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Abstract

For a graph G and a family of graphs F , the Turán number ex(G,F ) is the maximum number of edges an
F -free subgraph of G can have. We prove that ex(G,F ) ≥ ex(Kr,F ) if the chromatic number of G is r and
F is a family of connected graphs. This result answers a question raised by Briggs and Cox [‘Inverting
the Turán problem’, Discrete Math. 342(7) (2019), 1865–1884] about the inverse Turán number for all
connected graphs.
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1. Introduction

Let G be a graph. We denote the set of vertices of G by V(G), the number of edges of G
by e(G) and its chromatic number by χ(G). We say that a graph G is k-critical if χ(G) =
k and χ(H) < χ(G) for every proper subgraph H of G. Let F be a family of graphs.
The Turán number of F is defined by ex(G,F ) = max{e(H) : H ⊆ G and H is F -free}.
When F = {F}, we simply write ex(G, F). Turán [11] determined the exact value of
ex(Kn, Kt), which can be thought of as the first major result in extremal graph theory.
Since then, the Turán problem has attracted much attention. A well-known result is the
Erdős–Stone–Simonovits theorem [5, 6], which gives the asymptotic Turán number of
all nonbipartite graphs. It states that

ex(Kn, F) =
(
χ(F) − 2
χ(F) − 1

)n2

2
+ o(n2).

When F is a bipartite graph, it is natural to consider ex(Km,n, F), replacing the host
graph Kn with a complete bipartite graph Km,n (the so-called Zarankiewicz problem).
More generally, the host graph can also be replaced by other graphs. Frankl and Rödl
[9] studied ex(G, F) in the case when G is a random graph. Dowden [3] considered the
Turán problem when the host graph G is a planar graph. Erdős [4] studied the problem
ex(Qn, F), where Qn is the hypercube graph.
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Inspired by these problems, Briggs and Cox [2] introduced a dual problem called
the inverse Turán problem. That is, for a given set F , if its Turán number is bounded,
then what is the behaviour of the set of host graphs

G(k,F ) = {G : ex(G,F ) < k}.

The most interesting problem is to study the maximum size of the graphs in
G(k,F ). Let ε(k,F ) = sup{e(G) : ex(G,F ) < k}. In [2], Briggs and Cox obtained the
asymptotic value of ε(k, F) for all nonbipartite graphs and determined the exact value
of ε(k,F ) when F = {C3, C4, C5, . . .} or F = {C4, C6, C8, . . .}. For a path or an even
cycle, Győri et al. [10] obtained results about the order of magnitude of ε(k, F), in
several cases. Before this problem was formally raised, there were several papers
dealing with the function ε(k,F ) in a different form, for example, F = {C3, C5, C7, . . .}
by Alon [1], F = {C3, C4, . . . , C2r+1} and F = {C4, C6, . . . , C2r} by Foucaud et al. [8]
and F = {K3, P4} by Ferneyhough et al. [7].

At the end of [2], Briggs and Cox also suggested investigating the maximum
chromatic number of the graphs in G(k,F ):

ϕ(k,F ) = sup{χ(G) : ex(G,F ) < k}.

The third author and Chen [12] determined the value of ϕ(k,F ) for families of graphs
of diameter at most 2.

THEOREM 1.1 (Zhu and Chen [12]). Let F be a family of graphs, each member of
which has diameter at most 2. Then,

ϕ(k,F ) = max{r : ex(Kr,F ) < k}.

At the same time, they proposed the following conjecture.

CONJECTURE 1.2 (Zhu and Chen [12]). For any F � 2K2,

ϕ(k, F) = max{r : ex(Kr, F) < k}.

In this note, we continue this work and prove the following theorem which implies
that Conjecture 1.2 is true for all connected graphs.

THEOREM 1.3. Let F be a family of connected graphs and r an integer. For any graph
G with χ(G) = r,

ex(G,F ) ≥ ex(Kr,F ).

If some r-chromatic graph G is contained in {G : ex(G,F ) < k}, then by
Theorem 1.3, Kr is also in {G : ex(G,F ) < k}. Hence we obtain the following corollary.

COROLLARY 1.4. If F is a connected graph, then

ϕ(k, F) = max{r : ex(Kr, F) < k}.
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2. Proof of Theorem 1.3

Let G be a graph with chromatic number r and let c : V(G)→ [r] be a proper
vertex-colouring of G. We use Ci to denote the set of vertices assigned colour i and
let ci = |Ci|. Without loss of generality, we may assume c1 ≤ c2 ≤ · · · ≤ cr. We call
(c1, c2, . . . , cr) the colour-sequence of c. Let c and c′ be two different proper colourings
of G. We say (c1, c2, . . . , cr) < (c′1, c′2, . . . , c′r) if cj < c′j for j = max{i : ci � c′i}. For
convenience, we simply write c < c′. We first prove a lemma which will be used in
the proof of Theorem 1.3.

LEMMA 2.1. Let G be any graph with χ(G) = r and let c be a proper vertex colouring
of G such that its colour-sequence (c1, c2, . . . , cr) is minimal. Then V(G) has a partition
{V1, V2, . . . , Vs} such that:

(i) |Vi| ≤ r;
(ii) s ≤ cr;
(iii)

∑s
i=1 e(G[Vi]) ≥

(
r
2

)
.

PROOF. We prove this lemma by induction on r. If r = 2, the result is trivially true. Let
r ≥ 3 and suppose that the lemma holds for all r′ < r. Let G be an r-chromatic graph on
n vertices and c be a vertex-colouring of G such that the colour-sequence (c1, c2, . . . , cr)
is minimal. It is easy to see that cr ≥ �n/r�. Now let G′ be an r-critical subgraph of G
and c′ be the minimum vertex-colouring of G′ with colour-sequence (c′1, c′2, . . . , c′r)
and colour classes {C′1, . . . , C′r}. If c′ is restricted to the subgraph G′[C′1 ∪ · · · ∪ C′r−1],
it is still a minimal proper vertex colouring of G′ − C′r and the colour-sequence is
(c′1, . . . , c′r−1). Thus, by the induction hypothesis, G′ − C′r has a partition V ′1, . . . , V ′s′
such that (i) |V ′i | ≤ r − 1, (ii) s′ ≤ c′r−1 and (iii)

∑s′
i=1 e(G′[V ′i ]) ≥

(
r−1

2

)
.

For each v ∈ C′r and i ≤ s′, let eG′(v, V ′i ) denote the number of edges in G′ having v
as one endvertex and having the other endvertex in V ′i . Observe that

s′ ≤ c′r−1 ≤ c′r.

We choose s′ vertices {v1, . . . , vs′ } from C′r step by step by the following greedy
algorithm. Suppose we have found {v1, . . . , vi−1} from C′r, i ≤ s′. Then we choose vi
from C′r \ {v1, . . . , vi−1} such that eG′(vi, V ′i ) is the maximum among all remaining
vertices. Consider the last vertex vs′ we choose. Since in each step eG′(vi, V ′i ) is
maximal and C′r is independent in G′, we have

dG′(vs′) =
s′∑

i=1

eG′(vs′ , V ′i ) ≤
s′∑

i=1

eG′(vi, V ′i ). (2.1)

Suppose C′r \ {v1, v2, . . . , vs′ } = {vs′+1, . . . , vc′r } and let Vi = V ′i ∪ {vi} for 1 ≤ i ≤ s′

and Vj = {vj} for s′ + 1 ≤ j ≤ c′r. Then V1, V2, . . . , Vs′ , Vs′+1, . . . , Vc′r is a partition of
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V(G′) with |Vi| ≤ r. Furthermore, by (2.1),
c′r∑

i=1

e(G′[Vi]) =
s′∑

i=1

e(G′[V ′i ]) +
s′∑

i=1

eG′(vi, V ′i )

≥
(
r − 1

2

)
+

s′∑
i=1

eG′(vs, V ′i ) ≥
(
r − 1

2

)
+ δ(G′) ≥

(
r
2

)
.

The last inequality holds because G′ is r-critical and so δ(G′) ≥ r − 1.
It is possible that V1, V2, . . . , Vc′r is not a partition of V(G). In this case, we take the

additional sets Vc′r+1, . . . , Vcr if cr > c′r and put the remaining vertices V(G) − V(G′)
into V1, V2, . . . , Vcr in such a way that |Vi| ≤ r holds for each i. This can be done
because r · cr ≥ r�n/r� ≥ n. Finally, V(G) =

⋃cr
i=1 Vi is a partition satisfying conditions

(i)–(iii). �

PROOF OF THEOREM 1.3. Now, let G be an r-chromatic graph and suppose V1, . . . , Vs
is a partition of V(G) satisfying the properties in Lemma 2.1. For any i ∈ [s], let K
be the complete graph on the vertex set Vi and let T be a randomly chosen copy of
an extremal graph for ex(K,F ). Let H be the subgraph of G[Vi] with the edge set
{uv ∈ E(G[Vi]) : uv ∈ E(T)}. Then,

ex(G[Vi],F ) ≥ E(e(H)) = e(G[Vi])
ex(Kr,F )(

r
2

) ,

where E(e(H)) denotes the expectation of e(H). Because all graphs in F are connected,

ex(G,F ) ≥
s∑

i=1

ex(G[Vi],F ) ≥
s∑

i=1

e(G[Vi])
ex(Kr,F )(

r
2

) ≥ ex(Kr,F ).

This completes the proof of Theorem 1.3. �
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