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Instability and rupture dynamics of a liquid nano-thread, subjected to external
hydrodynamic perturbations, are captured by a stochastic lubrication equation (SLE)
incorporating thermal fluctuations via Gaussian white noise. Linear instability analysis
of the SLE is conducted to derive the spectra and distribution functions of thermal
capillary waves influenced by external perturbations and thermal fluctuations. The SLE is
also solved numerically using a second-order finite difference method with a correlated
noise model. Both theoretical and numerical solutions, validated through molecular
dynamics, indicate that surface tension forces due to specific external perturbations
overcome the random effects of thermal fluctuations, determining both the thermal
capillary waves and the evolution of perturbation growth. The results also show two
distinct regimes: (i) the hydrodynamic regime, where external perturbations dominate,
leading to uniform ruptures, and (ii) the thermal-fluctuation regime, where external
perturbations are surpassed by thermal fluctuations, resulting in non-uniform ruptures. The
transition between these regimes, modelled by a criterion developed from linear instability
theory, exhibits a strong dependence on the amplitudes and wavenumbers of the external
perturbations.

Key words: lubrication theory

1. Introduction

The interfacial dynamics of liquid nano-threads plays a crucial role in modern fluid-based
techniques, including in-fibre particle production (Kaufman et al. 2012), fabrication of
structures in micro-/nano-electromechanical systems (Li et al. 2015), and nano-printing
(Zhang et al. 2016). Experimentally observing the dynamics at the nanoscale is often
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challenging, highlighting the significance of modelling and simulation in unravelling the
underlying physics.

Classical models describing the macroscale dynamics of liquid threads typically consist
of two stages (Eggers & Villermaux 2008): (i) the linear dynamics of instability,
and (ii) the nonlinear dynamics leading to rupture. Theoretical foundations for linear
instability were laid by two pioneers: Plateau (1873) deduced the critical wavelength (λcrit)
below which all interface disturbances decay, and Lord Rayleigh (1878) identified the
fastest-growing mode (λmax) by applying the normal mode expansion to the axisymmetric
Navier–Stokes equations. Concerning the nonlinear dynamics, various scaling laws have
been developed to describe the final pinch-off stage in three typical scenarios: the inertial
regime (Chen & Steen 1997; Day, Hinch & Lister 1998), the viscous regime (Papageorgiou
1995), and the viscous-inertial regime (Eggers 1993). Experimental confirmations of
these regimes (Castrejón-Pita et al. 2015; Lagarde, Josserand & Protière 2018) further
indicate that transitions between them are notably intricate. Building upon these classical
models for the Rayleigh–Plateau (RP) instability and rupture, recent studies have employed
specific actuations to introduce external perturbations to manipulate the interfacial
dynamics of liquid threads/jets at the macroscale, facilitating the generation of uniform
droplets (Yang et al. 2019; Zhao et al. 2021b; Mu et al. 2023).

However, at the nanoscale, classical theories prove inadequate due to the emergence
of new physical mechanisms (Kavokine, Netz & Bocquet 2021). One significant factor
is thermal fluctuations caused by random molecular motions. Their influence on the
interfacial dynamics of liquid threads was first emphasised numerically (Koplik &
Banavar 1993) and experimentally (Shi, Brenner & Nagel 1994). Subsequently, Moseler
& Landman (2000) conducted molecular dynamics (MD) simulations of nano-jets to
reveal a distinctive ‘double-cone’ shape near the rupture point, contrasting the long
neck observed at the macroscale. The discrepancy attributed to thermal fluctuations
was elucidated using a stochastic lubrication equation (SLE) derived by applying the
slender-body approximation to the governing equations of fluctuating hydrodynamics
(Landau, Lifshitz & Pitaevskij 1987). This approach captures the influence of thermal
fluctuations by incorporating stochastic flux terms. Furthermore, thermal fluctuations have
proven to play a vital role in other nanoscale interfacial hydrodynamics, such as fluid
mixing (Kadau et al. 2007), droplet coalescence (Perumanath et al. 2019), bounded film
flows (Zhang, Sprittles & Lockerby 2019; Zhao, Zhang & Si 2023), and moving contact
lines (Liu et al. 2023).

For the linear instability of liquid nano-threads, it was initially demonstrated that the
classical instability criterion remains applicable at the nanoscale (Min & Wong 2006;
Tiwari et al. 2008). Subsequent research by Gopan & Sathian (2014) indicated that thermal
fluctuations affect the dynamics only during the last stage of breakup. However, Mo et al.
(2016) contested this, asserting that the growth rates of thermal capillary waves deviate
considerably from classical theories. In a study by Zhao, Sprittles & Lockerby (2019), a
framework was developed for modelling the linear instability of interfaces in the presence
of thermal fluctuations, named the SLE-RP. At the nanoscale, the SLE-RP shows that the
criterion of the classical RP instability can be violated, and λmax predicted by classical
theories is significantly modified (notably becoming time-dependent), recently supported
by numerical simulations for the governing equations of fluctuating hydrodynamics
(Barker, Bell & Garcia 2023).

Concerning the nonlinear dynamics, Eggers (2002) first derived a similarity solution
from the SLE to describe the nonlinear dynamics of nano-thread rupture. This solution
successfully replicated the double-cone profile observed by Moseler & Landman (2000),
and presented a power law governing the progression of the minimum thread radius to
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rupture: hmin ∼ (tr − t)0.418, where tr represents the rupture time. This power law, distinct
from the macroscale counterparts, was subsequently verified experimentally (Hennequin
et al. 2006; Petit et al. 2012) and numerically (Arienti et al. 2011; Zhao et al. 2020b).
However, a recent study by Zhao, Lockerby & Sprittles (2020a) challenged this power law,
demonstrating its validity only under the condition of ultra-low surface tension.

The influence of thermal fluctuations on liquid nano-threads leads to their breakup into
droplets with sizes spanning a broad range (Gopan & Sathian 2014; Xue et al. 2018),
presenting challenges for potential nanoscale applications. Despite extensive investigations
into manipulating interfacial dynamics at the macroscale (Yang et al. 2019; Zhao et al.
2021b; Mu et al. 2023), the exploration of such external perturbations at the nanoscale
has been relatively limited. Fowlkes et al. (2012) investigated dewetting of striped liquid
films with prescribed perturbations using MD simulations. The external perturbations
with wavelength λ > λcrit were found to determine the RP instability of the liquid
films and lead to uniform droplets, while perturbations with wavelength λ < λcrit proved
ineffective in controlling droplet sizes. But the effects of the thermal fluctuations were
not quantitatively analysed in their work. Shah et al. (2019) explored the instability of
ultra-thin films driven by both thermal fluctuations and drainage due to the curvature of
the initial interface profile (similar to an external perturbation). The competition between
these two effects yields two regimes of the instability: the dimple-dominated regime and
the fluctuation-dominated regime. Notably, only the tangential curvature (for calculating
surface tension) was considered in the planar liquid film, while both tangential and
circumferential curvatures are crucial in the interfacial dynamics of liquid threads. Surface
tension forces due to the latter serve as the dominant driving force for the instability,
distinguishing it significantly from planar liquid films. Hence the physics governing the
interaction between external perturbations and thermal fluctuations, and their collective
impact on the interfacial dynamics of nano-threads, remains uncertain.

In this study, the SLE and MD are employed to investigate the effects of external
perturbations on the interfacial dynamics of liquid nano-threads. The paper is organised
as follows. In § 2, we introduce the models of fluctuating hydrodynamics of liquid
nano-threads, where the SLE is first presented in § 2.1, followed by analytical solutions
of the linearised SLE (§ 2.2) and schemes for the numerical solutions of the SLE (§ 2.3).
Subsequently, details of MD simulations are introduced in § 3. Results in § 4 show the
influence of the external perturbations and thermal fluctuations on (i) the thermal capillary
wavelengths (§ 4.1), and (ii) the evolution of perturbation growth (§ 4.2). Two instability
regimes are also defined with boundaries of regime conversions, presented in § 4.3.

2. Fluctuating hydrodynamics modelling

In this section, the SLE, as a simple mathematical model, is introduced (§ 2.1) to pursue
theoretical solutions (§ 2.2) and numerical solutions (§ 2.3) of the dynamics of liquid
nano-threads.

2.1. Stochastic lubrication equation
We consider an axisymmetric liquid nano-thread in a cylindrical coordinate system, with
its axis aligned along the z direction (figure 1), with h0 the initial radius of the thread. The
SLE was derived by Moseler & Landman (2000) via applying a lubrication approximation
to the axisymmetric fluctuating hydrodynamic equations, allowing the dynamics of the
interface to be described by the thread radius h(z, t) and the axial velocity u(z, t).
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h(z, t)

z

λ = 2π/k

u(z, t)
h0

r

O

Figure 1. Schematic of an axisymmetric liquid nano-thread with capillary waves.

To identify the governing dimensionless parameters, we use the following variables as
scales of length, time, velocity and pressure, based on (but not confined to) a balance of
inertial and surface tension forces:

h = h∗

h0
, t = t∗√

ρh3
0
/

γ

, u = u∗
√

γ /ρh0
, p = p∗

γ /h0
, N = N∗

4
√

γ
/

ρh5
0

, (2.1a–e)

where h∗, t∗, u∗ and p∗, respectively, indicate dimensional thread radius, time, velocity
and pressure. The variables without asterisks represent corresponding dimensionless
ones (note that the dimensional material parameters are not given asterisks). Here,
ρ is the density, and γ is the surface tension. To model thermal fluctuations, a
stochastic term N(z, t) is introduced, standing for a Gaussian white noise that obeys the
fluctuation–dissipation theorem. Its mean and autocovariance are respectively calculated
as { 〈N(z, t)〉 = 0,〈

N(z, t) N(ź, t́)
〉 = δ(z − ź) δ(t − t́),

(2.2a)

(2.2b)

where δ represents a unit impulse function, and 〈 · 〉 denotes ensemble averages. Here, t́ and
ź could be infinitesimally close to the original values in time or space. The dimensionless
SLE can be written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂u
∂t

= −uu′ − p′ + 3 Oh

(
h2u′)′

h2 +
√

6 Oh
π

Th
(hN)′

h2 ,

∂h
∂t

= −uh′ − u′h
2

,

(2.3a)

(2.3b)

where the primes denote partial derivatives with respect to z. In (2.3), one dimensionless
quantity is the Ohnesorge number Oh, which relates the viscous forces to inertial and
surface tension forces, i.e. Oh = μ/

√
ργ h0. Here, μ is the dynamic viscosity. Another

dimensionless quantity is the thermal-fluctuation number Th = lT/h0, representing the
relative intensity of interfacial fluctuations. Here, lT = √

kBT/γ is the characteristic
thermal-fluctuation length, with kB being the Boltzmann constant, and T the temperature.
When Th = 0, the SLE reduces to the deterministic lubrication equation (LE) proposed
by Eggers & Dupont (1994). Additionally, the full Laplace pressure in (2.3) is determined
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from the principal curvatures

p = 1

h
√

1 + (h′)2
− h′′[

1 + (h′)2
]3/2 . (2.4)

2.2. Linear instability analysis

For the linear instability, we take h(z, t) = 1 + h̃(z, t) and assume that h̃(z, t) � 1.
Substituting this into (2.3) and ignoring higher-order terms gives the linearised SLE

∂2h̃
∂t2

− 3 Oh
∂ h̃′′

∂t
+ 1

2

(
h̃′′ + h̃′′′′

)
= −

√
3 Oh
2π

Th N′′. (2.5)

A Fourier transform within [0, L] is then applied for (2.5) to give a second-order ordinary
differential equation

d2H
dt2

+ 3 Oh k2 dH
dt

+ k4 − k2

2
H =

√
3 Oh
2π

Th k2ξ, (2.6)

where

H(k, t) =
∫ L

0
h̃(z, t) e−ikz dz, ξ(k, t) =

∫ L

0
N(z, t) e−ikz dz. (2.7a,b)

Here, k is the wavenumber. The transformed variable H represents the spectrum of the
thermal capillary waves of the interfaces. Its final solution is expressed as follows (see
Appendix A for derivation):

|H|rms =
√〈|HLE|2〉 + 〈∣∣Hfluc

∣∣2〉, (2.8)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈
|HLE|2

〉
= |Hi|2 e−at

[
cosh

(
bt
2

)
+ a

b
sinh

(
bt
2

)]2

,

〈∣∣Hfluc
∣∣2〉 = 3L Oh

π
Th2 k4 a2 − b2 − a2 cosh(bt) − ab sinh(bt) + b2 eat

ab2
(
a2 − b2

)
eat

.

(2.9a)

(2.9b)

Here, the subscript ‘rms’ represents root mean square, a = 3 Oh k2, and
b =

√
(9 Oh2 − 2)k4 + 2k2. The solution is linearly decomposed into two terms: the

hydrodynamic component HLE, and the thermal-fluctuation component Hfluc, where HLE
is the solution of the homogeneous form of (2.6), representing the classical (deterministic)
RP instability, and Hfluc arises from solving the full form of (2.6) with zero initial
disturbances, representing the fluctuation-drive instability. In (2.9a), Hi is the initial
spectrum, determined by the capillary waves at t = 0. With initial perturbation waves,
h̃(z, 0) = A0 sin(k0z), we have

|Hi| =
∣∣∣∣
∫ L

0
A0 sin(k0z) e−ikz dz

∣∣∣∣ = 2A0k0

∣∣∣∣∣sin(kL/2)

k2 − k2
0

∣∣∣∣∣ . (2.10)
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2.3. Numerical scheme
In this work, we solve the SLE numerically with periodic boundary conditions using
the MacCormack method (MacCormack 2003), a simple second-order explicit finite
difference scheme in both time and space. At each time level, the solution is represented
by two arrays, {hi}M

i=1 and {ui}M
i=1, where M denotes the number of mesh points.

The time-derivative terms are approximated as (ht+1
i − ht

i)/�t and (ut+1
i − ut

i)/�t. The
numerical method follows a two-step process, beginning with a predictor step(

ūt+1
i

h̄t+1
i

)
=

(
ut

i
ht

i

)
+ D

(
ut

i, ht
i
)
�t, (2.11)

and a corrector step(
ut+1

i

ht+1
i

)
=

(
ut

i
ht

i

)
+ �t

2

[
D

(
ut

i, ht
i

)
+ D̄

(
ūt+1

i , h̄t+1
i

)]
, (2.12)

where ūi+1
i and h̄t+1

i denote the ‘provisional’ values at time level t + 1, and D encompasses
all the partial spatial derivative terms on the right-hand side (expressions for D are listed
in Appendix C).

For the stochastic term N(z, t), the autocovariance of uncorrelated fluctuations can be
approximated numerically by a two-dimensional rectangular (boxcar) function, non-zero
over a time step (�t) and grid spacing (�z), expressed as N(z, t) ≈ Nt

i = N /
√

�t �z.
Here, N signifies computer-generated random numbers, following a normal distribution
with zero mean and unit variance. However, this model has been shown to be prone to
numerical instability for the SLE (Zhao et al. 2020a), problems that are exacerbated as �z
and �t become smaller, and the amplitude of noise becomes larger.

To establish a robust numerical scheme, we adopt the methodology introduced by Zhao
et al. (2022), combining a spatially and temporally correlated noise model. This integration
enforces correlations in the noise beneath the spatial correlation length lc and the temporal
correlation length tc. The uncorrelated behaviour is then approximated by taking the
limit of these lengths approaching zero, ensuring that their numerical resolution remains
accurate throughout the limiting process. The stochastic term N(z, t) is expanded using
separation of variables in the Q-Wiener process W(z, t) (Grün, Mecke & Rauscher 2006;
Diez, González & Fernández 2016), as follows:

N(z, t) = ∂W(z, t)
∂t

=
∞∑

q=−∞
χq ċq(t) gq(z). (2.13)

Here, χq represents the eigenvalues of the correlation function Fc:

χq =
∫ L

0
Fc(z) exp(−2πiqz/L) dz, (2.14)

where q represents an integer sequence. The expressions for Fc and gq, and other
details regarding this model, can be found in Appendix D. The coefficient ċq(t),
representing a temporally correlated noise process, is modelled using a straightforward
linear interpolation between uncorrelated random noise at the endpoints of the temporal
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A0

y

x

L

z

λ0 = 2π/k0

h0

Figure 2. Initial configuration for MD simulations: a liquid nano-thread with an external perturbation.

correlation interval, as proposed by Zhao et al. (2020a). Therefore, the final discretised
expression of the noise term becomes

Nt
i = 1√

tc

(M+1)/2∑
q=−(M+1)/2

χq Nq gq(z). (2.15)

In this work, we set the dimensionless grid size �z = 0.03 and time step
�t = 5 × 10−6 (the dimensional parameters corresponding to MD simulations are
�z∗ = 0.11 nm and �t∗ = 0.13 fs, respectively). The correlation lengths are
lc = 5 �z = 0.15 and tc = 10 �t = 5 × 10−5. A discussion of the influence of lc and tc
is presented in Appendix E. The boundary conditions are set as periodic.

3. Molecular dynamics

The MD simulations of this work are performed using the open source package
LAMMPS (Thompson et al. 2022). The simulation box (40 nm × 40 nm × 432 nm in
the x, y and z directions, respectively) has periodic boundary conditions imposed in all
directions. A nano-thread of water, initially with radius h0 = 3.6 nm, is positioned at
the centre of the simulation domain. The thread length is equal to the length of the
simulation box in the z direction, i.e. the dimensionless thread length L = 120. External
perturbations are introduced through a sinusoidal function h(z, t) = h0 + A0 sin(k0z),
where A0 denotes the initial amplitude, and k0 represents the (angular) wavenumber
(figure 2). Initial configurations with various external perturbations are generated from
equilibrium simulations of a liquid bulk in the canonical (NVT) ensemble, employing
the Nosé–Hoover thermostat at T = 300 K. The interactions between water molecules are
described by a coarse-grained force field, the mW potential (Molinero & Moore 2009).
The final density of the bulk at equilibrium is 997 kg m−3. Considering the ultra-low
density of vapours predicted by the mW model, the nano-threads are simulated in a
vacuum environment with time step 2.5 fs. The canonical ensemble with the Nosé–Hoover
thermostat is employed again to keep T = 300 K.

To determine Oh and Th, viscosity and surface tension of the liquid are required to be
extracted from MD. Here, we employ the Green–Kubo relation (Green 1954; Kubo 1957)
to calculate the dynamic viscosity

μ = V
kBT

∫ ∞

0

〈
pij(t) pij(0)

〉
dt, i /= j, (3.1)

where V is the volume of a liquid bulk, pij represents the off-diagonal elements of the
pressure tensor, and 〈 pij(t) pij(0)〉 is the autocorrelation function of pij. In addition, a liquid
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layer lying in the x–y plane is used to estimate the surface tension. Resorting to pressures
on the two free surfaces, we have the expression (Kirkwood & Buff 1949)

γ =
∫ ∞

−∞

[
pn(z) − pt(z)

]
dz, (3.2)

where the normal and tangential pressure components are defined as pn = pzz
and pt = (pxx + pyy)/2, respectively. Finally, we have μ = 3.14 × 10−4 Pa s and
γ = 6.5 × 10−2 N m−1 at T = 300 K, leading to Oh = 0.65 and Th = 0.07.

4. Results and discussions

In this section, the analytical and numerical solutions of the SLE are validated by MD
results, showing the influence of the thermal fluctuations and external perturbations on
the thermal capillary waves (§ 4.1) and evolution of perturbation growth (§ 4.2). Two
instability regimes are also defined with boundaries of regime conversions presented in
§ 4.3.

4.1. Thermal capillary waves
To examine the theoretical solution in § 2.2, we conduct MD simulations on long threads
with various wavenumbers k0 and amplitudes A0: case 1 (A0 = 0), case 2 (A0 = 0.1,
k0 = π/6) and case 3 (A0 = 0.2, k0 = 2π/5). For each case, 30 independent MD
simulations (realisations) are performed to gather statistics.

Figures 3(a,c,e) illustrate the MD snapshots of cases 1–3. Specifically, case 1 represents
a situation with no external perturbations, while cases 2 and 3 involve different external
perturbations. In case 1 (figure 3a), perturbations arising from thermal fluctuations grow
over time, generating significant capillary waves, and eventually lead to the final rupture
at t4. Since this fluctuation-driven instability is naturally stochastic, the liquid threads
break up into non-uniform droplets. In contrast, the external perturbation in case 2 grows,
despite being disturbed by the thermal fluctuations, and ultimately leads to a uniform
rupture similar to the macroscale cases actively controlled (figure 3c). The external
perturbation with a larger wavenumber (compared to k0 in case 2) decays rapidly and is
then overwhelmed by fluctuation-driven perturbations (figure 3e), leading to an irregular
breakup pattern similar to that in case 1.

The phenomena presented above can be further explained quantitatively by the spectra in
figures 3(b,d, f ). Following the approach used by Zhao et al. (2021a), the profile h(z, t) in
each MD realisation is extracted from axially distributed annular bins based on a threshold
value of particle number density. A discrete Fourier transform is applied to h(z, t) to get
the spectra. We then ensemble average the spectra at each instant over the realisations, and
take the square root to produce the numerical spectra of cases 1–3 in figure 3 (dashed lines
with circles). Good agreement with the theoretical model for the spectra can be found for
all the cases, confirming the validity of (2.8).

The spectra of case 1 (figure 3b) display a modal distribution with a certain bandwidth
at each time instant, explaining why the liquid thread exhibits a non-uniform breakup. In
cases 2 and 3, the external perturbations lead to initial spikes in the spectra, representing
the initial conditions of the hydrodynamic component HLE, modelled by Hi of (2.10).
Note that (2.10) can cause ‘spectral leakage’ (Proakis & Manolakis 1996), which leads
to noise in the initial spectra. To avoid this problem and compare with the results from
the discrete Fourier transform, further processing on (2.10) is required (see Appendix B
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Figure 3. (a,c,e) The MD snapshots, and (b,d, f ) the comparisons between theoretical (solid lines) and
numerical (dashed lines with circles) spectra in cases 1–3. (a,b) Results of case 1 at six instants: 0.00, 3.27,
10.76, 18.24, 21.98 and 29.93. (c,d) Results of case 2 at six instants: 0.00, 1.40, 5.14, 8.88, 15.90 and 22.45.
(e, f ) Results of case 3 at six instants: 0.00, 3.27, 10.76, 18.24, 23.85 and 32.73. The liquid threads illustrated
here are all truncated at z = L/2.

for details). The spike in case 2 increases rapidly and indicates that the hydrodynamic
component dominates the entire dynamics, resulting in the formation of uniform droplets
after the rupture. However, the spike in case 3 decays drastically and is overwhelmed
by the fluctuation modes, denoting that thermal fluctuations re-dominate the instability.
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Figure 4. The MD (circles) and theoretical (solid lines) results of temporal evolutions of (a) dominant
wavenumber kmax and (b) surface roughness Θ , in cases 1 (black), 2 (blue) and 3 (red).

The difference between cases 2 and 3 can be explained by the classical RP theory (Plateau
1873; Lord Rayleigh 1878), where perturbations of short wavelength λ < λcrit would
dissipate.

The dominant wavenumbers kmax of the instability are also extracted from the peaks
of spectra, illustrated in figure 4(a). For case 1, kmax decreases monotonically to
a constant, which has been pointed out by Zhao et al. (2019). Since the external
perturbation dominates the instability of case 2, its kmax maintains an invariant value, i.e.
kmax = k0 = π/6. In case 3, kmax remains equal to k0 = 2π/5 at the early stage. When the
peak of k0 is surpassed by the instability modes due to the thermal fluctuations, kmax return
to the trajectory observed in case 1.

Moreover, we define the evolution of surface roughness Θ(t) via integrating the square
of h̃(z, t) over the entire spatial domain to measure the development of the thermal
capillary waves. According to Parseval’s theory, Θ(t) can be expressed as

Θ2 = 1
L

〈∫ L

0
h̃2 dz

〉
= 1

πL

∫ ∞

0
|H|2rms dk. (4.1)

Since |H|rms consists of two components, the surface roughness is also divided into

Θ2 = Θ2
LE + Θ2

fluc = 1
πL

(∫ ∞

0

〈
|HLE|2

〉
dk +

∫ ∞

0

〈∣∣Hfluc
∣∣2〉 dk

)
. (4.2)

Figure 4(b) illustrates the evolution of the roughness versus time in cases 1–3. The
roughness Θ increases constantly with time in both cases 1 and 2. Case 2 exhibits a higher
initial growth rate due to external perturbations. In case 3, the surface roughness initially
decreases due to the dissipation of initial hydrodynamic perturbation, and then increases
driven by thermal fluctuations.

The spectra above present the interfacial dynamics only in the frequency domain, i.e.
|H|rms(k, t). To gain a better understanding of dynamics in the spatial domain, we propose
a distribution function of the perturbation amplitudes, P(ĥ), where ĥ is introduced to
represent a possible value of the random perturbation amplitudes h̃. The perturbations at
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the linear stage can be divided into two independent components: h̃ = h̃LE + h̃fluc, where
h̃LE represents waves generated by the classical RP instability, and h̃fluc accounts for waves
from thermal fluctuations. So P(ĥ) can be modelled by the convolution of the probability
distributions of each component (Rice 2007), expressed as

P = PLE ⊗ Pfluc. (4.3)

Here, ‘⊗’ denotes convolution.
To get the expression for PLE, we introduce the cumulative distribution function

Fh̃(ĥ) =
∫ ĥ

−∞
PLE dh̃. (4.4)

Based on the classical RP instability, ĥ = A(t) sin(k0ẑ), where A grows or decays
exponentially from the initial value A0. So ĥ and ẑ have a one-to-one functional relationship
and are piecewise monotonic. It is easy to get an inverse function, ẑ = arcsin(ĥ/A)/k0.
According to the approach of the distribution function transformation (Papoulis & Pillai
2002), Fh̃(ĥ) is equal to the cumulative distribution function of ẑ, i.e. Fz(ẑ). When z follows
a uniform distribution, we have

PLE(ĥ) = dFz
(
ẑ
)

dĥ
= dFz

dẑ

∣∣∣∣ dẑ

dĥ

∣∣∣∣ = 1

π
√

A2 − ĥ2
, (4.5)

where ĥ ∈ (−A, A). Note that the final expression for PLE is independent of the
wavenumbers (k0) of the initial perturbations.

Additionally, it is challenging to pursue a theoretical model of Pfluc mainly due
to the complexity of (2.5). So we extract numerically predicted Pfluc from the MD
simulations of case 1, where PLE can be neglected. We collect all the values of h̃(z)
from 30 realisations, then plot the numerical distributions of h̃ by the histograms in
figures 5(a)–5(c). Promisingly, h̃fluc is observed to follow a Gaussian distribution with
mean zero. Moreover, the standard deviation of h̃fluc is equal to Θfluc in (4.1). Therefore,
we have a ‘semi-theoretical’ model

Pfluc(ĥ) = 1√
2π Θfluc

exp

(
− ĥ2

2Θ2
fluc

)
. (4.6)

From a theoretical perspective, ĥ ∈ (−∞, ∞) in (4.6). However, ĥ typically falls
within [−3Θfluc, 3Θfluc], accounting for a 99.7 % confidence interval. Here, |3Θfluc| < 1,
ensuring that the perturbation amplitude is always smaller than the thread radius. The
model is validated by the good agreement between its predictions and MD results in
figures 5(a)–5(c). A more rigorous derivation of Pfluc involves pursuing the Fokker–Planck
equation of (2.5), which will be a subject of our future research. Combining (4.3), (4.5)
and (4.6) gives us the final theoretical expression for P(ĥ).

Figures 5(d)–5(i) compare the numerical results from MD simulations with the
theoretical distributions predicted by (4.3) for cases 2 and 3. In case 2, the distribution
function maintains a bimodal curve, signifying that the interface can largely preserve the
sinusoidal feature. Similar to the trend in case 1, the two spikes also propagate outwards as
the thermal capillary waves develop. In case 3, the initial spikes dissipate and ultimately
merge into a Gaussian curve, aligning with the observations in figure 4.
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Figure 5. Temporal evolutions of P from MD simulations (histograms) and the theory (red solid lines) in
cases 1–3. (a–c) Results of case 1 at three instants: 3.27, 10.76 and 18.24. (d–f ) Results of case 2 at three
instants: 1.40, 5.14 and 8.88. (g–i) Results of case 3 at three instants: 3.27, 10.76 and 18.24.

4.2. Evolution of perturbation growth
Besides the distribution of wavelengths (wavenumbers) investigated in § 4.1, the growth
of the perturbations, particularly in the cases with uniform rupture, is explored in this
subsection. MD simulations are performed on long threads with initial amplitude A0 = 0.2
and various wavenumbers: k0 = π/15 for case 4, k0 = π/12 for case 5, and k0 = 2π/15
for case 6. Additionally, numerical simulations for the SLE are also conducted to compare
with the MD results and provide deeper insights into the evolution of perturbation growth.

Figure 6 displays two selected realisations at three instants from both the MD and SLE
simulations of case 6. Though the SLE predictions deviate slightly from the ‘double-cone’
profile documented by Moseler & Landman (2000), they agree well with the MD results
qualitatively. To study the evolution of the perturbations, we focus on the temporal
evolution of the minimum (over z) thread radius, i.e. hmin(t). To get statistics, we conduct
multiple independent realisations: 30 for MD, and 100 for the SLE.
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Figure 6. Evolution of interface profiles extracted from the selected SLE (top) and MD (bottom) simulations.
The minimum thread radius hmin and the rupture point are marked in (b,c), respectively.
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Figure 7. Evolution of the perturbation growth at the linear stage. (a) The ensemble-averaged SLE predictions
(solid lines) and MD results (circles) for cases 4 (black), 5 (red) and 6 (blue). Here, Oh = 0.65 and Th = 0.07.
The dashed lines represent the growth rates predicted by the dispersion relation (4.7) for the three specific
wavenumbers in cases 4–6: ω = 0.108 for k0 = π/15 (black), ω = 0.124 for k0 = π/12 (red), and ω = 0.148
for k0 = 2π/15 (blue). The error bars and shadows in the inset represent one standard deviation (either side
of the mean) for MD and the SLE, respectively. (b) The SLE predictions for three values of Oh: ω = 0.244
for Oh = 0.1 (black), ω = 0.168 for Oh = 0.5 (red), and ω = 0.053 for Oh = 2.5 (blue). Here, Th = 0.07,
k0 = 2π/15 and A0 = 0.2. (c) The SLE predictions for three values of Th: 0.08 (black), 0.16 (red) and 0.24
(blue). We have ω = 0.148 for Oh = 0.165 (black). Here, k0 = 2π/15 and A0 = 0.2.

According to the classical theory (Eggers & Villermaux 2008), the growth of the
perturbations can be divided into the linear and nonlinear stages. Figure 7(a) illustrates the
ensemble-averaged perturbation growth (1 − hmin) at the linear stage, extracted from both
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Figure 8. (a) Minimum thread radius (hmin) against time to rupture (tr − t) for cases 4 (black), 5 (red) and 6
(blue): comparison between ensemble-averaged MD results (circles) and SLE calculations (solid lines). The
inset illustrates hmin(tr − t) on a logarithmic scale. The two dashed lines represent two power laws of similarity
solutions for the rupture dynamics (Eggers 1993, 2002). (b) Ensemble-averaged rupture profiles of cases 4
(black), 5 (red) and 6 (blue): comparison between ensemble-averaged MD results (circles) and SLE calculations
(solid lines).

the numerical solutions of the SLE and the MD results. For cases 4–6, good agreement
is observed at all instants for both mean values and standard deviations (from the
thermal fluctuations), further validating the numerical solutions of the SLE. Interestingly,
the perturbation is found to grow exponentially, approximately following the relation
1 − hmin ∼ eωt. Despite the presence of the thermal fluctuations, the growth rate ω is close
to the analytical results (dashed lines in figure 7a), predicted by the dispersion relation of
the LE (Eggers & Dupont 1994):

ω = k
2

√
9 Oh2 k2 + 2(1 − k2) − 3

2
Oh k2. (4.7)

These observations further explain the occurrence of uniform breakup. The surface tension
forces, induced by the external perturbations with specific wavenumbers, overcome the
random effects due to thermal fluctuations, determining the final form of the thermal
capillary waves. Moreover, the influence of Oh and Th is investigated using the SLE solver
with k0 and A0 from case 6. We set Th = 0.07 in figure 7(b), and Oh = 0.65 in figure 7(c).
Figure 7(b) shows that the growth rates of the perturbations, which decline with increasing
Oh, agree well with the predictions of (4.7), further confirming the dominant roles of the
surface tension forces induced by the external perturbations. However, when Th increases,
the growth rate deviates from the predictions of (4.7), indicating that thermal fluctuations
regain a significant role. Notably, each realisation evolves over different time periods,
so the ensemble average can account only for the shortest time across all realisations.
When thermal fluctuations become crucial, the variance in evolution time is larger (i.e. the
minimum of rupture time is smaller), hence the trajectory for the case with Th = 0.24 is
quite short.

To investigate the nonlinear evolution near rupture, hmin extracted from simulations
is plotted against time to rupture, tr − t, shown in figure 8(a). The nonlinear dynamics
of cases 4–6 is found to be nearly identical as approaching the rupture point,
indicating that external perturbations do not affect the rupture dynamics despite their
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Fluctuation-driven dynamics of liquid nano-threads

significant impacts on the evolution at the linear stage. Additionally, the inset of
figure 8(a) suggests that a power law might govern the progression of the minimum
thread radius to rupture: hmin ∼ (tr − t)α . However, the power law does not satisfy
either the thermal-fluctuation-dominated power law, α = 0.418 (Eggers 2002), or the
surface-tension-dominated one, α = 1 (Eggers 1993). Instead, it lies between the two,
indicating that both fluctuations and surface tension forces contribute to the dynamics
during the rupture stage. Additionally, figure 8(b) shows the ensemble-averaged rupture
profiles of cases 4–6. The overall interface shape varies due to the influence of external
perturbations with different wavelengths, whereas profiles near the rupture overlap, further
supporting the conclusion in figure 8(a) that external perturbations do not impact the
rupture dynamics.

4.3. Regime transition
Based on the results and discussions in §§ 4.1 and 4.2, the final interface profiles
of the liquid nano-threads are determined by both thermal fluctuations and external
perturbations. Figure 9 illustrates the influence of k0 and A0 of the external perturbations
on the interface profiles extracted from the MD simulations.

In figures 9(a)–9(c), the initial amplitude of the external perturbations is fixed
(A0 = 0.15) with various wavenumbers. The uniform breakup appears only in the case
with k0 = π/6. According to (4.7), the dimensionless growth rate in case 5 is 0.146, much
larger than those with k0 = π/30 (ω = 0.064) and k0 = 3π/10 (ω = 0.028). Starting
from the same amplitude, the external perturbation with larger growth rate is better
able to overwhelm the effects of the thermal fluctuations, leading to the results in
figures 9(a)–9(c).

Figures 9(d)–9( f ) show the impact of different initial amplitudes with the same
wavenumber (k0 = π/5), where the external perturbations have the same growth rate.
The maximum A0 is found to enhance the hydrodynamic component of the instability,
generating uniform droplets after the rupture, shown in figure 9( f ), while the minimum
A0 is overwhelmed by the thermal fluctuations, leading to the non-uniform breakup in
figure 9(d). Interestingly, the rupture in figure 9(e) is ‘quasi-uniform’ with only one droplet
coalescence. Note that this result is extracted from one selected realisation. Uniform
breakup can also be found in other realisations of the case with A0 = 0.1, indicating a
transition regime from the non-uniform breakup to the uniform breakup.

According to the simulation results in the preceding sections, two principal instability
regimes can be summarised, providing a framework to describe different breakup patterns:
(i) the ‘hydrodynamic regime’, characterised by the generation of uniform droplets, and (ii)
the ‘thermal-fluctuation regime’, associated with non-uniform breakup. To distinguish the
regimes, a parameter φ is introduced to quantify the relative intensity of the hydrodynamic
component due to the external perturbations and thermal-fluctuation component, written
as

φ(t) =
∫ ∞

0

√〈|HLE|2〉 dk
/∫ ∞

0

√〈∣∣Hfluc
∣∣2〉 dk. (4.8)

Note that φ is time-dependent. We set φ(tr) = 1 as the boundary separating
the hydrodynamic and thermal-fluctuation regimes. When φ(tr) > 1, the external
perturbations dominate the instability, while the thermal fluctuations exert more significant
influence when φ(tr) < 1. For the fixed values of Oh and Th, contours of φ are generated
as a regime map based on k0 and A0, illustrated in figure 10. Here, the distribution of tr
in the regime map is fitted using a third-order polynomial based on the numerical results
from the SLE.
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Figure 9. Interface profiles after rupture with various wavenumbers k0 and amplitudes A0 of external
perturbations. (a–c) The initial amplitudes of the external perturbations are fixed, i.e. A0 = 0.15. (d–f ) The
wavenumbers of external perturbations are fixed, i.e. k0 = π/5. (a) Results with k0 = π/30 at four instants:
0.09, 8.42, 16.83 and 28.52. (b) Results with k0 = π/6 at four instants: 0.09, 4.68, 8.88 and 17.77. (c) Results
with k0 = 3π/10 at four instants: 0.09, 6.55, 13.09 and 22.91. (d) Results with A0 = 0.025 at four instants:
0.09, 8.88, 17.77 and 30.40. (e) Results with A0 = 0.1 at four instants: 0.09, 6.08, 12.16 and 20.11. ( f ) Results
with A0 = 0.175 at four instants: 0.09, 4.21, 8.42 and 16.83.

Figure 10(a) presents the regime map for the MD results (Oh = 0.65 and Th = 0.07).
Besides the cases presented in figure 9, more MD simulations with different values of k0
and A0 are performed to support the criterion of the regime map. Promisingly, the regime
boundary (black solid line) from (4.8) generally matches the MD results represented by
symbols (circles for the hydrodynamic regime, and triangles for the thermal-fluctuation
regime), except for the four circles at the bottom. The crosses suggest the transition regime,
which emerges near the boundary, i.e. φ(tr) ≈ 1. This is consistent with the results of
the case in figure 9(e). Moreover, the bottom of the boundary indicates the optimum
wavenumber (k0 = 0.49) for the hydrodynamic regime, closely matching the dominant
mode predicted by the classical RP theory of (4.7).

Figures 10(b) and 10(c) depict the influence of Oh and Th on the boundaries in the
regime maps. Since MD is not available for arbitrary values of Oh and Th, numerical
solutions of the SLE are employed to confirm the regime map across a broad range
of Th and Oh, specifically Oh = 0.10 and Th = 0.07 in figure 10(b), and Oh = 0.65
and Th = 0.04 in figure 10(c). Comparison between figures 10(a) and 10(b) reveals that

996 A29-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

73
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.739


Fluctuation-driven dynamics of liquid nano-threads

0.20

MD

SLE

MD

SLE

A0

A0

0.15

0.10

0.05

0

0.2 0.4 0.6

k0 k0

0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.15

0.20

0.10

0.05

0

0.20

0.15

0.10

0.05

0

0.2 0.4 0.6 0.8 1.0

φ

(b)

(a)

(c)

Figure 10. Regime maps at (a) Oh = 0.65 and Th = 0.07, (b) Oh = 0.10 and Th = 0.07, (c) Oh = 0.65
and Th = 0.04. The regime maps are depicted using contours of φ and symbols representing the numerical
results obtained from (a) MD and (b,c) the SLE. Circles, triangles and crosses denote the hydrodynamic,
thermal-fluctuation and transition regimes, respectively.

reducing Oh results in a rightward shift of the regime boundary. This trend is further
presented in figure 11(a) and can be explained by the classical RP theory, where the
dominant wavenumber of the instability increases as Oh decreases. Notably, the bottom
point of the boundary in figure 11(a) also exhibits a slight upward movement. The main
reason is that Oh not only affects the hydrodynamic component but also modifies the
intensity of thermal fluctuations, as shown in (2.9b). Examining figures 10(a,c) and 11(b),
the regime boundary is observed to move downwards as Th decreases, indicating that it
becomes easier to enter the hydrodynamic regime with weaker thermal fluctuations.

5. Conclusions

In this paper, the SLE and MD are utilised to explore the influence of external
perturbations and thermal fluctuations on the dynamics of liquid nano-threads.

Linear instability analysis is performed to derive a theoretical model for the spectra
of thermal capillary waves, influenced by both thermal fluctuations and external
perturbations. This model, validated by MD simulations, reveals the instability mode
of a spike from a specific external perturbation and a continuous curve due to thermal
fluctuations, corresponding to the uniform and non-uniform ruptures, respectively. An
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Figure 11. Regime boundaries at (a) different Oh values (Oh1 = 0.10, Oh2 = 0.50, Oh3 = 2.50 and
Oh4 = 12.50) with Th = 0.07, and (b) different Th values (Th1 = 0.03, Th2 = 0.05, Th3 = 0.07 and
Th4 = 0.09) with Oh = 0.65.

analytical model is then established for the two typical distributions of thermal capillary
waves: bimodal distribution for uniform waves, and Gaussian distribution for stochastic
ones. Besides the formulation of thermal capillary waves, the evolution of perturbation
growth, particularly in cases with uniform rupture, is also investigated. The results of
uniform rupture show that the perturbation grows exponentially at the linear stage,
approximately following the classical linear theory proposed by Eggers & Dupont
(1994), indicating the dominant roles of surface tension forces arising from the external
perturbation with specific wavenumbers. However, the nonlinear evolution near rupture,
determined jointly by surface tension forces and thermal fluctuations, is observed not
to be affected by the external perturbations. Finally, two distinct regimes are defined to
characterise the instability: (i) the hydrodynamic regime, marked by uniform droplets
controlled by external perturbations, and (ii) the thermal-fluctuation regime, exhibiting
a stochastic breakup pattern. A criterion is proposed to draw a regime map based on
the perturbation amplitude (A0) and wavenumber (k0). The boundaries of these regimes,
validated by MD and SLE simulations, are obtained, including a transition area observed.

While this paper provides new understanding of interfacial dynamics, it opens up
several new avenues of enquiry. One avenue involves deriving the Fokker–Planck equation
of the SLE, a deterministic equation describing the probability density function of h̃.
The utilisation of the Fokker–Planck equation holds the promise not only to fortify
the mathematical underpinnings of the distribution function in § 4.1 but also to provide
additional theoretical insights into the nonlinear dynamics of liquid nano-threads. Another
avenue is extending this study to a more practical fluid configuration, i.e. a liquid
nano-jet. Despite the performed MD simulations for nano-jets (Moseler & Landman 2000;
Choi, Kim & Kim 2006; Kang, Landman & Glezer 2008), the introduction of external
perturbations, widely employed at the macroscale (Yang et al. 2019; Mu et al. 2023),
remains unexplored for actively controlling the breakup of nano-jets.
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Appendix A. Derivation of the spectrum function

Equation (2.6) is a linear equation with time-invariant coefficients, so it satisfies the
superposition principle of solutions, which supports us to decompose the full solution
into two components:

H = HLE + Hfluc. (A1)

Considering the initial interface shape, and assuming the initial velocity of the interface to
be zero, the initial conditions are H|t=0 = Hi and dH/dt|t=0 = 0, where Hi represents the
spectrum of the initial interface profile h(z, 0). The first term on the right-hand side can be
obtained by solving the homogeneous form of (2.6) with these initial conditions:

HLE = Hi exp
(−a

2
t
)[

cosh
(

b
2

t
)

+ a
b

sinh
(

b
2

t
)]

, (A2)

where

a = 3 Oh k2, b =
√(

9 Oh2 − 2
)

k4 + 2k2. (A3a,b)

The second term on the right-hand side of (A1) could be calculated from the convolution
of the excitation function (i.e. the inhomogeneous term) and the impulse response of (2.6):

Hfluc =
√

3 Oh
2π

Th k2
∫ t

0
ξ(k, t − τ) G(k, τ ) dτ. (A4)

The impulse response G(k, t) could be obtained by solving the equation

d2G
dt2

+ 3 Oh k2 dG
dt

+ k4 − k2

2
G = δ(t), (A5)

so we have

G(k, t) = 2
b

exp
(−a

2
t
)

sinh
(

b
2

t
)

. (A6)

As H is a complex random variable with a zero mean, we should analyse it statistically,
i.e. seek its root mean square from (A1):

|H|rms =
√〈∣∣HLE + Hfluc

∣∣2〉 =
√〈|HLE|2〉 + 〈∣∣Hfluc

∣∣2〉, (A7)

where the cross-term is erased since HLE and Hfluc are orthogonal. Then applying the same
operation to (A2) readily yields

〈
|HLE|2

〉
= |Hi|2 e−at

[
cosh

(
b
2

t
)

+ a
b

sinh
(

b
2

t
)]2

. (A8)
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k0

A0L/2

Main lobe

Sidelobes

0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

k

|H
i|

Equation (2.10)

DFT

Figure 12. Spectra of a sinusoidal wave A0 sin(k0z) with z ∈ [0, L], where A0 = 0.06, k0 = 3π/20 and
L = 120. The results are obtained from (2.10) (blue solid line) and a numerical discrete Fourier transform
(DFT) (red dashed line with circles).

Given that ξ(k, t) is an uncorrelated Gaussian white noise, we derive 〈|ξ(k, t)|2〉 = L,
which leads to

〈∣∣Hfluc
∣∣2〉 = 3 Oh

2π
Th2 k4

〈∣∣∣∣
∫ t

0
ξ(k, t − τ) G(k, τ ) dτ

∣∣∣∣
2
〉

= 3 Oh
2π

Th2 k4
∫ t

0

〈
|ξ(k, t − τ)|2

〉
G(k, τ )2 dτ

= 3 Oh
2π

Th2 k4L
∫ t

0
G(k, τ )2 dτ

= 3L Oh
π

Th2 k4 a2 − b2 − a2 cosh(bt) − ac sinh(bt) + b2 eat

ab2
(
a2 − b2

)
eat

. (A9)

Organising all the above results, we have the spectrum function |H|rms described in (2.8)
and (2.9).

Appendix B. Spectral leakage

The Fourier transform over a finite range [0, L] introduces spectral leakage, leading to the
prediction of numerous irrelevant modes (sidelobes) besides k0 as depicted in figure 12
(Proakis & Manolakis 1996). However, in the discrete Fourier transform (DFT), a finite
signal is extended periodically, resulting in a discrete spectrum (Proakis & Manolakis
1996) where the sidelobes cannot be captured. To align with the outcomes obtained from
the DFT, we eliminate these sidelobes and retain only the main lobe. The peak value of
this main lobe is |Hi|max = |Hi|k=k0 = A0L/2, and its bandwidth is 4π/L.
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Appendix C. Details of the MacCormack method

Two differential operators, �f and �b, are introduced to represent the forward and
backward differences, respectively:

�f f = fi+1 − fi
zi+1 − zi

, �bf = fi − fi−1

zi − zi−1
. (C1a,b)

Then D is discretised by the forward difference for the predictor step, written as

D
(
ut

i, ht
i
) =

(
D1
D2

)
, (C2)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 = −ut
i �f ut

i − �f pt
i + 3 Oh(

ht
i
)2

(
ht

i+1
)2

�f ut
i − (

ht
i
)2

�but
i

zi+1 − zi

+
√

6
π

Th
√

Oh(
ht

i
)2 �f

(
ht

iN
t
i
)
,

D2 = −ut
i �f ht

i − 1
2

ht
i �f ut

i.

(C3)

The backward difference is applied for D̄:

D̄
(

ūt+1
i , h̄t+1

i

)
=

(
D̄1
D̄2

)
, (C4)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̄1 = −ūt+1
i �būt+1

i − �bp̄t+1
i + 3 Oh(

h̄t+1
i

)2

(
h̄t+1

i

)2
�f ūt+1

i −
(

h̄t+1
i−1

)2
�būt+1

i

zi − zi−1

+
√

6
π

Th
√

Oh(
h̄t+1

i

)2 �b

(
h̄t+1

i Nt
i

)
,

D̄2 = −ūt+1
i �bh̄t+1

i − 1
2

h̄t+1
i �būt+1

i .

(C5)

Appendix D. Spatially correlated noise model

In this appendix, we introduce the spatially correlated noise model, first proposed by Grün
et al. (2006) for nanoscale bounded films, where an exponential correlation function is
employed:

Fc(z, lc) =

⎧⎪⎨
⎪⎩

1
X

exp

(
−1

2

[
L
lc

sin
(πz

L

)]2
)

for lc > 0,

δ(z) for lc = 0.

(D1)

Here, lc is the spatial correlation length, L is the domain length, and X is such that∫ L
0 Fc(z, lc) dz = 1. Diez et al. (2016) calculated the integral and found that χq could be
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t i�

t c

(b)

(a)

Figure 13. (a) Linear spectra of eigenvalues for several values of lc from (D2). Here, the wavenumber is
k = 2πq/L. (b) Spatially correlated noise with different lc.

expressed by the Bessel function

χq = Iq(α)
/

I0(α), (D2)

where

α =
(

L
2lc

)2

, k = 2πq
L

. (D3a,b)

Figure 13(a) shows the eigenvalue spectra for several values of lc. Note that for lc → 0
(i.e. α → ∞), we have χq → 1 for all q, leading to the limiting case of the white
(uncorrelated) noise.
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The term gq corresponds to the set of orthonormal eigenfunctions according to

gq(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2
L

cos
(

2πqz
L

)
for q > 0,

√
1
L

for q = 0,

√
2
L

sin
(

2πqz
L

)
for q < 0.

(D4)

Combining with the temporal correlated model proposed by Zhao et al. (2020a), the final
discretised expression of the noise term is

Nt
i = 1√

tc

(M+1)/2∑
q=−(M+1)/2

χq Nq gq(z). (D5)

Samples of Nt
i at one time instant are illustrated in figure 13(b) with different

spatial correlation lengths. Note that a larger lc leads to smooth large-wavelength and
small-amplitude noise.

Appendix E. Influence of the correlation lengths

In this appendix, we investigate the influence of the correlation length on the dynamics at
both linear and nonlinear stages.

For the linear instability, we conduct the SLE simulations by using different correlation
lengths for a long thread with parameters from case 1 (L = 120, Oh = 0.65, Th = 0.07
and A0 = 0). Using an approach similar to that employed in § 4.1, 50 independent
realisations are performed to gain statistics. A DFT of the interface position is then
applied to get the ensemble-averaged spectra. Figure 14 illustrates the influence of
both the spatial correlation length lc and the temporal one tc. Comparing figures 14(a)
and 14(b), the spatial correlation length is not found to have a significant impact on
spectra when lc ≤ 20�z. However, when lc = 80�z, there is a notable reduction in the
spectrum at high wavenumbers compared to the theoretical results, suggesting that a larger
correlation length suppresses capillary waves driven by thermal fluctuations. Additionally,
figures 14(d)–14( f ) indicate that for the time step (�t = 5 × 10−6) used in this paper, tc
within the range of 1000�t have no significant impact on the instability results.

Furthermore, we examine the impacts of correlation lengths on the interface profiles,
particularly at the nonlinear stage. Given that figure 14 demonstrates the minimal effects
of tc, only the influence of lc is explored here. To reduce computational costs, we consider
the simulations of a short thread (L = 12, Oh = 0.65, Th = 0.07 and A0 = 0.4) with
various spatial correlation lengths. Multiple SLE simulations (100 for each case) are then
performed to get ensemble-averaged profiles. The results in figure 15 indicate that when
lc ≤ 20�z, the overall interface profiles are not significantly affected, aligning with the
findings at the linear stage in figure 14. However, the local interface morphology near hmin
is found to be affected by the spatial correlation lengths, indicating that lc in the numerical
model represents the smallest spatial scale of thermal fluctuations.

Therefore, we can conclude that variations in correlation length within a certain range do
not significantly affect the computational results. They only influence the local behaviours
of fluctuating hydrodynamics below the correlation length. In this study, we choose two
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Figure 14. Comparisons between theoretical (solid lines) and numerical (dashed lines) spectra from the SLE
at three instants: t1 = 6 (black), t2 = 11 (blue) and t3 = 18 (red). (a–c) Influence of lc with tc = 10�t.
(d–f ) Influence of tc with lc = 5�z.
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Figure 15. Ensemble-averaged interface profiles at two instants (t1 = 1.5 and t2 = 4.5) influenced by lc.

relatively small correlation lengths, lc = 5�z = 0.15 and tc = 10�t = 5 × 10−5, which
approximately correspond to the molecular scale and a time scale of one femtosecond
in MD simulations, respectively. These parameters essentially preserves the true physical
characteristics of thermal fluctuations in physical space.
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