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ON INEQUALITIES OF HILBERT’S TYPE

YONGIJIN L1 AND BING HE

By introducing the function 1/(min{z, y}), we establish several new inequalities simi-
lar to Hilbert’s type inequality. Moreover, some further unification of Hardy-Hilbert’s
and Hardy-Hilbert’s type integral inequality and its equivalent form with the best
constant factor are proved, which contain the classic Hilbert’s inequality as special

case.

1. INTRODUCTION
> <] o0
If f, g are real functions such that 0 < f*(z)dr < c0and 0 < / g*(z)dz < oo,
0 0
then we have (see Hardy, Littlewood and Polya [4])

(1.1) / f;l_gyy)dxdy < Tr{/ iz dz/ooogz(z)dz}l/z,

where the constant factor 7 is the best possible. Inequality (1.1) is the well known
Hilbert’s inequality. Inequality (1.1) had been generalised by Hardy-Riesz (see [3]) in
1925 as: o o
If f,g20,p>1,1/p)+(1/g)=10< / fP(z)dz < oo and 0 < / g9*(z)dz
0 0

< 00, then

g [ [0 < T fo°°fﬂ(z)dx}w{/omg%x)dz}l/q,

oo [ 2 ol [ o

where the constant factor 7/ (sin(r/p)) is the best possible. When p = g = 2, (1.2)
reduces to (1.1), Inequality (1.2} is Hardy-Hilbert’s integral inequality, which is important
in analysis and its applications(see [7]). It has been studied and generalised in many
directions by a number of mathematicians (see [1, 2, 6, 8, 10]).

Recently, by introducing some parameters, Yang (see [11]) obtained the following
inequalities:
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THEOREM 1.1. Ifp>1,1/p+1/q=1, f,920,f¢€ L*(0,0),g € L0, o) and
I fles llgllg > O, then for 0 < A < min{1/p,1/q}, one has the following two equivalent
inequalities:

(1.4) / / (:m—{zlz }1,\ f(@)g(y)dzdy < [ (» % -2)+B(», ;7 - ,\)] £ lolgllas

([ dmrone) o}

(1.5) < [B(A,% —A) + B(A,% - A)] £ 11,

where the constant factor [B(A, (1/g) = A) + B(\, (1/p) - A)] is the best possible.
THEOREM 1.2. Ifp>1,1/p+1/g=1, f,g>0,f € LP(0,00), g € L0, c0) and
(I filp, lgllg > O, then for A > 0, one has the following two equivalent inequalities:

© % (min{(z/y), (4/=)})"? 4pg(3 +1)
we) [ [N ey < IS T Il

© ([ (min{(z/y), (y/z) N2 P M 4apg(A+1)
(.7 {/o (/o max{z, y} f(’”)d“”) "y} <+l

where the constant factor (4pg(\ + 1)) /((pX + 2)(gA + 2)) is the best possible.
At the same time, Sulaiman (see [9]) gave:

THEOREM 1.3. Letin f(z),In g(z) be convex for nonnegative functions f(z) and
g(z) such that f(0) = g(0) = 0, f(o0) = g(o0) = 00, f'(s) 2 0,9°(s) > 0, s € {z*,y}.
Let A > max{p,q},p>1,1/p+1/g=1. Let

% g=p* (¢ [f(zP)|P-A*P/ 00 . —¢*/p? [g(zq)]2—'\+q/p
0< /o [f' (zP))Ple dr < o0, 0< /; [g'(xv)]"/" dz < oco.

Then we have

o [ e

o —p?/¢? pY|2-A+p/q lp
1/ _ 1/q _ z [f(=")]
< WWB p(P,/\ p)B (Q:’\ Q){/(; [f’(a:P)]P/" Z‘}
% g~0/p*[g(g9)]|2-A+e/e
o A T

The main purpose of the present article is to establish some new inequalities similar
to Hilbert’s type inequalities, and the unification of Hardy-Hilbert’s and Hardy-Hilbert's
type integral inequality.
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2. MAIN RESULTS AND APPLICATIONS

00
THEOREM 2.1. Suppose f,g are nonnegative real functions such that / (:cp
1

+(1/(p- 1)))f”(a:)d:z: < o0 and /m(z"+ (1/(a— 1)))gq(z)dz <o forp>1,1/p+1/q
= 1. Then we have '

(21) //mxn{z v} dady y /
el o] ([l s

where the constant factor 1/ ({/;T)\v/&) is the best possible.
Proor: By Hélder’s inequality, we have

* f2)e(y) ,
[ [ &t gz 1

/ / mln{a: v} [f( )( )] [g(y)(g)]dxdy
S| o RN

Define the weight function @w(z, p) as

w(z,p) / minlz, y}( ) dy,z € [1,00),

then the above inequality yields

[y < [ °°w(x,pm(ac)am]W[ [ mw(y,Q)gq(y)dy]l/q.

min{z, y}

For fixed z, let y = zt, we have

o0

T\? 1
—_— 4P
@ (z,p) / min{z, y}( ) dy 1/z min{1,t} dt

1
= P ldt 4+ / tPdt = -{z° + — ),
/u 1 p( p—l)

wn) = [ ety (3)'de = 1+ 25)

This shows the right hand side of equality (2.1).
We can prove that there exist nontrivial functions f(z), g(z), such that (2.1) takes
the equality. In fact, define

similarly,

f(z) =z79, for z € (1,00),
9(y) =y, for y € [1,00).
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On one hand, we have

/ * fz)9) ,
1 1 mm{:c y}

< {/I_’l{/q{/lw(x” + pi l)fv(z)dz}l/p{/lm( i 1)gq(z)d:c}l/q

= {/;ﬁ{/w(z’ + p. L l)a:_”"d:c}l/p{/m(x" . ! l)x""'dx}l/q
J 1 - 1 -

= {/51\"/17 [/loo %z + ;—1_—1 1°° x'”dz] e [/100 7 Pdz + 7 i 7 /loo :v""’dz] e
1

1
= 2@-1) pe-Dpra-1

On the other hand, setting y = zt, we find

N dy“/ [ mx;?i—;} =dy

1
gy [ —— it
- [ e [

] 1 oo
= / =t [ / t~P-ldt + / t"’dt] dz
1 1/z 1
1 [ 1\ [®
= —/ z ™%z + (——1— ~ —) / =Py
Pl p—-1 p/J;

dzdy

1 1
plg-1) plp-1)(p+q-1)
Hence the equality of (2.1) can be attained. This completes the theorem. O

Specially, for p = ¢ = 2, we have:
[= =]
COROLLARY 2.2. Suppose f,g are real functions such that / (1+2%) f*(z)dz
1

o0
< o0 and / (1 + z2)g*(z)dx < co. Then we have
1

* [ f(=@)9(y)

<{[Ta~ xz)ﬁ(z)dx}m{ [Tax z?)g?(z)dz}m,

where the constant factor 1/2 is the best possible.

oo
THEOREM 2.3. Suppose f, g are real functions such that / (142?22 fi(z)dz
1
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<ooand/ (1 +z*")z'*¢*(z)dr < oo for A > 0. Then we have

po [* [ L)
< -21—/\{/100(1 + zz'\)xl"‘fz(z)dz}l/z{/lm(l + zz’\)zl""gz(x)dx}m,

where the constant factor 1/2) is the best possible.
PROOF: The proof is similar to Theorem 2.1, thus we omit the details. 0
Correspondingly, we have the following theorem for series:
THEOREM 2.4. Supposep>1,1/p+1/g=1, a, 2 0,b, 2 0 (n > 2) such that
0< g:z(n”+ (1/(p - 1)))(1’,’l <ooand0 < g:;(n"+ (1/(g - 1)))b$, < 00. Then we have

o0 £ atha < dalSe e od) (e et

n=2 n=2 n=2 n=2

Proor: By Theorem 2.1, setting

f(z)=am, (m-1<z<m),
9(y) =an, (n-1<y<n).

Knowing that 1/(min{z, y}) is a decreasing function of z and y, we observe that

Qb </’" " f(z)9(y)

__—m'n d
min{m,n} n-1 min{z, y} “ay,

unless a,, = 0 or b, = 0. Hence

Z Z mm{m n}

n=2 n=2
* f(z)g(y)
< /1 A ————dzdy

min{z, y} 1
i l)f"(z)dz} /p{/loo (a:" + q%l)g"(x)dx}l/q

S{/I_)lw{{:(z"+ U /.
= {/-;W{g-[;il(zp+pil)aﬁdz} {nzﬂ/":(a:‘1+q )quz} q
< </1"1\'Vf7{z:(np+p1 l)af‘} /p{z("q+ qr1 l)bg‘} "'.

n=2 n=2

This completes the proof. O
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THEOREM 2.5. Letp > 1,1/p+ 1/q = 1, let In f(z),Ing(z) be convex for
nonnegative real functions f(z),g(x) such that f(1) = g(1) = 1, f(c0) = g(00) = oo,
f'(t)>20,9'(t) 2 0, t €[1,00) and

0< [ a0 )1 ol [0 +
0< [Ta @) @) e [ +

11]d:r < 00,

]dz < 00.

Then we have

f(zy)g(zy)
(26) / / il (%), 9y =Y

< L [T a0 1) (1@ o ) +

1 1/p
1]‘“}

1 1/q

— l]dz} .

o0
A [ @l @] 1 o +
In particular, when p = q = 2, the above inequality reduces to
f(zy)g(zy)
dzd
/ / nrun{f(av"’ 102 A

1/2
< i‘{[ z'lf(z2) [fl(_»,;?)] —lg(z2) [f2(z2) + l]d:l:}

0o 1/2
(2.6a) X {/1 z71g(z?) [g’(zz)]_lf(:rz)[gz(zz) + l]dz} .

PRroOF: Since In f(z) is convex and by Young’s inequality: zy < zP/p + z29/q, we
have

f(xy) — elnf(zu) < eln!(z”/?+9"/‘1) < elin S(zP)/p)+(n f(19V/a) — fl/p(xp)fl/q(yq)'
Hence by Hélder’s inequality, we get
f(zy)g(zy)
[ [ wie, o y«)}‘“"”
< / / [fl+(1/P)(zp)g(l/P)(zP) [g’(yQ)ll/P (y(Q'l/P))]
S )i Ji min{f (x"),g(y")} 9(y9) [f'(zp)]/a \zl-1)/g

gD (y9) F119(y9) [f(zP)]V/9 (zlP~ Ve
"[ F@) [g'<y«>1w(y<v-1>/v)]d" !

% oo fPH(aP)g(z")  ¢'(yY)
S/I / min{f(z}’),g(y")}[ g:(y)j;z [f'izf)lm(x@i-nvq)]“d”
% oo 1 HNf) [f(2?)] [ o
<[ min{f(zv),gw«)}[g Fow) [g'(yq)lq/r(yw-m/v)] oy
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e 1-p_, p 00 -1/ (4 i/p
-{[ el 0@)| [ ety (o) dy]d”}

e <{ [t 0| [ sl s () el

Define the weight function ¢(z, p), ¥(y,q) as

— qy*'9'(y%) f(zP)\?
o(:p) = 1 min{f(ﬂ:’),g(y")}(y(w)) dy,z € [1, 00)

_ f®  _pzP () 999
¥y, 9) = 2 min{f(:vp),g(yq)}(f(z”)) 4

then the above inequality yields

I mm{(fmi» s
< [ 3et@me 1) [ atem)as]

o0

1/p

> ~(-1y? =7, Ve
x [ / ~9(y, 9)y~ " 9(y") [¢'(¥%) ")dy]
1
Similar to Theorem 2.1, we have
_ (el (f(zP) 1
o) = [ ot ot (a) @ = 517+ 73]
_ [P f'(=?)  r9(y) _ 1 1
V0.0 = | 7w, o) ) E[g"(”"’*q_—i]'
Hence we obtain equality (2.6). This completes the theorem. 0

THEOREM 2.6. Supposep>1,1/p+1/q=1. Letin f(z),Ing(z) be convex for
nonnegative real functions f(z), g(z) such that / (x" +(1/(p- 1)))f(z”)dx < 0o and
1

/°° (-’L'q +(1/(g- 1)))g(z")dx < 00. Then we have

o9 [ [ e
< A2 [T L@ { [+ 25) rengtenas)

PRroOF: Since In f(z) is convex and zy < (z?)/p + (z9)/q, then

flzy) = en @)  en 1@ /p)+WR/9) ¢ linf(zP)/p)+n f(1)/a) — fY?(z?) fHa(y9).
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Therefore, applying Holder’s inequality, we have

* [ fay)atey)
L ey e

/ / mln{:p ” [fl/p(xp)gl/p a:")( ] [fl/q(yq Ya( yq)( )] dzdy
<[ LGl [ R )
Define the weight function w(z,p) as

w(z,p) / mln{:r,,y}( ) dy,z € (1, 00)

then the above inequality yields

/1 . T LB gy [ /1 ooW(-’L‘,17)f(r")g(rl:”)alz]l/p[ /1 wW(y,q)f(y")g(y")dy}

min{z, y}

1/q

The rest of the proof can be completed by following the same steps as in the proof
of Theorem 2.1, we get (2.8). 0

Now we turn to introduce the unification of Hardy-Hilbert's and Hardy-Hilbert’s
type integral inequality. Some lemmas are given first:

LEMMA 2.7. Supposer >1,1/r+1/s=1,A>0,A+ B > 0, define the weight
function w(z,s) as

T 1/3
(2.10) A(z +y) + Bmin{z, y}(;) dy, € (0,00),
setting w(z, s) = C(A, B, s), where C(A, B, s) is a constant. Then
0< C(A,B,s) < oo.

In particular,

r2

T
sin(n/r)’ r—1

PROOF: For fixed z, letting t = y/z and A > 0, A+ B > 0, we get

c@a,0,r) = c(l,-1,7) =

1 1/ad
@(z.5) / Az+y)+Bmm{:z:y}( ) Y
= / = 1 t~Y5qt
~ Jo A(l+t)+ Bmin{l,t}

1 1 Y 00 1 Y
= | ————t""%dt —_— /e
/,, A(1+t)+Btt d +/1 Al+t)+ B dt
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1 (A+B)/A 1 1 o<} 1
= ST / —t Mt I 7 / — V24t
AYs(A + BYU [, 1+t Alr(A + B) aja+my L+t

1 ©° 1 1 > 1
< t~Yodt / t~Ydt
S ABAT B /0 1+t YR AT B ), 130

= [Al/'(Al-i- By T Al/'(A1+ B)l/s]B (i i) < oo

Hence 0 < C(4, B, 5) < oo.
In particular, we have the following results directly:

*° 1 1/' T
= = (yr) - .
C(1,0,7) _/o x+y / il = ( ) sin(m/r)’

l/r r2
trdt =
¢, -1r) = / ma.x{z y} / ma.x{l t} r—1
0
LEMMA 2.8. Supposer >1,1/r+1/s=1and A>0,A+ B > 0, > 0. Then
we have
I L 1 (~1-¢)/ +
. e t T dtdr = O(1 .
(2.11) /1 )y A+t +Bmin{1,f} @ =0()(e =07
PRooOF: Fore € (0, (s/(2r)) and z > 1, we have
1
o 1 f-1-0)a gy
o A(l+t)+ Bmin{l,t}
1 [U= 1 1\ 1+(-1-¢)/s
<= (—1-€)/8 g5 - .
A/o rTTd = A (C1= o)) ()
Since for a > 1 the function g(y) = (1/(ya¥)) (y € (0, 00)) is decreasing, we find
1 1\ 14+(-1-¢)/s 1 1\ 1+ (—-1=~3/(2r))/s 1\ 1/(2r)
1+(-1-¢/s) (:z) 1+4+(-1 —s/(2r))/s(:c) T(:z:)
$0
oo L 1/z 1 (c1-e)/
—e— t(-1-€Ys g
0< /1 T Jy AQ+t)+Bmin{l, 1) tdz
a [ _ 1\Men)
<3/ G
_a
=
Hence relation (2.11) is valid. The lemma is proved. 0
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THEOREM 2.9. Suppose f(z) 9(z) 20,p>1,1/p+1/g=1,A>0,A+B >
0< / fP(z)dz <00 and 0 < / ¢%(z)dz < co. Then

© [ f(z)g(y)
(2.12) /o /o Alz+y)+ Bmin{z,y}dxdy

<C(4, B,p){ /o ” f’(x)d:c}l/p{ /o ” g"(:v)dz}l/q,

where the constant factor C(A, B, p) is the best possible. In particular,
(i) for A =1, B =0, it reduces to:

(2.12a) /:o Ooo %g-;l)dzdy < sm(7r/p {/ P(z) dx}l/p{/o "(x)da:}l/q.

(ii) for A =1, B = -1, it reduces to:

ey [ [ L2 "jj}dxdyqq{ [ wfp(z)dx}w{ / wg"(z)dz}l/q.

PROOF: (1) For B=0or A+ B =0, we have (2.12a) and (2,12b) respectively.
(2) For A>0,A+ B >0, by Holder’s inequality and Lemma 2.7, we obtain.

f(=)9(y)
_/ A(z + y) + Bmin{z, y}d:cdy

=/o | s rmmm 0 G) " (2) e
< {/ow ox Azt y){:(;)mm{z 3G )l/qd”dy}w

(2.13) {/ / ) f:g)mm{x y}(y)l/pdxdy}llq.
= { w(z,q)f(z }W{ / o (y, p)g"(y)dy} "
[ f"(x)dx}l/p{ [ owa}”

This shows the right hand side of (2.12).
If (2.13) takes the form of the equality, then there exist constants a and b, such that
they are not all zero and (see [5])

or@) ()" bt (%)

Then we have

azfP(z) = byg?(y),  almost everywhere on (0, 00) x (0, 00),
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Hence there exist a constant d, such that
az fP(z) = byg?(y) = d, almost everywhere on (0, 00) X (0, 00).

Without losing the generality, suppose a # 0, then we obtain fP(z) = d/(az),
almost everywhere on (0, 00), which contradicts the fact that

0< /oo fP(z)dz < .
0

Hence (2.13) takes the form of strict inequality, we get (2.12).

For ¢ > 0 sufficiently small, setting f.(z) = z(=¢~1/?, for z € [1,00); fe(z) = 0, for
z € (0,1) and g.(y) = y=*~V/9, for y € [1,00); ge(y) = 0, for y € (0,1). Assume that the
constant factor C'(A, B,p) in (2.12) is not the best possible, then there exist a positive
real number K with K < C(A, B, p), such that (2.12) is valid by changing C(A, B,p) to
K. On one hand, we have

/ooo /0°° Az + yf)(:)g(fgin{z, ity <K { /ow 4 (z‘)dx}w{ fo " y;’(y)dy}l/q =KJe.

On the other hand, setting ¢t = y/z, by Lemma 2.8, we have

f(z)g(y)
/ / A(z + y) + Bmin{z, y}dzdy

x(‘E 1)/Py( e-1)/q
_/ / A(z + y) + Bmin{z, y}

1
—-e-1 t(-1-¢)/q
/1 2 e AT+ 0+ Brin(L, 1 didz
1
= Pt (-1-¢)/q
/1 A(1+t)+ Bmin{l, t}t dtdz

l/.‘l: 1
[T e (-1-e)/g
/1 z /o AT+ + Bmn{L 1}’ dtdz

= 2[C(4,B,p) +o(1)] - O(1)
= 2[C(4,B,p) +o(1)].

Then we get (1/¢)[C(A, B,p) + o(1)] < K]/e, that is, C(4, B,p) < K when ¢ is
sufficiently small, which contradicts the hypothesis. Hence the constant factor C(4, B, p)
in (2.12) is the best possible. 0

THEOREM 2.10. Suppose f 2 0,p> 1,1/p+1/g=1,A>0,A+ B 2 0 and
0 </ fP(z)dz < oo. Then

0

<[ re f(z) ? m P
ey [ [ [ e Bmin{:c,y}dz] dy<CaB) [ P,
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where the constant factor C?(A, B, p) is the best possible. Inequality (2.14) is equivalent
to (2.12).

PROOF: Setting g(y) as

[ ® f(z)
o A(z+y)+ Bmin{z,y}

]p_ Yy €(0,00),
then by (2.12), we find
* f(z) P
O</; g(y)dy—/ [ A(z + y) + B min{xz, y}dx] dy
/ / f(z)g(y) dedy
A(z +y) + Bmin{z,y}

1/p 1/q
(2.15) < C(A,B,;v){/0 f"(z)dz} {/0 y"(y)dy} :
Hence we obtain
(2.16) 0< / 9 (y)dy < C”(A,B,p)/ fP(z)dz < co.
0 0

By (2.12), both (2.15) and (2.16) take the form of strict inequality, so we have (2.14).
On the other hand, suppose that (2.14) is valid. By Hélder’s inequality, we find

f(z)g(y)
/ / Alz+y)+ B rmn{:t: y}da:dy
f(z)
/ [ o Az +y) + Bmin{z,y} ]g(y)dy

g

Then by (2.14), we have (2.12). Thus (2.12) and (2.14) are equivalent.

If the constant factor CP(A, B, p) in (2.14) is not the best possible, by (2.17), we
may get a contradiction that the constant factor in (2.12) is not the best possible. Thus
we complete the proof of the theorem. 0

REMARK 2.1. (i) for A = 1, B = 0, inequality (2.14) reduces to the equivalent form of
Hardy-Hilbert’s inequality:

(2.14a) /0 [0 f=) oda]dy [m’;/—p)]" /ow (z)dz

(ii) for A=1,B = -1, inequahty (2.14) reduces to the equivalent form of Hardy-Hilbert’s
type inequality:

(2.14b) /o w[ ow f(z) dx] dy < (pg)® / 7(z)dz

max{z,y}

where both the constant factors [7r / (sin(n'/p))] and (pq)? are the best possible.
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