LARGE \mathcal{F} -FREE SUBGRAPHS IN *r*-CHROMATIC GRAPHS

ZHEN HE[®], ZEQUN LV[®] and XIUTAO ZHU[®]

(Received 23 September 2022; accepted 15 October 2022; first published online 2 December 2022)

Abstract

For a graph *G* and a family of graphs \mathcal{F} , the Turán number $ex(G, \mathcal{F})$ is the maximum number of edges an \mathcal{F} -free subgraph of *G* can have. We prove that $ex(G, \mathcal{F}) \ge ex(K_r, \mathcal{F})$ if the chromatic number of *G* is *r* and \mathcal{F} is a family of connected graphs. This result answers a question raised by Briggs and Cox ['Inverting the Turán problem', *Discrete Math.* **342**(7) (2019), 1865–1884] about the inverse Turán number for all connected graphs.

2020 Mathematics subject classification: primary 05D05; secondary 05C15.

Keywords and phrases: inverse Turán problem, chromatic number, connected graph.

1. Introduction

Let *G* be a graph. We denote the set of vertices of *G* by *V*(*G*), the number of edges of *G* by e(G) and its chromatic number by $\chi(G)$. We say that a graph *G* is *k*-critical if $\chi(G) = k$ and $\chi(H) < \chi(G)$ for every proper subgraph *H* of *G*. Let \mathcal{F} be a family of graphs. The Turán number of \mathcal{F} is defined by $ex(G, \mathcal{F}) = \max\{e(H) : H \subseteq G \text{ and } H \text{ is } \mathcal{F}\text{-free}\}$. When $\mathcal{F} = \{F\}$, we simply write ex(G, F). Turán [11] determined the exact value of $ex(K_n, K_t)$, which can be thought of as the first major result in extremal graph theory. Since then, the Turán problem has attracted much attention. A well-known result is the Erdős–Stone–Simonovits theorem [5, 6], which gives the asymptotic Turán number of all nonbipartite graphs. It states that

$$ex(K_n, F) = \left(\frac{\chi(F) - 2}{\chi(F) - 1}\right)\frac{n^2}{2} + o(n^2).$$

When *F* is a bipartite graph, it is natural to consider $ex(K_{m,n}, F)$, replacing the host graph K_n with a complete bipartite graph $K_{m,n}$ (the so-called Zarankiewicz problem). More generally, the host graph can also be replaced by other graphs. Frankl and Rödl [9] studied ex(G, F) in the case when *G* is a random graph. Dowden [3] considered the Turán problem when the host graph *G* is a planar graph. Erdős [4] studied the problem $ex(Q_n, F)$, where Q_n is the hypercube graph.

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Inspired by these problems, Briggs and Cox [2] introduced a dual problem called the inverse Turán problem. That is, for a given set \mathcal{F} , if its Turán number is bounded, then what is the behaviour of the set of host graphs

$$\mathcal{G}(k,\mathcal{F}) = \{G : \exp(G,\mathcal{F}) < k\}.$$

The most interesting problem is to study the maximum size of the graphs in $\mathcal{G}(k, \mathcal{F})$. Let $\varepsilon(k, \mathcal{F}) = \sup\{e(G) : \exp(G, \mathcal{F}) < k\}$. In [2], Briggs and Cox obtained the asymptotic value of $\varepsilon(k, F)$ for all nonbipartite graphs and determined the exact value of $\varepsilon(k, \mathcal{F})$ when $\mathcal{F} = \{C_3, C_4, C_5, \ldots\}$ or $\mathcal{F} = \{C_4, C_6, C_8, \ldots\}$. For a path or an even cycle, Győri *et al.* [10] obtained results about the order of magnitude of $\varepsilon(k, F)$, in several cases. Before this problem was formally raised, there were several papers dealing with the function $\varepsilon(k, \mathcal{F})$ in a different form, for example, $\mathcal{F} = \{C_3, C_5, C_7, \ldots\}$ by Alon [1], $\mathcal{F} = \{C_3, C_4, \ldots, C_{2r+1}\}$ and $\mathcal{F} = \{C_4, C_6, \ldots, C_{2r}\}$ by Foucaud *et al.* [8] and $\mathcal{F} = \{K_3, P_4\}$ by Ferneyhough *et al.* [7].

At the end of [2], Briggs and Cox also suggested investigating the maximum chromatic number of the graphs in $\mathcal{G}(k, \mathcal{F})$:

$$\varphi(k,\mathcal{F}) = \sup\{\chi(G) : \exp(G,\mathcal{F}) < k\}.$$

The third author and Chen [12] determined the value of $\varphi(k, \mathcal{F})$ for families of graphs of diameter at most 2.

THEOREM 1.1 (Zhu and Chen [12]). Let \mathcal{F} be a family of graphs, each member of which has diameter at most 2. Then,

$$\varphi(k,\mathcal{F}) = \max\{r : \exp(K_r,\mathcal{F}) < k\}.$$

At the same time, they proposed the following conjecture.

CONJECTURE 1.2 (Zhu and Chen [12]). For any $F \neq 2K_2$,

$$\varphi(k, F) = \max\{r : \exp(K_r, F) < k\}.$$

In this note, we continue this work and prove the following theorem which implies that Conjecture 1.2 is true for all connected graphs.

THEOREM 1.3. Let \mathcal{F} be a family of connected graphs and r an integer. For any graph G with $\chi(G) = r$,

$$ex(G, \mathcal{F}) \ge ex(K_r, \mathcal{F}).$$

If some *r*-chromatic graph *G* is contained in $\{G : ex(G, \mathcal{F}) < k\}$, then by Theorem 1.3, K_r is also in $\{G : ex(G, \mathcal{F}) < k\}$. Hence we obtain the following corollary.

COROLLARY 1.4. If F is a connected graph, then

$$\varphi(k, F) = \max\{r : \exp(K_r, F) < k\}.$$

2. Proof of Theorem 1.3

Let *G* be a graph with chromatic number *r* and let $c : V(G) \rightarrow [r]$ be a proper vertex-colouring of *G*. We use C_i to denote the set of vertices assigned colour *i* and let $c_i = |C_i|$. Without loss of generality, we may assume $c_1 \le c_2 \le \cdots \le c_r$. We call (c_1, c_2, \ldots, c_r) the *colour-sequence* of *c*. Let *c* and *c'* be two different proper colourings of *G*. We say $(c_1, c_2, \ldots, c_r) < (c'_1, c'_2, \ldots, c'_r)$ if $c_j < c'_j$ for $j = \max\{i : c_i \ne c'_i\}$. For convenience, we simply write c < c'. We first prove a lemma which will be used in the proof of Theorem 1.3.

LEMMA 2.1. Let G be any graph with $\chi(G) = r$ and let c be a proper vertex colouring of G such that its colour-sequence $(c_1, c_2, ..., c_r)$ is minimal. Then V(G) has a partition $\{V_1, V_2, ..., V_s\}$ such that:

- (i) $|V_i| \leq r$;
- (ii) $s \leq c_r$;
- (iii) $\sum_{i=1}^{s} e(G[V_i]) \ge {r \choose 2}$.

PROOF. We prove this lemma by induction on *r*. If r = 2, the result is trivially true. Let $r \ge 3$ and suppose that the lemma holds for all r' < r. Let *G* be an *r*-chromatic graph on *n* vertices and *c* be a vertex-colouring of *G* such that the colour-sequence (c_1, c_2, \ldots, c_r) is minimal. It is easy to see that $c_r \ge \lceil n/r \rceil$. Now let *G'* be an *r*-critical subgraph of *G* and *c'* be the minimum vertex-colouring of *G'* with colour-sequence $(c'_1, c'_2, \ldots, c'_r)$ and colour classes $\{C'_1, \ldots, C'_r\}$. If *c'* is restricted to the subgraph $G'[C'_1 \cup \cdots \cup C'_{r-1}]$, it is still a minimal proper vertex colouring of $G' - C'_r$ and the colour-sequence is (c'_1, \ldots, c'_{r-1}) . Thus, by the induction hypothesis, $G' - C'_r$ has a partition $V'_1, \ldots, V'_{s'}$ such that (i) $|V'_i| \le r - 1$, (ii) $s' \le c'_{r-1}$ and (iii) $\sum_{i=1}^{s'} e(G'[V'_i]) \ge {r-1 \choose 2}$.

For each $v \in C'_r$ and $i \le s'$, let $e_{G'}(v, V'_i)$ denote the number of edges in G' having v as one endvertex and having the other endvertex in V'_i . Observe that

$$s' \le c'_{r-1} \le c'_r.$$

We choose s' vertices $\{v_1, \ldots, v_{s'}\}$ from C'_r step by step by the following greedy algorithm. Suppose we have found $\{v_1, \ldots, v_{i-1}\}$ from C'_r , $i \le s'$. Then we choose v_i from $C'_r \setminus \{v_1, \ldots, v_{i-1}\}$ such that $e_{G'}(v_i, V'_i)$ is the maximum among all remaining vertices. Consider the last vertex $v_{s'}$ we choose. Since in each step $e_{G'}(v_i, V'_i)$ is maximal and C'_r is independent in G', we have

$$d_{G'}(v_{s'}) = \sum_{i=1}^{s'} e_{G'}(v_{s'}, V'_i) \le \sum_{i=1}^{s'} e_{G'}(v_i, V'_i).$$
(2.1)

Suppose $C'_r \setminus \{v_1, v_2, ..., v_{s'}\} = \{v_{s'+1}, ..., v_{c'_r}\}$ and let $V_i = V'_i \cup \{v_i\}$ for $1 \le i \le s'$ and $V_j = \{v_j\}$ for $s' + 1 \le j \le c'_r$. Then $V_1, V_2, ..., V_{s'}, V_{s'+1}, ..., V_{c'_r}$ is a partition of V(G') with $|V_i| \le r$. Furthermore, by (2.1),

$$\sum_{i=1}^{c'_r} e(G'[V_i]) = \sum_{i=1}^{s'} e(G'[V'_i]) + \sum_{i=1}^{s'} e_{G'}(v_i, V'_i)$$
$$\ge \binom{r-1}{2} + \sum_{i=1}^{s'} e_{G'}(v_s, V'_i) \ge \binom{r-1}{2} + \delta(G') \ge \binom{r}{2}$$

The last inequality holds because G' is r-critical and so $\delta(G') \ge r - 1$.

It is possible that $V_1, V_2, \ldots, V_{c'_r}$ is not a partition of V(G). In this case, we take the additional sets $V_{c'_r+1}, \ldots, V_{c_r}$ if $c_r > c'_r$ and put the remaining vertices V(G) - V(G') into $V_1, V_2, \ldots, V_{c_r}$ in such a way that $|V_i| \le r$ holds for each *i*. This can be done because $r \cdot c_r \ge r \lceil n/r \rceil \ge n$. Finally, $V(G) = \bigcup_{i=1}^{c_r} V_i$ is a partition satisfying conditions (i)–(iii).

PROOF OF THEOREM 1.3. Now, let *G* be an *r*-chromatic graph and suppose V_1, \ldots, V_s is a partition of V(G) satisfying the properties in Lemma 2.1. For any $i \in [s]$, let *K* be the complete graph on the vertex set V_i and let *T* be a randomly chosen copy of an extremal graph for $ex(K, \mathcal{F})$. Let *H* be the subgraph of $G[V_i]$ with the edge set $\{uv \in E(G[V_i]) : uv \in E(T)\}$. Then,

$$\operatorname{ex}(G[V_i],\mathcal{F}) \ge \mathbb{E}(e(H)) = e(G[V_i]) \frac{\operatorname{ex}(K_r,\mathcal{F})}{\binom{r}{2}},$$

where $\mathbb{E}(e(H))$ denotes the expectation of e(H). Because all graphs in \mathcal{F} are connected,

$$\operatorname{ex}(G,\mathcal{F}) \geq \sum_{i=1}^{s} \operatorname{ex}(G[V_i],\mathcal{F}) \geq \sum_{i=1}^{s} e(G[V_i]) \frac{\operatorname{ex}(K_r,\mathcal{F})}{\binom{r}{2}} \geq \operatorname{ex}(K_r,\mathcal{F}).$$

This completes the proof of Theorem 1.3.

Acknowledgement

This work was done while the authors were studying at the MTA Rényi Institute as visiting students, supported by the Chinese Scholarship Council.

References

- [1] N. Alon, 'Bipartite subgraphs', Combinatorica 16 (1996), 301–311.
- [2] J. Briggs and C. Cox, 'Inverting the Turán problem', Discrete Math. 342(7) (2019), 1865–1884.
- [3] C. Dowden, 'Extremal C_4 -free/ C_5 -free planar graphs', J. Graph Theory 83 (2015), 213–230.
- [4] P. Erdős, 'On some problems in graph theory, combinatorial analysis and combinatorial number theory', in: *Graph Theory and Combinatorics* (eds. P. Erdős and B. Bollabás) (Academic Press, London, 1984), 1–17.
- [5] P. Erdős and M. Simonovits, 'A limit theorem in graph theory', *Studia Sci. Math. Hungar.* 1 (1946), 51–57.
- [6] P. Erdős and A. H. Stone, 'On the structure of linear graphs', Bull. Amer. Math. Soc. (N.S.) 52(12) (1946), 1087–1091.

- [7] S. Ferneyhough, R. Haas, D. Hanson and G. MacGillivray, 'Star forests, dominating sets and Ramsey-type problems', *Discrete Math.* **245**(1–3) (2002), 255–262.
- [8] F. Foucaud, M. Krivelevich and G. Perarnau, 'Large subgraphs without short cycles', SIAM J. Discrete Math. 29(1) (2015), 65–78.
- [9] P. Frankl and V. Rödl, 'Large triangle-free subgraphs in graphs without K_4 ', *Graphs Combin.* **2** (1986), 135–144.
- [10] E. Győri, N. Salia, C. Tompkins and O. Zamora, 'Inverse Turán numbers', Discrete Math. 345 (2022), Article no. 112779.
- [11] P. Turán, 'On an extremal problem in graph theory', Mat. Fiz. Lapok 48 (1941), 107–111.
- [12] X. T. Zhu and Y. J. Chen, 'Inverting the Turán problem with chromatic number', *Discrete Math.* 344(9) (2021), Article no. 112517.

ZHEN HE, Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China and MTA Rényi Institute, Budapest, Hungary e-mail: hz18@mails.tsinghua.edu.cn

ZEQUN LV, Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China and MTA Rényi Institute, Budapest, Hungary e-mail: lvzq19@mails.tsinghua.edu.cn

XIUTAO ZHU, Department of Mathematics, Nanjing University, Nanjing 210093, PR China and MTA Rényi Institute, Budapest, Hungary

e-mail: zhuxt@smail.nju.edu.cn