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ON INEQUALITIES OF HILBERT'S TYPE

YONGJIN Li AND BlNG HE

By introducing the function l/(min{x,y}), we establish several new inequalities simi-
lar to Hilbert's type inequality. Moreover, some further unification of Hardy-Hilbert's
and Hardy-Hilbert's type integral inequality and its equivalent form with the best
constant factor are proved, which contain the classic Hilbert's inequality as special
case.

1. INTRODUCTION

f2(x)dx < oo and 0 < / g2(x)dx < co,
Jo

then we have (see Hardy, Littlewood and Polya [4])

r
Jo
r ^^

Jo Jo X + V Uo Jo
where the constant factor •K is the best possible. Inequality (1.1) is the well known
Hilbert's inequality. Inequality (1.1) had been generalised by Hardy-Riesz (see [3]) in
1925 as:

If f,g > 0,p > 1, (1/p) + (I/9) = 1, 0 < / f{x)dx < oo and 0 < f g«(x)dx
Jo Jo

< oo, then

Jo Jo z + V sin(w/p)\J0

rni)dx,
JoJo

where the constant factor n/(sin(n/p)) is the best possible. When p = q = 2, (1.2)
reduces to (1.1), Inequality (1.2) is Hardy-Hilbert's integral inequality, which is important
in analysis and its applications (see [7]). It has been studied and generalised in many
directions by a number of mathematicians (see [1, 2, 6, 8, 10]).

Recently, by introducing some parameters, Yang (see [11]) obtained the following
inequalities:
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THEOREM 1 . 1 . Ifp> l,l/p+l/q = 1, f,g ^ 0 , / £ L"(0,oo),s<= L«(0,oo) and
Up, \\g\\q > 0, then for 0 < A < min{l/p, 1/g}, one has the foWowing two equivaJent

inequalities:

( 1 4 ) f (^l&/ W 9 ( ! ' ) ' i l*< [*(*• r A )

, I - A) + B(A, i - A)J H/||P,

where the constant factor \B(X, (l/q) — A) + S(A, (1/p) - A) is the best possible.

THEOREM 1 . 2 . Ifp > l,l/p+l/q = 1, / , g > 0 , / e £^(0,00),ge L«(0,oo) and

ll/llpi llffll? > 0» t f l e n ^or -̂  ̂  0, one has the foiiowing two equivalent inequalities:

where the constant factor (4pq(A + l))/((pA + 2)(qX + 2)) is the best possible.

At the same time, Sulaiman (see [9]) gave:

THEOREM 1 . 3 . Let In f{x), lng(x) be convex for nonnegative functions f(x) and

g(x) such that / (0) = g(0) = 0, /(oo) = g(oo) = oo, f'(s) > 0,5'(s) ^ 0, s € {x^y").

Let A > max{p, q},p>\, 1/p + l/q = 1. Let

Then we have

The main purpose of the present article is to establish some new inequalities similar

to Hilbert's type inequalities, and the unification of Hardy-Hilbert's and Hardy-Hilbert's

type integral inequality.
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2. M A I N RESULTS AND APPLICATIONS

THEOREM 2 . 1 . Suppose f, g are nonnegative real functions such that I (xp

/

oo "'1

(x«+ ( l / ( g - l)))5«(x)dx < oo forp > 1, l / p + 1 / 9= 1. Then we have

(2.1) / / -^-p^rdxdy
' ' min{x,y}

f/"00

W
U

I f / " 0 0 / 1
(" +

f /"»/ i N
1/ K + rJff'W

where the constant factor l/ytfp-tfq) is the best possible.

PROOF: By Holder's inequality, we have

min{x,y}

r />oo roo fP(x) (X

^ Ui h min{x,y}\y min{x, y}\x

Define the weight function zj(x,p) as

then the above inequality yields

For fixed x, let y = xt, we have

mm{x,y}\yJ Ji/x min{l,i}
/•I re

_ i t~p~ldt+ I
Jl/x Jl

similarly,

i /
= -(xp

&(y,q) = q\ q-

This shows the right hand side of equality (2.1).
We can prove that there exist nontrivial functions f(x),g(x), such that (2.1) takes

the equality. In fact, define

/ (x)=x-« , forxG[l,oo),

9(y) = y~p, for y e [1,00).
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On one hand, we have

f(x)g(y)f[ f
x Jx min{z, y}

dxdy

l /pr /•«, j -.1/9

( ( k }
1 /-oo •] 1/P r /.00 1 f

^— x-^dxl \ x-"dx + ——
-iJi J LA 9 - 1 A

l l
TT +

On the other hand, setting y — xt, we find

/

OO /-OO -I

x-^^dx / . ) . ^r'dt
Jl/xmm{l,t)

/

oo r pi foa •]

X-(P+<,)\ r"-ldt+ t-'dtldx
Ul/x J\ J

= - rx-*dx
PJ\

p-i v> h
1 1

p ( g - l )

Hence the equality of (2.1) can be attained. This completes the theorem. D

Specially, for p = q = 2, we have:
/•oo

COROLLARY 2 . 2 . Suppose f, g are real functions such that I (l+x2)f2(x)dx

< 00 and I (1 + x2)g2(x)dx < 00. Tien we have
Ji

v
x yt min{x,y}

1/2 (• /-oo 1 1/2

wiere tie constant factor 1/2 is the best possible.
/•OO

THEOREM 2 . 3 . Suppose f,g are real functions such that / (l+o;2A)i1~A/2(i)da;
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/•OO

< oo and / (1 + x2X)x1~xg2(x)dx < oo for A > 0. Tien we have
J\

( 2 4 )

1/2 ( roo 1 1/2

where the constant factor 1/2A is the best possible.

PROOF: The proof is similar to Theorem 2.1, thus we omit the details. Q

Correspondingly, we have the following theorem for series:

THEOREM 2 . 4 . Suppose p > 1,1/p + l/q = l,on^0,bn^0(n^ 2) such that

0< E(n"+(l/(p-l)))aP <ooandO< f) (n« + (l/(g - 1))W < oo. Then we have
n=2V 7 n=2V yn=2V 7 n=2

I/P
(2.5)

PROOF: By Theorem 2.1, setting

f(x) = am, (m-l^x < m ) ,

g(y) = a,,, (n - 1 < y < n).

Knowing that l/(min{x, y}) is a decreasing function of x and y, we observe that

f(x)g(y)
in{m, n} Jm_x Jn_x min{x,min{m, n} Jm_x Jn_x min{x, y}

unless dm = 0 or bn = 0. Hence

i, n}

min{x, y}
1/9

This completes the proof.
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THEOREM 2 . 5 . Let p > l , l /p + 1/g = 1, let lnf{x),lng{x) be convex for
nonnegative real functions f(x),g(x) such that /(I) = g(l) = l,/(oo) = 3(00) = 00,
f'{t)>0,9'(t)>0, t € [l.oo) and

0 < I"x-W <oo,

0 <r / r ' W ' 1 " alrq} \a'(TqW q f(rq\ oq(xq) -t - \dr < no
q - i

Then we have

(26) r(26) A 7,
f(xy)g(xy)

dxdy
min{f(XP),g(y)}

1 1 1/9

7 }
In particular, when p = q = 2, the above inequality reduces to

r r fixyWxy) dxdy
J\ J\ nain{/(^2),ff(y2)}

1/2

U°° -1 1 1/2

x- 13(x2) [^'(x2)] /(x2) [y2(x2) + l]dx >
J

PROOF: Since lnf(x) is convex and by Young's inequality: xy ^ xp/p + xq/q, we
have

_ eIn/(xy) ^ glnfix'/p+yi/q) ^ e(lnf{x'')/p)+(lnf{y*)/q) _ fl/ptxp\el/q/q\

Hence by Holder's inequality, we get

n°
min{/(zP),<7(y«)}

dxdy

fl+(l/p)(xP)g(l/P)(xP) {^(y")}^ fyi^

mm{f(XP),g(y«)}[ U

L

mm{f(XP),g(y«)}[ g(y)

L ?(?) ^(w)]1" \y^")

A min{/(xP),

r r
A min{/(xP))5(y<)}
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Define the weight function <p(x,p),ip(y,q) as

then the above inequality yields

f(xy)g(xy)

/

oo poo

J\ mi
dxdy

Similar to Theorem 2.1, we have

min{/(x"),s(y«)}

±<p(x,p)x-Wf(xP)[f'(xP)y

1/1
l~q!{yq)dy

Hence we obtain equality (2.6). This completes the theorem. D

THEOREM 2 . 6 . Suppose p > 1,1/p + 1/? = 1. Let lnf(x), lng{x) be convex for

nonnegative real functions f(x),g(x) such that / (xp + (l/(p - 1)) )f(xp)dx < 00 and
, = 0 . . J l ^ '

\ (xq + (1/(9 - 1)) Jg(xq)dx < 00. Then we have

(28) rrtsaM
' Jx Jx min{x,

PROOF: Since lnf(x) is convex and xj/ < (xp)/p+ (xq)/q, then

= e ' n / ( x v ) < e ' n / ( x I > / p ) + ( ^ / ' ) ^ e
( ' n / ( l I > ) / p ) + ( ' n / ( l / * ) / « ) = f1/p(xp)f1/q(yq).
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Therefore, applying Holder's inequality, we have

f(xy)g(xy)
min{a;, y}-dxdy

Jl Jl

L/i J\ min{x, y}\y

Define the weight function w(x,p) as

then the above inequality yields

dxdy/
°° r°° f(x)a(v)

I min{xy
The rest of the proof can be completed by following the same steps as in the proof

of Theorem 2.1, we get (2.8). D

Now we turn to introduce the unification of Hardy-Hilbert's and Hardy-Hilbert's
type integral inequality. Some lemmas are given first:

LEMMA 2 . 7 . Suppose r > 1,1/r + 1/s = 1, A > 0, A + B > 0, define the weight
function vo (x,s) as

(2.10) A{x + y) + Bmin{x,y}(^) 'dy, z€(0,oo),

setting m{x, s) = C(A, B, s), where C(A, B, s) is a constant. Then

0< C(A,B,s) <oo.

In particular,

sm(7r/r) r - 1

PROOF: For fixed x, letting t = y/x and A > 0, A + B > 0, we get

ZD[ (

A(x + y) + Bmm{x,y}\y

^ ( l + t) + B i { l t }rUsdt
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i r(A+a)/A •, I r°° I
- x / _J_ri/«dt +

 x / L r1/s

~ AW(A + Byir Jo 1 + i + AV'{A + B)^ JA/{A+B) 1 + t

trl/'dtTTt

~ iAl''(A + B)l/r + AV'{A + Byi'\ Kr'l)

Hence 0 < C(A, B, s) < oo.
In particular, we have the following results directly:

Jo x + y\xJ Jo 1 + t \r s) sin(7r/r)
r°° 1 /7/\ l/r /*°° 1 r^

C ( l , —1, r ) == / '" •"•:• I — 1 dx == / ••' — — t rdt = .

D

LEMMA 2 . 8 . Suppose r > 1,1/r + 1/s = 1 and A > 0, A + B ^ 0,e > 0. Then
we have

(2.11) / x— 1

PROOF: For e G fo, (s/(2r) J and x ̂  1, we have

rl/
/

Jo
/
o A(l + t) + Bmin{l,t}

Since for a ̂  1 the function <7(y) = (l/^a")) (y € (0, oo)) is decreasing, we find

1 /1 \ l+(-l-e)/» 1 /1 \ l+(-l-*/(2r))/5 / l

l + (-l-s/s)\x) ^ l + (-l-«/(2r))/sVx/ ^ 2 r W

so

/

OO l - l / l -I

2.-E-1 / I t(-l-e)/>
Jo A(l + t) + Bmin{l,t}

dx

Hence relation (2.11) is valid. The lemma is proved.
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10 Y. Li and B. He [10]

THEOREM 2 . 9 . Suppose f{x), g{x) ^ 0 , p> 1, l/p+l/q= 1,A > 0,A+B ^ 0,
/•OO TOO

0 < / f{x)dx < oo and 0 < / g"(x)dx < co. Then
Jo Jo

Uoo -» 1/p f <-oo •> 1/9

/ " ( x ) d x | | y o g*(x)j
where the constant factor C(A,B,p) is the best possible. In particular,

(i) for A = 1, B = 0, it reduces to:

7o Jo x + V sm(n/p){J0

(ii) for /I = 1, B = — 1, it reduces to:

/•oo /-oo t(T\a(.,\ ( r°° 1 1 / J > f f°°

<212b» / I i b g ^ * * * " ! / /'(I)lfa} U s'(I
P R O O F : (1) For B = 0 or A + B = 0, we have (2.12a) and (2,12b) respectively.
(2) For A > 0, A + B > 0, by Holder's inequality and Lemma 2.7, we obtain

f°° r f{x)g(y)
Jo Jo Mx + y) + B min{i, y}

dxdy

f°° f°° i

A(x + y) y

/ T./o A

Uoo

w(x,q)f"(x)dx

Uoo 1 1/p /• /-

/»(x)<faj |Jf

x p • f T ( -

+ y)+Bmin{x,y}\x
1/p

1/p /• /-oo \ 1/9

This shows the right hand side of (2.12).
If (2.13) takes the form of the equality, then there exist constants a and b, such that

they are not all zero and (see [5])

Then we have

axfp(x) = bygq(y), almost everywhere on (0, oo) x (0, oo),
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[11] On inequalities of Hilbert's type 11

Hence there exist a constant d, such that

axfp(x) = bygq(y) = d, almost everywhere on (0, oo) x (0, oo).

Without losing the generality, suppose a ^ 0, then we obtain f(x) = d/(ax),
almost everywhere on (0, oo), which contradicts the fact that

0 < r /"(*)
Jo

ix < oo.
la

Hence (2.13) takes the form of strict inequality, we get (2.12).

For e > 0 sufficiently small, setting fs(x) = x(-~e~1')/p, for x £ [l,oo);/e(z) = 0, for
x € (0,1) and ge(y) = y{-e~l)lq, for y € [1, oo); ge{y) = 0, for y € (0,1). Assume that the
constant factor C(A, B,p) in (2.12) is not the best possible, then there exist a positive
real number K with K < C(A,B,p), such that (2.12) is valid by changing C(A, B,p) to
K. On one hand, we have

/

oo /-oo f(x)a(v) ( r°° 1 x^p f f°° 11^

/ -77 \ r. • r Tdxdy<K< f»(x)dx\ < 9qAy)dy\ =K/e.
Jo A{x + y) + Bmm{x,y} [Jo ) [Jo )

On the other hand, setting t = y/x, by Lemma 2.8, we have
f°° f°° f{x)g(y)
/ / Tr—;—\ . p—~i T<ixdy

Jo Jo Mx + VI + B min{:r, y}
Ti—;—\~T~B—~t ydxdy

x Jx A(x + y) + B mm{x, y]

/

OO /•O

T-e-l /
yi/

/

O

-I

t

-I

o A(l + t) + Bmm{l,t}

/

OO /-l/l -I

= \[C{A,B,p)-

Then we get (l/e)[C(A,B,p) + o(l)] ^ K/e, that is, C{A,B,p) ^ K when e is
sufficiently small, which contradicts the hypothesis. Hence the constant factor C(A,B,p)

in (2.12) is the best possible. D

THEOREM 2 . 1 0 . Suppose f ^ 0,p > 1,1/p + l/q = 1, A > 0, A + B ^ 0 and

0 < / f(x)dx < oo. Tien
Jo

/ T, s 2 • r i-d*L/o i4(x + y) + Bmin{*,y} J
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where the constant factor CP(A, B,p) is the best possible. Inequality (2.14) is equivalent

to (2.12).

PROOF: Setting g(y) as

then by (2.12), we find
/•oo roo r ro

0 < / g"{y)dy = \
Jo Jo uo

/•oo /-oo

Jo Jo

A(x + y)+B min{x, y}

f(x)g(y)
W<2*ft/it

A(x + y) + B min{x, y}
j I/P ( r°° "» lli

(2.15)

Hence we obtain

(2.16) 0 < / gq{y)dy^Cp(A,B,p) I fp{x)dx < oo.
/o

By (2.12), both (2.15) and (2.16) take the form of strict inequality, so we have (2.14).

On the other hand, suppose that (2.14) is valid. By Holder's inequality, we find

n*)giv)
/

OO TO

Jo A(x + y) + B min{x, y}
dxdy

/

oo r />oo

L/0
rdx]g{y)dy

A(x + y) + B min{x, y) J"

Uoo r /*oo t / \ n p ^ -̂/P ^ /*oo ^ ^/9

/ ., , s i p . f xdx\ dy\ { gq(y)dy\ .[Jo A{x + y) + Bmm{x,y} J J {Jo
 vw/ "JThen by (2.14), we have (2.12). Thus (2.12) and (2.14) are equivalent.

If the constant factor Cp(A,B,p) in (2.14) is not the best possible, by (2.17), we

may get a contradiction that the constant factor in (2.12) is not the best possible. Thus

we complete the proof of the theorem. D

REMARK 2.1. (i) for A = 1,2? = 0, inequality (2.14) reduces to the equivalent form of

Hardy-Hilbert's inequality:

(2.14a) r \ r m^y < f ^ r r n^.
Jo L/o z + y J lsin(7r/p)J Jo

(ii) for A = 1, B = — 1, inequality (2.14) reduces to the equivalent form of Hardy-Hilbert's

type inequality:

( 2 i 4 b »

where both the constant factors 7r/(sin(7r/p)) and (pq)p are the best possible.
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