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1. Introduction. Let Z be a complex Banach space. For any bounded linear
operator T on X, the (spatial) numerical range of T is denned as the set

V(T) = {f(Tx) :xeX,feX*, \\x\\ = ||/|| = 1 =/(*)}.

If V(7 )cR , then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78]
proved that if the set {H + iK : H and K are hermitian} contains all operators, then X is a
Hilbert space. It is natural to ask the following question.

QUESTION. Is X a Hilbert space if {H + iK: H and K are hermitian} contains all
compact operators']

In this article, we have proved the following theorem.

THEOREM. Let P be a norm-1 projection on X. If there exist two hermitian operators H
and K such that P = H + iK, then P is hermitian and P = H.

Recall that an element x e X is hermitian if the span of x is the range of a rank-1
hermitian projection P e 2£(X). Berkson [1] (also see [5, p. 499] proved that if every
nonzero element is hermitian, then X is isometrically isomorphic to a Hilbert space.
Hence, the theorem shows the answer of the above question is affirmative.

2. Proof of theorem. Let Y = range P and Z = ker P. Then the matrices of
H,K:X=Y®Z^>X=Y®Z have the following forms:

and

fiE iF
K~\iC iD

where E : Y-> Y, IY is the identity on Y, F : Z-> Y, C : Y-» Z and D : Z-» Z. Since H
and K are hermitian it follows that

, K] = iHK - iKH = H(P -H)-(P- H)H = HP-PH = (
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is hermitian (see Lemma 5.4 of [3]). If [H, K] = 0 (i.e. P is normal), then Y and Z are
invariant subspaces of H and K. So the restrictions of H and K to Y and Z are hermitian.
This implies that

IY = H\Y + iK\Y and 0 = H\z + iK\z.

So by Lemma 1.1 of [6], IY = H\Y, K\Y = 0 and H\z = 0 = K\z. Now, we claim that
[H, K] = 0. It is known [6] that if T is a non-zero hermitian operator on X, the
ultraproduct f of T has at least one non-zero eigenvalue (for definition and detail, see
[6]). Moreover, if T is hermitian and T(Y) c Z, then T is hermitian and t(Y) c Z, where
Z = {(z,) e i : 2 , - 6 l } and Y = {()>,•) e Z : y, e Y}. So we may assume i[H, K] has a
non-zero real eigenvalue A. Let * = y © z be a corresponding eigenvector. Then
i[H, K]y = kz and / [ / / , A"]z = Xy (since i [# , A"]7 c Z and i[H, K]Z cY). So y * 0 =£ z
(we can assume that ||_y|| = 1), and there exist y' e Y and z ' e Z such that

Hy=y' + kz and //z = - Xy + z'.

Therefore,

[i[H, K], H]y = i[/f, K]Hy - / / / [ / / , /C]y

= /[//, K](y' + kz)-kHz

Since f is a norm-1 projection onto Y, there i s / e Jf* such that | | / | | = 1 = ||y|| =f(y)
and/ | z = 0. So

f([i[H, K], H]y) = 2A2 (since i[H, K]y' e Z).

This contradicts the fact that i[i[H, K], H] is hermitian.
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