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GLOBAL EXISTENCE AND COMPARISON THEOREM FOR A
NONLINEAR PARABOLIC EQUATION

MAHMOUD HESAARAKI AND ABBAS MOAMENI

In this paper we consider a nonlinear parabolic equation with gradient dependent
nonlinearities of the form

ut - Att = a\u\p + b\ v «|*,

0 < p, q and a, 6 £ K, with homogeneous boundary condition in a bounded domain
fi C HLN. In the case 0 < p, q ^ 1 we prove the existence of solution for suitable initial
data. A comparison theorem for the solutions with respect to supersolutions and
subsolutions is proved. Using these result, uniqueness and boundedness of solutions
is studied.

1. INTRODUCTION

We consider the nonlinear parabolic problem with gradient dependent nonlinearities:

t - Au = a\u\p + b\ \7 u\q in QT = ft x (0,T),
(1.1) { u = 0 on 5 = 90 x (0,T),

u(x,0) = <f>(x) in f2,

where fl is a bounded domain with smooth boundary in Rw, p > 0, q > 0 and a, b € R.

In the case of q — 1, b > 0 and a = 0 the problem was considered by Ben Artzi in
[3, 4]. He showed the existence and decay of the global solution when ft = Rn. He also
introduced the open problem of the existence of the solution when fi ^ RN. In this paper
we consider this problem. We shall show the existence, uniqueness and boundedness of
the solution for suitable initial data, where fi is a bounded domain in RN.

The problem (1.1) without the gradient term, that is, the equation

ut - Au = |u|p-y

with p > 1, has been extensively studied by many authors providing various sufficient
conditions for blow up and global existence. Moreover some qualitative properties, such
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as, the nature of the blow up set, the rate and profile of blow up, maximum existence
time and continuation after blow up, boundedness of global solutions, and convergence
to a stationary state were investigated. For these topics we refer the reader to the books
and survey articles [7, 19, 12, 22, 16, 2, 13, 3, 8].

In the case p, q > 1 and b > 0 several authors have studied the existence of nonglobal
positive solutions by giving some conditions for blow up, under certain assumptions on
p, q, N and ft (see for instance [6, 9, 8, 14, 15, 17, 18, 20, 21]). The problem (1.1) was
considered by Souplet in [18] for p > 1 and q > 1. He proposed a model in population
dynamics, where this type of equations describes the evolution of the population density
of some biological species under the effect of a certain natural mechanism.

The aim of this paper is to prove the existence and uniqueness of global weak solu-
tions for initial data in L2(ft) for 0 < p, q ^ 1.

The following problem has been considered in [1],

ut = A u m - | V " a | * + wp in <3 = ftx(0,oo),
u = 0 on 5 = dft x (0,oo),
u(x, 0) = </>(x) ^ 0 in ft,

where ft is a bounded domain with smooth boundary in RN. It has been shown that a
global weak solution exists for nonnegative initial data in Lm+1(ft), under the assumptions
m ^ 1, a ^ m/2, 1 ^ q < 2 and 1 < p ^ aq. The authors in [1] also introduced the
open problem of the uniqueness of the solution. Our result, in part, gives a solution to
this problem in the case a = m — q — p = 1.

This paper is organised as follows. In section two we establish the existence of global
weak solution for initial data in L2(ft). In the third section we consider subsolutions and
supersolutions and prove a comparison theorem for the case p — q = 1. In section four,
by using our comparison theorem, we prove the boundedness of solutions.

2. EXISTENCE OF GLOBAL SOLUTIONS

In this section we prove the existence of global weak solution of problem (1.1), when
the initial data is in L2(ft) and 0 < p, q < 1. The techniques in [20, 6] for the existence
in the case p > 1, q > 1 rely on the differentiabilty of Ji(u) = vP and J2{u) = |Aw|«, and
are not applicable here for the case 0 < p,q < 1. Our technique is based on Galerkin's
method.

In the following we give some notations and definitions which will be used later. Let
ft C R* be a domain with smooth boundary, T > 0 and QT — ft x (0,T).

DEFINITION. Let the initial data <j>{x) € L2(ft). By a weak solution of the problem
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(1.1) on QT, we mean a function u{x,t) E L2(0,T; i / ,J(f i ) ) such that

f \-uCt + VuV^-(a\u\p + b\vu\'')c\dxdt
(2.2) JQT L J

+ / n u{x, T)ax, T) dx - / n 4>{x)C(x, 0) dx = 0,

for every test function C(z>*) S Wl i 2 (0 ,T;HQ(Q,)) . We shall say that u is a global weak
solution of the problem (1.1), if u is a weak solution on QT for all positive T.

The following lemmas in [11] are crucial in our work. In these lemmas f2' C fi is an
arbitrary measurable subset of Q, and mesft' means the Lebesgue measure of the set 0.'.

LEMMA 2 . 1 . If \\uk\\T ^ M,r > 1,M > 0, for a given sequence of functions
Uk{x), k = 1,2,... then it is possible to extract a subsequence from {uk}, that is weakly
convergent in Lr(f2). If in addition, ||ujt||r,n' ^ ^(mesfi') for every mensurable subset
Q,' of SI, where /J,(T) is a continuous function for r ^ 0 and fi(0) = 0, then it is possible
to extract a subsequence from {uk} which is strongly convergent in Lr(f2). If {uk{x)}
converges to u almost everywhere on Q, and ||ufc||r,n ^ M, r > 1, M > 0 then {%}
converges to u strongly in Z/*(fi), for every r* < r, and weakly in Lr(Cl).

LEMMA 2 . 2 . Let f(x,u) be a measurable function on the set {x S 0, u

e (-00,00)}, which is continuous in u for almost all x from Cl. If a sequence of

functions {uk(x)} from L 1 ^ ) converges almost everywhere to u(x) € L'(fi) and

/(x,u/fc(a;)) ^ M, r > 1, tien t ie functions f(x,Uk{x)) converge to }{x,u(x))

in the norm of IS' (p), for every r* < r and weakly in LT(Ci). If in addition, it is known

that \\f(x,Uk(x))\\ ^ /i(mesfi'), where fi(r) is a continuous function of r ^ 0 and

/i(0) = 0, then lf(x, uk(x)) \ converges to f(x,u(x)) strongly in Lr{Q).

The following theorem is the main result of this section.

THEOREM 2 . 3 . Let the initial data <f>(x) be in L2(Q), then the problem (1.1) has

a weaJc solution in Wl'2(0,T; H*(n)).

P R O O F : We take a fundamental system {xpk(x)}, k = 1 ,2 , . . . in the space

such that ^ipiijjjdx = <5y and max{\ipk\, | y ^ t l } = Ck < 00. An approximate solution

un(x,t) for the problem (1.1) will be sought in the usuall form un(x,i) = ^2

where £??(£), A; = 1 ,2 , . . . , n are determined by the system of ordinary differential equa-

tions

{ /" u?iPkdx + [ v«B- Vipkdx- [ [a\un\" + b\ y u"|«]^tdx = 0,
Jn Jn Jnn

* ( 0 ) = /
Jn

On the other hand for each n, there is a Tn with 0 < Tn ^ T such that C£(<), k
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= 1 , 2 , . . . , n is a solution of (2.3), and

n

max Y[C2(t)]2= max ||u"|
^

For simplicity in writing in the next paragraph we write u(x,t) instead of un(x,t).
First of all notice that from the equations (2.3) for 0 ̂  t ^ Tn we have

(2.4) I utudx+ f | V «|2 dx - f [a\u\p + b\ y u\9] u dx = 0.
Jn Jn Jn

Now by using Young's inequality, we get

and
\au\ \u\p ^ Ci(l + u2),

where C\ is a positive constant. Thus

- | V u\2 + b\u\ | V « | ' + au\u\p < | V «P + CiM272"* + Ci(l + u2).

Again by using Young's inequality for the second term on the left hand side, we obtain

co tc\ -\ y u\2 + b\u\ \ \? u\g + au\u\p ^ \ S7 u\2 + C2(l + u2) + Ci(l + u2)

where C2 is a positive constant. Integrating (2.5) over fi yields

1
2
\ fa | V u\2 dx + b Jn \u\ | V "I* dx + a fa u\u\> dx < (d + C2) / n ( l + u2) dx

+ / n | S7u\2dx.

Thus

/ \\?u\2dx - a u\u\p dx - b u\s7 u\q dx
Jn Jn Jn

> I f \2d - ( C C) f(l 2)' 2 Jn
 U 1 2 Jn

By using (2.4) we obtain

(2.6) - / utudx>\ I \S7u\2dx- ( d + C2) / (1 + u2)dx.
Jn * Jn J

Integrating (2.6) in time over [0, t] gives,

— / / Utu dxdt ^ — / / | V ul "^ d̂  ~ \P\ + 02) / / (1 + u ) dx dt.
Jo Jn ^ Jo Jn Jo Jn
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Therefore

>\\ f \ \7 u\2 dxdt-{d+ C2) f f{l + u2)dxdt.
* Jo Jn Jo Jn

But |Hz,0)||2t2(n) = £ CJ(0)2 ^ | |*(aO|£w Hence,

(2.7) \\u(x,t)\\2 + f f \vu\2dxdt< ||0(x)||2L + 2(C1+C2) f f(l+u2)dxdt.
Jo Jn Jo Jn

Thus

l l ^ ^ f e t n ) < ||tf(s)fe(n) + 2(Cx + C2)« mes(Q)+2(C1+C2)J \\u(x,t)\\2
LHn)dt.

Now by applying Gronwall's inequality, we get,

(2.8) ||«B(*.*)L(n) = ll«(I.*)IL.(n) < C* = C*fr*&).
Finally, from (2.7) and (2.8) we obtain,

(2.9) | |«n(*.t)LWl)

where C4(t ,^, Q) is a continuous function for t ^ 0. In particular (2.8) implise that
Tn=T.

Now we shall show that the sequence {un(x, t)} converges to a function u(x, t), which
is a weak solution of the problem (1.1).

By considering the uniform estimate (2.9) and Lemma 2.1 it is possible to choose a
subsequence from {un} which is weakly convergent in L2{QT) to a function u, moreover

the derivatives sequence \ -̂ — \ is convergent weakly in L2(QT) to -—.
I axi) axi

Let Q' be an arbitrary meansurable subset of QT and let 0 < a ^ 2, then by Holder's
inequality we have:

f \un(x,t)\adxdt < ( [ \un(x,t)\2dxdt
JQ> \JQ> /

and

[ \vu"(x,t)\adxdt ^([\vun{xtt)
2)a
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Hence for the special case a = 3/2

jju \x, ^)\\^3/2iQt\ ^ v^l-*)) mes^i^)

By setting ^(mes(Q')) = (C4(T)) mes(<2')1/6 in Lemma 2.1, it follows that, there is a
subsequence of {un} which is convergent to a function u(x, t) in L3I2{QT)- Then there
is a subsequence of {un} which is convergent to u almost everywhere. Now if we let
f(x, un) = |u"|p in Lemma 2.2, it follows that f(x, un) is convergent weakly to f(x, u) in
L2{QT).

By using a simillar argument one can conclude that there is a subsequence of {un}
such that | V u " l 9 is convergent weakly to | v "I9 in L2(QT).

Therefore there is a subsequence of {un}, say again {u11}, such that

un —¥ u almost everywhere
u n —>• u weakly in L2(QT),
dun du

(2.12) ~dx~~*~dx~ w e a k l y i n L 2 ( Q T ) >

\un\P _^ |U|'P w e a k l y i n L2(QT),

| V «"l* -> I V «l' weakly in L2(QT).

m
Now we can prove u is a weak solution of the problem (1.1). Let <j>m — J2 dk{t)tj)k(x)

where dk(t),k = 1,2, ...,m are continuous functions with weak derivatives d'k(t) in
L2(0,T). We denote the set of such <j>m by Am. From the equality (2.3) for <j>m 6 Am,

where m ^ n, we have:
r f f
/ [-un<j>? + V""- V<t>m]dxdt- / [a\un\p + b\s7un\Q]<j>mdxdt+ / un4>m dx^ = 0.

7 Q T JQT Jn
Now for a fixed m ^ 1, let n tend to oo, then from (2.12) and the above equality we get

(2.13) / [-u<j>? + S7u.S7 4>m)dxdt- I [a\u\p + b\ y u\q]<t>mdxdt+ I u<f>mdx\l = 0.
JQT JQT Jn
OO

Since (J Am is dense in Wl'2(0,T;H£(Qj), (2.13) is valid for every function <j>(x,t) in
m = l

In the next step we are going to see that u(x,t) G W1J2(P,T;HQ(Q)). If we multiply
dCn(t)

the equation in (2.3) by —| -— and summing over A;, we get,
at

(2.14) I\un
tfdx+ f vu".(V«")i - f[a\un\p + b\S7 un\"]u^ dx = 0.

Jn Jn Jn
For simplicity in the next paragraph we let un(x, t) = u(x,t). From (2.14), by using

Young's inequality, we obtain,

f u2
tdx^- f V«-(V«)t dx + l f u2

tdx + C f (|u|2p + | y u\2«) dx,
Jn Jn * Jn Jn
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where C is a positive constant. It follows tha t

O ^ i f u2
tdx^- I V«-(V")t dx + C [ (\u\2p + | V u\2q) dx,

2 Jn Jn Jn

Consequently

/ V«.(V")t dx^C f (\u\2p + | V u\2g) dx.
Jn Jn

Hence

(2.15) [ u2dx^AC [ (|u|2p + | v u\2q) dx.
Jn Jn

Integrating (2.15) in time over [0,T] and using (2.9) we get

(2.16) f (u1)2dxdt= [ u2dxdt^C0,
JQT JQT

where Co is a positive constant.

By considering (2.16) we can suppose, possibly by passing to a subsequnce, that

(un)t ->• w weakly in L2(QT)-

Since u e L2(QT), we have u € D'(]0,T[;H^(Q,)), where D'(]0,T[;H%(Q)) is the space
of the ifo

1(fi)-valued distribution on ]0,T[. Thus, dtu € D'(]0,T[;X). Moreover for
C e C^{QT), we have

/ dtuC, dxdt = - uQ dxdt = — lim / unQ dx dt
JQT JQT

 n^°°JQT

= lim / (un)t£dxdt — I wQdxdt,
n->°° JQT JQTIQT JQT

and consequently, w = dtu. Therefore, u G L2(0,T;H&(Q)) and dtu 6 L2(0,T;H£(Q,)).
Hence as a consequence of [5, Proposition A.6], there exists u £ Wlj2(0,T; HQ(Q)) such
that

u — u and d{u = du/dt almost everywhere in ]0, T[.

This completes the proof of theorem. D

3. COMPARISON THEOREM AND UNIQUENESS

In this section, we consider subsolutions and supersolutions for the problem (1.1),
and we prove a comparison theorem for these kind of solutions.

DEFINITION. We say that u{x,t) e Wl i 2(O,T;#o(^)) i s a subsolution (supersolu-
tion) of the problem (1.1), if u(x,0) ^ (Z)4>(x) on Q and the inequality

f utC,dxdt+ ( s/u.^jC,dxdt- I (a\u\p + b\ Vu\q)C,dxdt ^ 0(> 0),
JQT JQT JQT
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holds for every nonnegative test function ((t,x) e L2(0,T;HQ(Q)).

THEOREM 3 . 1 . If u- is a subsolution and u+ a supersolution of problem (1.1)
and p = q — 1 then u~(x, t) ^ u+(x, t) on QT-

PROOF: We prove the theorem for the case a ̂  0 and 6^0 , the proof of the other
cases is simillar. Let v(x, t) = u+(x, t) — v,-(x, t). By the definition of supersolution and
subsolution, v(x, t) must satisfy in the following inequality:

(3.18)

Let

(3.17)

/ vt(;dxdt+
JQT JQ

•for every test function £ ̂  0. Hence

JQT

-I (o|u_|
JQT

/ vt£dxdt+ /
JQT JQ

/

(a\u-\ + a\v\ +b\ V u+| +b\ S7 v\) yipdxdt

= -a \v\(dxdt-b \\/v\(,dxdt.
JQT JQT

where 0 ̂  To < T is arbitrary.
If we set

fii(*) = {x e n | v(x,t) < o},n2(t) = {x e n \ v{x,t) > o},

where 0 ̂  t < To, it follows that

/ vt(x,t)£{x,t)dx = VtCdx + I vt(dx
(3.19) Jn 7 l ( " Jnf r

= vt<;dx = - QCdx = - /
Jni{t) Jfii(t) Jn

On the other hand

S7v(x,t).v((x,t)dx =

=
(3.20)

/

= - I \vC(x,t)\2dx,
Jn
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\a\ f \v\Cdx = \a\ f \v\(,dx + \ a \ f \v\Cdx = \a\ f Q2 dx
(3.21) Jn •'ni(t) •'fMO J^i(t)

<W / ?dx,
Jn

and

\b\[\vv\Cdx =\b\[ \vv\(dx+\b\ [ \Vv\<;dx
Jn Jsii(t) Jn2(t)

= \b\f \v(\Cdx
(3.22) /ni«

/ \vC\2dx + b2

) Jnn^t)

[ [ t2dx.
Jn Jn

By considering (3.17), (3.18), (3.19), (3.20), (3.21), (3.22), we get

f ° [ (t(x,t)((x,t)dxdt + [ ° [\vC(x,t)\2dxdt
Jo Jn Jo Jn

/•To p rTo p
^ / \\7C\2dxdt + C / / (2dxdt,

Jo Jn Jo Jn
where C is a positive constant. Hence

/

To p pT0 p

/ QCdxdt^C / / £2dxdt.
Jn Jo JnOn the other hand

Therefore

Hence

fT° I" 1 /" 1 /" 1 /"
/ / StS ax at — — I C, ^x, Jo^ ax 7i I S I.3-! V) ax ~ 7Z I s v^i •'oj a a ; -

Jo Jn ^ Jn * Jn z Jn

f C2(x, To) dx ^ 2C f ° [ C2 dx dt.
Jn Jo Jn

Then Gronwall's inequality implies that

Hence (|i>| - v)/2 = 0, and v ^ 0. This completes the proof of the theorem. D

COROLLARY 3 . 2 If in problem (1.1), p = q = 1 and cj>(x) ^ 0, then there is at

./east one positive solution.

COROLLARY 3 . 3 . The solution of problem (1.1) is unique for p — q = l.
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4. BOUNDEDNESS OF SOLUTIONS

In this section by using the comparison Theorem 3.1, we prove the boundedness of
solutions in L°°(QT) for p = q = 1.

Consider the problem

where fl is a bounded domain in R^. The following lemma is well-known, the reader is
referred to [10] for the proof.

LEMMA 4 . 1 . There exists a positive eigenvalue of the problem (4.23) which has a
positive eigenfunction on Q. Moreover this eigenvalue is simple.

PROPOSITI ON 4 . 2 . Let in the problem (1.1), Cl be a regular domain of class C2

in M.N, b < 0, <j>(x) € L2(J7) and 0 ^ <f>(x) ^ i)(x), where tp(x) is the above eigenfunction.

(i) If a < 0 and p = q = 1, then u(x, t) is bounded in L°°(QT).

(ii) If a > 0 and small, q = p = 1, then u(x, t) is bounded in L°°(QT).

PROOF: (i) Consider the function W(x,t) - e-xtl2%}){x) on U x [0,T]. For this
function we have

(4.24) Wt - AW - a\W\ - b\ y W\ = ^rp{x)e-xt/2 - a\W\ - b\ y W\ > 0,

in Q x [0,T] and W(t,x) = 0 on ffl x [0,T\.

Let C(t>x) be a nonnegative test function. By multiplying (4.24) by C(t,x) and
integrating over QT, we get

I Wt£dxdt+ I s/W.vCdxdt-a f \W\p((t,x)dxdt

-b I | y W\q<;(t,x)dxdtZ0.

But 0 ^ <f>(x) < W(x,0) = %p(x). Thus by Comparison Theorem 3.1

(ii) Again if we let W(x, t) — e~xt/2ip(x) and a ^ A/2, we have:

Wt - AW - a\W\ - b\ y W\ ^ 0.

Hence by a simillar argument, we get

R E M A R K . By Considering (2.9), it follows that ||W||X,2(QT) is bounded for 0 < p, q ^ 1.
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