: 30.9, median: 16, 99th percentile: 205),
thus, comply with most PLM sequence length restrictions. If a paragraph exceeds the maximum
sequence length of the PLM, we trim the sample accordingly.

The corpus contains 116.898 paragraphs manually annotated with 14 section classes:
Anrede (Salutation/Greeting), AktuellDiagnosen (Current Diagnosis), Diagnosen (Diagnosis),
AllergienUnverträglichkeitenRisiken (AllergiesIntolerancesRisks), Anamnese (Patient Medical
History), AufnahmeMedikation (Admission Medication), KUBefunde (Body Findings), Befunde
(Findings), EchoBefunde (Echocardiogram Findings), Labor (Laboratory), Zusammenfassung
(Summary), Mix (Mix), EntlassMedikation (Discharge Medication), Abschluss (Closing Remarks)
(see CARDIO:DE section classes, Suppl. Tab. S1). Manual annotation was conducted on the
paragraph level, no nested annotations were allowed. For our experiments, we reduced the
section classes to the most significant sections. We removed the Labor section, as it contains
flattened tables resulting in a large amount of relatively well structured and short numeric sam-
ples. Internal experiments showed that they can be sufficiently identified using regular expressions

https://doi.org/10.1017/nlp.2024.52
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Table 2. Contextualized paragraphs: A sample annotated as AllergiesIntolerancesRisks with three different context types,
each separated by the [SEP] token. English translation in italics.

Context type Example

nocontext Cvrf: Hypertonie, Nikotinkonsum, Hypercholesterinämie
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cardiovascular risk factors: high blood pressure, smoker, high cholesterol


context – OP am 02.01.2011 [SEP] Cvrf: Hypertonie, Nikotinkonsum, Hypercholesterinämie [SEP] Anamnese:
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– Surgery on January 2, 2011 [SEP] Cardiovascular risk factors: high blood pressure, smoker, high
cholesterol [SEP] Patient medical history:



prevcontext – OP am 02.01.2011 [SEP] Cvrf: Hypertonie, Nikotinkonsum, Hypercholesterinämie


– Surgery on January 2, 2011 [SEP] Cardiovascular risk factors: high blood pressure, smoker, high
cholesterol

and patterns. Furthermore, we merged seven semantically similar classes in CARDIO:DE anno-
tations to three meta classes: (1) Diagnosen: (AktuellDiagnosen + Diagnosen), (2) Medikation:
(AufnahmeMedikation + EntlassMedikation), and (3) Befunde: (KUBefunde + EchoBefunde +
Befunde). Our final dataset contains 49, 258 paragraphs annotated with 9 section classes (Table 1).

During annotation human annotators of CARDIO:DE were presented the whole document
(for further annotation details, see Richter-Pechanski et al. 2023). To mimic this setup for our
automatic section classifiers in this study, we introduced basic information about document struc-
ture to the model without introducing additional preprocessing steps or external knowledge.
In addition to our training data containing single paragraph samples, we assessed two types of
context-enriched datasets for our experiments (Examples Table 2):

• no-context (a single paragraph to be classified)
• context (previous paragraph + main paragraph + subsequent paragraph)
• prevcontext (previous paragraph + main paragraph)

The context-enriched samples still mostly comply with sequence length restrictions of PLMs
(minimum 7, maximum 967, mean length 90.2, median length 63 and 99th percentile 371 sub
tokens). If the sequence length of the context enriched sample is exceeded, we trim the sequence
of the context to fit the maximum sequence length of the PLM.

2.4.2 Pretraining data
For all pretraining experiments, we used an internal clinical routine corpus containing approx-
imately 179, 000 German doctor’s letters in a binary MS-DOC format covering the time period
2004–2020. We collected the letters from the Cardiology Department of the University Hospital
Heidelberg. The pretraining corpus is disjoint from the annotated corpus. We conducted the fol-
lowing preprocessing steps: each letter was converted into a UTF-8 encoded raw text file using the
LibreOffice command line tool soffice (version 6.2.8).We chose LibreOffice, as it best preserved
the structure of newlines and blanklines. We automatically de-identified all letters using a method
based on a deep learning model trained on internal data, see Richter-Pechanski et al. (2019). We
replaced PHI tokens with semantic surrogates, see Lohr et al. (2021). All doctor’s letters were con-
catenated into a single raw text file. We separated each new letter by the sequence ###BEGINN.
All empty lines and all tables containing laboratory values were removed. The corpus is sentence
splitted using NLTK’s (version 3.7) PunktSentenceTokenizer.
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The doctor’s letters were further supplemented by the GGPONC corpus, which contains
German oncology guidelines, with a total of 2 million tokens (Borchert 2022). The final corpus
covers 1.3 GB of raw text, approximately 218, 084, 190 tokens and 667, 903 unique tokens.

2.5 Experimental setup
2.5.1 Metrics
We measure section classification performance with accuracy for per-model results. In a multi-
class text classification task, the accuracy is defined as the ratio of text documents correctly
classified to their respective classes over the total number of text documents:

Accuracy=
∑n

i=1 TPi
Total Number of Texts

(2)

where TPi represents the true predictions for each class i and n is the total number of classes.
To measure section classification performance per-section class, we use the F1-score. It is

defined as the harmonic mean of precision and recall given by

Precision= TP
TP+ FP

(3)

Recall= TP
TP+ FN

(4)

Hence, the F1-score is defined by

F1 = 2× Precision× Recall
Precision+ Recall

(5)

where TP, FP, and FN represent true positives, false positives, and false negatives, respectively.
We used approximate randomization tests (Yeh 2000) to measure statistical signifi-

cance for accuracy and F1-score results. Results are considered significant if p< 0.05, cf.
(https://github.com/smartschat/art).

2.5.2 Creating few-shot data
To conduct PET experiments, we created six few-shot datasets. Each dataset contains N para-
graphs per section class with size N = 10, 20, 50, 100, 200, and 400 randomly selected from the
CARDIO:DE400 data (random seed 42). Each paragraph includes the previous and subsequent
context paragraph. All other context types (nocontext, prevcontext) are derived from this dataset.
Each few-shot set includes three labeled training files and three unlabeled files with the remaining
samples from the CARDIO:DE400 dataset (Suppl. Fig. S3). All experiments were evaluated on the
complete CARDIO:DE100 held-out dataset.

2.5.3 Core experiments
We conducted core experiments to assess the performance of different section classificationmodels
along three dimensions to compare: (1) fine-tuned sequence classification model variants (SC) to
few-shot prompt-based learning with PET (S2, Fig. 2), (2) four different pretraining methods for
clinical adaptation (S1), and (3) six different few-shot sizes: 10− 400 (S2).

The SC model is trained using a BERT-architecture with an additional output layer for a
sequence-classification task as described in Devlin et al. (2019). We use the SC implementation of
the PET framework, defined by the parameter — method sequence_classifier.

For all core experiments, we used base-sized BERT models (S3) (gbert-base-∗ and medbertde-
base-∗) using all five templates combined and nocontext samples (Suppl. Tab. S2). To measure

https://github.com/smartschat/art
https://doi.org/10.1017/nlp.2024.52
https://doi.org/10.1017/nlp.2024.52


12 P. Richter-Pechanski et al.

standard deviation in core experiments and additional experiments, we used three disjoint train-
ing sets including their unlabeled sets for each few-shot set. Furthermore, we conducted all
experiments with two random initital seeds (123 and 234).

2.5.4 Additional experiments
In additional experiments, we investigate the effectiveness of further parameters, using the model
that performed best in core experiments, with reduced few-shot sets: 20, 50, 100, and 400. We
investigate the impact of (1) model size comparing BERT-large and BERT-base models, (2) null
prompt patterns, and (3) contextualization. In core and additional experiments, we further per-
form class-based evaluations on two primary classes, which were selected with clinical experts: (1)
Anamnese (mostly unstructured) and (2)Medikation (semi-structured).

Model size (S3): We evaluated the impact of adding model parameters, by comparing gbert-
base (110 million) vs gbert-large (340 million) PLMs. We limited this setup to gbert PLMs, since a
largemedbertde was not published.

Null prompts (S2): Logan et al. (2022) discovered that the usage of null prompts prompts
without manually crafted templates achieve competitive accuracy to manually tuned prompt tem-
plates on a wide range of tasks. This is of particular interest in the clinical domain, to further
reduce costly engineering efforts.

Adding context (S2): To introduce further information to the document structure, we added
further context to each input sample to evaluate the effect of adding context paragraphs to each
sample. We evaluated three types of context (Table 2).

3. Results
3.1 Baselines
We define two baselines to assess model performance in our core and additional experiments: as
lower bound we use a zero-shot prompting approach; as upper bound we use a fine-tuned sequence
classifier trained on the full size of the training corpus. Fig. 4 shows the accuracy results for both
baselines. The upper bound results exceed 96% accuracy for both models. The further-pretrained
gbert models yield a minimal (statistically significant) advance of 0.4–0.6 accuracy points above
the original gbert-base. Formedbertde, no such difference is observed.

The zero-shot results are all below 16% accuracy, except for the public medbert-base that with
28.3% achieves a great advance over gbert-base with 7.2% accuracy. However, the gbert models
further-pretrained on both task- and domain-specific data more than double the performance of
the original model to 15% accuracy, beyond gbert pretrained on domain-specific data only (∗-
domain). All performance differences for gbert are statistically significant, except gbert-base and
gbert-domain.

3.2 Core experiments
Fig. 5 presents our core experiment results compared to the baselines introduced above.

PET versus SC. The PETmodel variants significantly outperform SCmodels at shot sizes≤100
in 31 out of 32 setups when comparing the same pretraining methods. Only SC medbertde-base-
comb outperforms all PET models with shot size 100.

Few-shot size. Both PET and SCmodels benefit from an increase in few-shot size.We observed
statistical significance at shot sizes ≤200. The smaller the shot size, the greater the relative
performance gain of PET over SC models.

Further-pretraining. We observe notably different results for further-pretrained gbert and
medbertde PLMs.
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(a) (b)

Figure 4. Section classification baseline results (lower/upper bound): We show accuracy scores in percentage per pretrain-
ing method (public, task-adapted, domain-adapted, and combination of both) per model: gbert-base andmedbertde-base.
(a) Lower-bound: used in zero-shot prompting (b) Upper bound: full training set.

Figure 5. Accuracy scores in percentage for core experiments and lower/upper bound: comparing prompting using PET vs.
SC, few-shot sizes 10− 400 and pretraining methods using base BERT models. For reference, lower-bound PET baselines
trained with zero-shots (ZERO) and upper-bound SCmodels trained on complete training set (FULL).

Gbert. PET models benefit significantly from further-pretraining with ≤100 shots. Accuracy
gradually increases with task-specific, domain-specific and combined pretraining, in that order.
Gbert SCmodels also benefit significantly from domain-adapted models over all shot sizes (except
10 and 400 shots), but not from task adaptation or their combination. Overall, we observe a more
consistent effect of further-pretraining for PET models compared to SC models.
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Medbertde. Further-pretraining shows no consistent performance improvement formedbertde
model variants. In particular, with 20 shots, the medbertde-base PET model outperforms the
further-pretrained models, achieving a statistically significant 79.1% accuracy. For few-shot sizes
10 and 50–400, the best performing model alternates between the medbertde-base-domain and
medbertde-base-comb PET models. Similar to gbert models, the relative gain of pretraining
decreases with increasing shot sizes. It appears that our pretraining method using cardiovascular
doctor’s letters has no impact or may even impair the medbertde model. A possible reason could
be that the publicmedbertdemodel was only pretrained on 10G of clinical and medical texts, pri-
marily from the oncology domain. However, future research is needed for further investigation
(pretraining data information cf. Fig. 3).

Best-performing model variant. According to our core experiments, the overall best-
performing model is the gbert domain- and task-adapted model (gbert-base-comb). This model
achieved best accuracy scores with shot sizes ≤100 compared to other pretraining methods and
to fine-tuned SC models with shot sizes ≤400. When using only 20 shots, this model outperforms
the SC model by 30.5 percentage points (pp.) and the public gbert-base PET model by 11.5 pp.
Hence, we select thismodel for all additional experiments. If not further pretrainedmedbertde-base
outperforms public gbert-base: this is similar to our baseline experiments. However, further-
pretraining does not improve the performance of medbertde-base, possibly due to the relatively
small pretraining data size ofmedbertde-base (10G).

Robustness. Experiments were performed using three training sets and two initial random
seeds. For smaller shot sizes (≤ 50 shots), standard deviation was low (∼ 2.5%) decreasing to less
than 1% for larger sizes. We observed this for gbert and medbertde with no impact of different
pretraining methods.

3.2.1 Inspecting primary classes
We investigate the impact of shot size on the accuracy of predicting the selected primary section
classes (Fig. 6a). Across shot sizes 20–50, the F1-scores of both classes increase in average by 9.2%
pp. Anamnese, with a lower F1-score, benefits more from larger few-shot sizes. However, the SC
model trained on the full training set significantly outperforms the 50-shot models. This is espe-
cially true for the Anamnese class. Even if shot size is increased to our maximum of 400 shots,
the results still differ significantly: (Anamnese: 82.4%,Medikation: 97.5%). Results for more semi-
structured classes like Medikation are closest to the performance of the full model. For results of
all shot sizes cf. Suppl. Fig. S4.

While our primary classes benefit from further-pretraining, F1-score of Anrede slightly
decreased. A possible explanation could be that Anrede often contains non-clinical terminology
that describes a patient’s place of residence, date of birth and name (Suppl. Fig. S5).

3.2.2 Inspecting Shapley values
To better understand model predictions in a few-shot setting, we further analyzed Shalpey values
of the 20-shot model for the lower-performing class Anamnese. We chose a false positive sample
as the running example for the remainder of this study because Anamnese belongs to our primary
classes and often suffers from a low precision rate (for 20-shots, gbert-base-comb achieves 44.6%
precision and 62.2% recall, cf. Suppl. Fig. S6). Table 6b illustrates selected Shapley values per token
for the sample: ’Die Aufnahme der Patientin erfolgte bei akutem Myokardinfarkt -LRB- STEMI -
RRB- . (English: The patient was admitted due to an acute myocardial infarction -LRB- STEMI
-RRB-.)’ toward the classes Anamnese and Zusammenfassung, respectively.

The model incorrectly classified this sample as Anamnese, with 76.8% probability, while the
correct class is predicted with 18.2% probability score. Tokens such as Die (the), Aufnahme
(admission), Patient (patient), erfolgte (took place) positively contributed to the Anamnese class,

https://doi.org/10.1017/nlp.2024.52
https://doi.org/10.1017/nlp.2024.52
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(a)

(b)

Figure 6. Core experiments: primary class F1-score in percentage and selected Shapley values: (a) F1-score scores per
few-shot sizes for primary classes with using gbert-base-comb nocontext. (b) Shapley value analysis for gbert-base-comb
nocontext with respect to Anamnese and Zusammenfassung prediction. First column: true label of the sample, second
column: predicted label including label probability, third column: selected Shapley values. We used 20 training shots.
For readability reasons, we grouped some token sequences. Further details, see Suppl. Fig. S7. Legend: Blue: positive
contribution, Red: negative contribution.

while the tokens Aufnahme and Patient negatively contributed to the correct Zusammenfassung
class. Analyzing the 20-shot training dataset, we observe that these keywords occur more fre-
quently in samples for Anamnese (Die (13x), Aufnahme (6x), Patient (7x), erfolgte (8x)) than in
samples from Zusammenfassung (Die (5x), Aufnahme (2x), Patient (5x), erfolgte (6x)). The token
Myokardinfarkt (acute myocardia) positively contributes to both section classes, and to a higher
extent toAnamnese, even though we only observe this token in instances from Zusammenfassung.
The token sequences representing brackets -LRB- and -RRB- contribute strongly positively to
Anamnese. Analyzing the training data showed a higher frequency of these tokens in Anamnese
samples (11x) compared to Zusammenfassung (5x).

Note on interpreting Shapley values. Shapley values are additive: they sum up all token con-
tributions along with the base value to yield the prediction probability. Shapley values toward
different classes and of different models cannot be compared by absolute value, but only relative
to other tokens for the same prediction and the same model.

3.3 Additional experiments
3.3.1 Model size
Given the limited computational resources in clinical infrastructures, we investigated how model
size affects performance and investigate its impact with finer-grained analyses. Since there is no
medbertde-large model available, we compared gbert-large and gbert-basemodels.

https://doi.org/10.1017/nlp.2024.52
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(a)

(b)

Figure 7. Model size: (a) Accuracy scores in percentage for gbert-comb nocontext PLMs using all templates on four few-shot
sizes. (b) F1-scores in percentage for primary classes for gbert-comb no context PLMs using all templates on various few-shot
sizes.

Largermodel size increases accuracy significantly, by an average of 7.2 pp. for SCmodels≤ 100.
PET models, by contrast, benefit less from larger model size than SC models. We even observe a
slight performance decrease for shot size 20 (Table 7a). The only significant increase, of 1.1 points
accuracy, we observed for shot size 50.

Primary classes: Gbert-large yields an increased F1-score for Anamense with both shot sizes
(20, 50), by an average of +4.7 pp. but this is only significant for shot size 50. By contrast, the
difference in F1-score (0.1%− 0.4%) forMedikation is not statistically significant (Fig. 7b).

Shapley values: Both models, gbert-base-comb and gbert-large-comb incorrectly classify our
running example belonging to Zusammenfassung as Anamnese. We do not observe significant
differences in the respective token contributions (Suppl. Fig. S8).

3.3.2 Null prompts
Inspired by insights of Logan et al. (2022) – who removed all tokens from prompt templates, using
null prompts instead, with comparable classification results – we evaluated the gbert-base-comb
model using only three null prompt templates (cf. Section 2.1.1).

Null prompts slightly decrease accuracy scores for shot sizes ≤50 by approximately one per-
centage point. For shot sizes 100 and 400, we note a slight accuracy increase. We only observed
statistically significant differences in accuracy for shot-size 50 (template-based model: 85.6%,
null-prompt model: 84.6%) (Suppl. Tab. S3).

https://doi.org/10.1017/nlp.2024.52
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(a)

(b)

Figure 8. Additional experiments (context) – primary classes F1-scores and selected Shapley values: (a) F1-scores in percent-
age per few-shot sizes for primary classeswith nocontext and context using gbert-base-comb. Comparing to gbert-base-comb
trained on full training data with nocontext and context. (b) Shapley value analysis for gbert-base-comb nocontext and gbert-
base-comb context. First column: true label of the sample, second column: predicted label including label probability, third
column: selected Shapley values. We used 20 training shots. For readability reasons, we grouped some token sequences.
Further details, see Suppl. Fig. S10. Legend: Blue: positive contribution, Red: negative contribution.

Primary classes: For our primary classes, we did not observe a consistent pattern. Null prompts
have a slightly negative impact on F1-scores for Anamnese and Medikation with 20 shots. By
contrast, with 50 shots, accuracy significantly decreases for Anamnese, but slightly increases for
Medikation (92.4% vs. 95.9%).

3.3.3 Adding context
Predicting section classes is difficult for tokens that frequently occur in different classes, as dis-
cussed for the example in Fig. 6. To reduce the degree of ambiguity of individual tokens, we
experimented with two types of contextualization of classification instances: Adding (1) the previ-
ous and subsequent paragraph (context) and (2) only the previous paragraph (prevcontext). Suppl.
Fig. S9 shows that across all few-shot sizes, (1) context (with mean +2.4 accuracy points) and
(2) prevcontext (with mean +1.6 accuracy points) both achieve significantly higher accuracy than
nocontext models (cf. Section 2.5.4).

Primary classes: Context models improve the F1-scores for both primary classes (by mean
+7.8 points for Anamnese and +1.3 for Medikation) (Fig. 8a). For Anamnese, statistically
significant improvement is only reached using 50 shots.

Shapley values: gbert-base-comb context correctly classifies our running example with 86.6%
probability (Table 8b). Most highly contributing tokens belong to the context (previous or follow-
ing, with Shapley values: 0.057+ 0.596), while the main paragraph has an accumulated Shapley

https://doi.org/10.1017/nlp.2024.52
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Table 3. Combining and evaluating best-performing methods: Accuracy scores in percentage for gbert-
large-comb context evaluated on few-shot sizes [20, 50, 100, 400] with base vs. largemodel sizes in context vs.
nocontext settings using PET. Comparison to corresponding SCmodel fine-tuned on full training set.

Shot size Base nocontext Large nocontext Base context Large context

20 79.1 78.2 80.5 84.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 85.6 86.7 89.2 89.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 88.3 88.6 90.9 91.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

400 90 90.4 92.8 93.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

full (SC) 96.7 96.6 98.6 98.6

value of 0.106. The previous context contains the sequence: Zusammenfassende Beurteilung, a
frequent section-specific title. The subsequent paragraph is the longest paragraph (37 tokens).
Previously negatively contributing tokens (Aufnahme and Patient) are now positively contributing
to the correct class: Zusammenfassung.

3.3.4 Combining best-performingmethods
Our core experiments indicated that the gbert-base-combmodel performed best of all tested mod-
els. The additional experiments showed that models using all five templates (cf. Section 2.1.1), a
BERT-large architecture and contextualization often achieved the best performance. Hence, we
investigated whether this combination (gbert-large-comb context trained with all templates) could
further close the performance gap to a model trained on full training set.

Table 3 shows that gbert-large-comb context significantly outperforms both gbert-base-comb
and gbert-large-comb without context. Moreover, gbert-large-comb context statistically signifi-
cantly outperforms gbert-base-comb context for 20, 100 and 400 shots. Overall, the gbert-large-
comb context outperforms nocontext and basemodels over all shot-sizes, yielding best results with
400 shots. Yet, PET still lags behind the full SC setting, with aminimal gap of−5.2 points accuracy.

Primary classes: For our primary classes, gbert-large-comb context now outperforms gbert-
large-comb nocontext by large margin (Fig. 9a). Only the 50-shot results for Anamnese are not
statistically significant (F1-score of all shot-sizes cf. Suppl. Fig. S11).

We also compared the large and base versions of gbert-∗-comb context. The F1-score for
Anamnese is significantly increased by +14.6 points with 20 shots and by +2.6 points with 50
shots. Performance for Medikation is significantly increased by +2.2 points with 20 shots, but
insignificantly decreased with 50 shots. (Suppl. Fig. S12)

Shapley values: We tested whether the token contributions differ between the large and base
gbert-∗-comb contextmodels (Table 9b). The large model predicts the true class Zusammenfassung
with 99.2% probability, +12.7 points above the base model. The large context model now also
places greater emphasis on the main paragraph, as opposed to the context. The ratio of the accu-
mulated Shapley values ( classified instance

context paragraphs , higher is better) is 0.36 for gbert-large-comb context and
0.16 for gbert-base-comb context.

4. Discussion
In this section, we discuss our empirical findings in light of the challenges and proposed solutions
outlined in Section 1.
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(a)

(b)

Figure 9. Additional experiments (combined methods) – primary classes F1-scores and selected Shapley values:
(a) F1-scores in percentage per few-shot sizes for primary classes with nocontext and context using gbert-large-comb.
Comparing to gbert-large-comb trained on full training data with context. (b) Shapley value analysis for gbert-base-comb
context and gbert-large-comb context. First column: true label of the sample, second column: predicted label including
label probability, third column: selected Shapley values. We used 20 training shots. For readability reasons, we grouped
some token sequences. More detailed results, see Suppl. Fig. S13. Legend: Blue: positive contribution}?>, Red: negative
contribution.

S1 Domain- and Expert-dependent. In in-depth evaluations, we compared four pretrain-
ing approaches using PET and SC for two public German-language models (Gururangan
et al. 2020): (1) initial pretraining using general German texts with gbert versus exclu-
sively medical and clinical data with medbertde (Fig. 3); and further-pretraining of these
PLMs for (2) task-adaption, (3) domain-adaptation, and (4) combined task and domain-
adaptation. Finding. Gbert overall accuracy gradually improved with further-pretraining.
The task- and domain-adapted gbert-base-comb performs best compared to all models,
and with only 20 shots outperforms gbert-base by +11.5 accuracy points. Also, the posi-
tive effect of further-pretraining was more consistent for PET compared to SC models. By
contrast, further-pretrained medbertde-based SC and PET models did not achieve consis-
tent performance improvements. Finding. Pretraining from scratch with sufficient clinical
and medical data can benefit various MIE tasks. However, when pretraining data lim-
ited and/or concentrated on a narrow domain, for example oncology, as in the case of
medbertde, further-pretraining was found not to enhance performance. Finding. While
medbertde-base without further-pretraining outperformed gbert-base in all shot sizes, and
similarly when trained on the full dataset (Fig. 5), it did not improve performance if further
pretrained and was outperformed by further-pretrained gbert-base.
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S2 Resource-constraints. Prompt-based fine-tuning with PET produces superior classifica-
tion results in few-shot learning scenarios. Finding. We observed a steady increase in the
performance of PET compared to SC models With decreasing few-shot training set sizes
(400-10 shots). Using 20 shots, the PET gbert-base-comb nocontext model outperforms the
corresponding SC model by +30.5 pp. The same gbert-base-comb nocontext PET model
with 50 shots even rivals the SC model trained on full data, leaving a gap of −11.1 pp.
Especially semi-structured section classes, such as Medikation, perform close to the full
model by −6.3 pp. ( Fig. 6a). Our few-shot models are also robust as measured by standard
deviation. Finding. Null prompts exhibit comparable results with no significant differ-
ence in performance, especially with few-shot sizes exceeding 100. Finding. Contextualize
data with surrounding context paragraphs improved classification results for most section
classes, especially primary classes. It allowed our base models to correctly predict our run-
ning false-positive sample as Zusammenfassung. However, compared to the base models
interpretability analysis using SHAP revealed that the large model places greater emphasis
on main paragraph tokens rather than on context paragraphs. Contextualization further
reduced the accuracy gap between gbert-∗-comb context-based PET models trained on 50
shots to the full SC model to −9 to −9.5pp; for classes such as Medikation even to −5 to
−6pp. Contextualization does not require complex preprocessing or manual annotation.

S3 On-premise: Using smaller models saves computational resources. We therefore com-
pared classification performances of base and large BERT PLMs. Finding. Large PLMs
achieve better classification results. However, model size has a lower impact on the per-
formance of PET compared to SC models (Fig. 7a). For classes such as Medikation the
further-pretrained gbert-base-comb PLM performs almost on par with gbert-large-comb
(Fig. 7b) Finding. For complex sections with free text such as Anamnese, gbert-large PLMs
achieved better performance. They also better recognize contextualized instances (Table 9b
and Suppl. Sect. S1.2).

S4 Transparency. Shapley values (Lundberg et al. 2017) an interpretability method based on
saliency features and helped identify problems in training data quality andmodel decisions.
We identified tokens that frequently occur in false-positive classes by analyzing model
predictions (Fig. 8). Finding. The use of Shapley features is especially beneficial in few-
shot scenarios, as it enables data engineers to select few-shot samples with high precision.
Shapley values also proved instrumental for identifying problems with contextualization:
It became clear that with very small shot sizes, and for section classes with short spans,
the model prioritized the context over the instance to be classified. They also provided evi-
dence that our gbert-large-combmodel outperforms its base counterpart by focusing on key
parts of contextualized samples. Finding.Our analysis of Shapley values showed that gbert-
large-combmakes more reliable predictions than gbert-base-comb, by prioritizing features
of instances to be classified over context (Table 9b).

5. Conclusions and recommendations
In this work, we have presented best-practice strategies to identify an ideal setup to address
the multifaceted challenges of conducting a MIE task, such as clinical section classification, in a
lower-resource domain and language such as the German clinical domain. In summary, our best-
performing setup used a task- and domain-adapted BERT-large architecture trained with PET on
contextualized samples using all five template types.

To reduce the demand for clinical knowledge in MIE we showed in S1 that few-shot prompting
performed particularly well with further-pretrained general-domain PLMs and helped to reduce
the demand of clinical expert knowledge for manual data annotation. Our experiments revealed
that pretraining data have a strong impact on few-shot learning results (see S2), especially if
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training data are limited. Specifically, general domain PLMs such as gbert, pretrained on massive
amounts of general language, can be effectively domain- and task-adapted by further-pretraining
on clinical routine data. In contrast, PLMs pretrained on domain-specific data from scratch,
such as medbertde may outperform gbert if not further-pretrained, but may not benefit from
further-pretraining. Therefore, if further-pretraining for domain adaptation is not feasible due to
IT constraints, we recommend choosing clinical PLMs like medbertde over non-adapted general
PLMs.

Our study indicated that prompt-based learningmethods improve classification results if anno-
tated data are rare, and effectively reduces time investment and costs of manual data annotation.
The larger the amount of annotated data, the higher the efficiency of null prompts, which fur-
ther save engineering time (see S2). Moreover, contextualizing classification instances improves
performance, especially for the primary classes, and further closes the gap to fullmodels.

We found in S3 that in case of limited computing resources, prompting methods allow prac-
titioners to employ smaller PLMs in a few-shot scenario, while achieving classification results
comparable to larger models. However, free-text sections, such as Anamnese, may still benefit
from larger model architectures (Fig. 7).

Finally, in S4, we addressed the need for transparent and trustworthy model predictions in
low-resource German clinical NLP, and possible use cases for interpretabilitymethods. Our study
demonstrates that the analysis of Shapley values can help improve training data quality, which is
especially important with small shot sizes. Examining Shapley values, or similar interpretability
methods, can also inform model selection, by revealing tokens that contribute to classification
errors in specific model types. Finally, model interpretability is crucial in safety-critical domains
such as clinical routine, to enhance the trustworthiness of model predictions.

Our study presents strategies and best-practice approaches for optimizing MIE in lower-
resource clinical language settings. It highlights the benefits of few-shot prompting with further-
pretrained PLMs as a measure to reduce the demand for manual annotation by clinicians. We
further demonstrate that prompt-based learning and contextualization significantly enhance clas-
sification accuracy, especially in low-resource scenarios, while keeping demands on computing
resources low. We are certain that these insights help to advance MIE tasks in clinical settings in
the context of lower-resource languages such as German.

6. Declarations
6.1 Ethics approval and consent to participate
The authors state that this study complies with the Declaration of Helsinki. Our task has
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