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Abstract

In this paper, some existence and uniqueness results for generalized solutions to a periodic-Dirichlet
problem for semilinear wave equations are given, using a global inverse function theorem. These results
extend those known in the literature.
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1. Introduction

Let J = [0, 2π ] × [0, π ], let n ≥ 1 be an integer, let N∗ be the set of nonnegative
integers, and let F : J × Rn

→ Rn be a function of class C2. Suppose that V :
J × Rn

→ R is a function of class C2 whose gradient and Hessian matrix with respect
to u are denoted by V ′ and V ′′, respectively. Let h ∈H with H= (L2(J ))n be given,
with the usual inner product 〈·, ·〉 and corresponding norm ‖ · ‖. We consider the
system of semilinear wave equations

ut t − uxx − V ′(t, x, u)+ F(t, x, u)= h(t, x), (1.1)

where subscripts denote the partial derivative, and where F(t, x, u) is called a
perturbing term. By a generalized solution of the periodic-Dirichlet problem on J
for (1.1) (or GPDS on J for short) we mean an element u ∈H such that

〈u, vt t − vxx 〉 − 〈v, V ′(t, x, u)〉 + 〈v, F(t, x, u)〉 = 〈h(t, x), v〉,

for all v ∈ (C2(J ))n satisfying

v(t, 0)= v(t, π)= 0, ∀t ∈ [0, 2π ];

v(0, x)= v(2π, x), vt (0, x)= vt (2π, x), ∀x ∈ [0, π ].
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When the perturbing term F(t, x, u) is 0, it is easy to see that the conservative
system

ut t − uxx − V ′(u)= h(t, x), (1.2)

is included in the system (1.1). In [6], Mawhin obtained the following existence
and uniqueness theorem for the GPDS of (1.2) on J using a Galerkin type argument
similar to that in Bates and Castro [2] and a global inverse function theorem.

THEOREM 1.1. Let V : Rn
→ R be a function of class C2 and let J = [0, 2π ] ×

[0, π ]. Assume that there exist two n × n symmetric matrices A and B, with respective
eigenvalues α1 ≤ α2 ≤ · · · ≤ αn and β1 ≤ β2 ≤ · · · ≤ βn , such that

A ≤ V ′′(u)≤ B (1.3)

for every u ∈ Rn and

n⋃
k=1

[αk, βk] ∩ {m
2
− l2
| l ∈ Z, m ∈ N∗} =∅. (1.4)

Then (1.2) with the periodic-Dirichlet boundary conditions on J has a unique
generalized solution u ∈ (L2(J ))n for every h ∈ (L2(J ))n .

For more results on the existence of GPDS on J of (1.1), we refer the reader
to [1, 4, 5, 7] and the references therein.

In this paper, we establish some new sufficient conditions for the existence of a
unique GPDS on J of (1.1). Our proof is different from those mentioned above, and
we use a new global inverse function theorem. Our results extend those in [1, 2, 4–7].

Throughout this paper we use the following assumption.

(A1). The eigenvalues λi (V ′′(t, x, u)), i = 1, . . . , n, of V ′′(t, x, u) satisfy

αi + φi (t, x, ‖u‖)≤ λi (V
′′)≤ βi − ϕi (t, x, ‖u‖)

on J × Rn , where αi , βi ∈ {m2
− l2
| l ∈ Z, m ∈ N∗}, i = 1, . . . , n, are consecutive,

φi (t, x, s) and ϕi (t, x, s), i = 1, . . . , n, are continuous functions defined from J ×
[0,∞) to (0,∞), they are nonincreasing with respect to s, and∫

+∞

0
min

1≤i≤n,(t,x)∈J
{φi (t, x, s), ϕi (t, x, s)} ds =+∞. (1.5)

Here we say that αi , βi ∈ {m2
− l2
| l ∈ Z, m ∈ N∗} are consecutive, for i = 1, . . . , n,

if
n⋃

j=1

(αi , βi ) ∩ {m
2
− l2
| l ∈ Z, m ∈ N∗} = ∅,

and α1 ≤ α2 ≤ · · · ≤ αn , β1 ≤ β2 ≤ · · · ≤ βn , αi < βi for each i .
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2. Abstract reformulation

If {ck | 1≤ k ≤ n} denotes an orthonormal basis in Rn and if we set

vlm(t, x)= exp(ilt)sin mx, l ∈ Z, m ∈ N∗,

then every u ∈H has a Fourier series

u =
n∑

k=1

∑
(l,m)∈Z×N∗

uklmvlmck, (2.1)

where the uklm satisfy uklm = uk,−l,m to make the series real. If we define

dom L= {u ∈H : u is given by (2.1)} (2.2)

with
n∑

k=1

∑
(l,m)∈Z×N∗

(m2
− l2)2|uklm |

2 <+∞,

and

L : dom L⊂H→H, u 7→
n∑

k=1

∑
(l,m)∈Z×N∗

(m2
− l2)uklmvlmck, (2.3)

it is easy to check that L is a self-adjoint operator such that

ker L= span{cos mt sin mxck, sin mt sin mxck | m ∈ N∗, 1≤ k ≤ n},

im L= (ker L)⊥,
spectrum σ(L)= {m2

− l2
| l ∈ Z, m ∈ N∗}.

Moreover, for every h ∈H, u is a GPDS on J of the system

ut t − uxx = h

if and only if u ∈ dom L and Lu = h (see [6] and references therein). Therefore, if we
assume the existence of a constant C ≥ 0 such that, for all u ∈ Rn ,

‖V ′′(t, x, u)‖ ≤ C, (2.4)

it is well known that the mapping N defined on H by

(N (u))(t, x)=−V ′(t, x, u), a.e. on J , (2.5)

continuously maps H into itself, and so the existence of GPDS on J for (1.1) is
equivalent to the existence of a solution u ∈ dom L for the equation

Lu + N (u)+ F(u)= h (2.6)

in H, where the perturbing term F : dom L→H is defined by

(F(u))(t, x)= F(t, x, u), ∀(t, x) ∈ J .
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In the sequel, B will be the set of all continuous and nondecreasing mappings ω that
satisfy

ω : R+→ R+, ω(t) > 0, t > 0,
∫
∞

0

1
ω(t)

dt =∞. (2.7)

LEMMA 2.1 (see [8, 9]). Assume that H is a Hilbert space. Let T ∈ C1(H, H),
and assume that T ′(u) is everywhere invertible for all u ∈H. Then T is a global
diffeomorphism onto H if there exists ω ∈ B satisfying ‖T ′(u)−1

‖ ≤ ω(‖u‖).

3. Existence and uniqueness

Consider the boundary value problem (1.1). As shown in Section 2, if (2.4) holds,
then (1.1) is equivalent to the operator equation

Lu + N (u)+ F(u)= h, u ∈ dom L.

Let Q(u)= (V ′′(t, x, u)). Then

(N ′(u)v)(t, x)=−(V ′′(t, x, u))v(t, x)=−Q(t, x, u)v(t, x), u, v ∈ dom, L

and L+ N ′(u)= L− Q(t, x, u), where Q(u) is a symmetric matrix.
Let b1(t, x, u), . . . , bn(t, x, u) be eigenvalues of Q(t, x, u), and for all u ∈

dom L ,
αi < bi (t, x, u) < βi , i = 1, . . . , n, (3.1)

which shows that (2.4) holds, that is, there exists a constant C such that ‖N ′(u)v‖ ≤
C‖v‖, for all u, v ∈ dom L.

For each fixed point (t, x) ∈ J , consider the eigenvalue problem

Lu − Q(t, x, u0)u = γ u, (3.2)

where u0 ∈ dom L is fixed. Since αi , βi , i = 1, . . . , n, are consecutive and (3.1) holds,
it follows that the eigenvalues of Q(t, x, u0) are ordered according to

b1(t, x, u0)≤ b2(t, x, u0)≤ · · · ≤ bn(t, x, u0),

and zero is not an eigenvalue of (3.2). Hence, L− Q(t, x, u0) is invertible at u0 for
each fixed point (t, x) ∈ J , and by the spectral theorem [3, 10, 11]

‖(L− Q(t, x, u0))
−1
‖ = {distance of 0 from the spectrum of L− Q(t, x, u0)}

−1

≤

(
min

1≤i≤n
{bi (t, x, u0)− αi , βi − bi (t, x, u0)}

)−1
. (3.3)

Let δ : R+→ R+\{0} be defined by

δ(s)= max
‖u‖≤s,(t,x)∈J

{(
min

1≤i≤n
{bi (t, x, u)− αi , βi − bi (t, x, u)}

)−1}
. (3.4)

Then δ is continuous and nondecreasing with respect to s. Now since u0 is arbitrary,
we have that L+ N ′(u) is invertible on J for all u ∈ D(L), and ‖(L+ N ′(u))−1

‖ ≤

δ(‖u‖).
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LEMMA 3.1. Assume that there exists η < 1 with

‖Fu(t, x, u)‖ ≤ η(δ(‖u‖))−1. (3.5)

Then

‖[L+ N ′(u)+ F ′(u)]−1
‖ ≤

δ(s)

1− η
. (3.6)

PROOF. From (F ′(u)v)(t, x)= (Fu)v(t, x), for all u, v ∈ dom L,

‖F ′(u)v‖ ≤ η(δ(‖u‖))−1
‖v‖. (3.7)

For all y ∈H, notice that

‖[L+ N ′(u)]−1 y‖ ≤ δ(‖u‖)‖y‖. (3.8)

Define the mapping P = F ′(u)[L+ N ′(u)]−1
:H→H. Then from (3.7) and (3.8),

for all y ∈H,

‖Py‖ = ‖F ′(u)[L+ N ′(u)]−1 y‖

≤ η(δ(‖u‖))−1
‖[L+ N ′(u)]−1 y‖

≤ η(δ(‖u‖))−1δ(‖u‖)‖y‖ = η‖y‖.

Then I + P is invertible and ‖[I + P]−1
‖ ≤ (1− η)−1. Note that

L+ N ′(u)+ F ′(u) = (I + F ′(u)[L+ N ′(u)]−1) · (L+ N ′(u))

= (I + P) · (L+ N ′(u)).

Hence, it follows from the invertibility of I + P that L+ N ′(u)+ F ′(u) is invertible
and [L+ N ′(u)+ F ′(u)]−1

= [L+ N ′(u)]−1(I + P)−1. This, together with (3.4),
yields (3.6). 2

THEOREM 3.2. Assume that (A1) and (3.5) hold. Then (1.1) with the periodic-
Dirichlet boundary conditions on J has a unique generalized solution u ∈ (L2(J ))n
for every h ∈ (L2(J ))n .

PROOF. From (3.4),

δ(s) = max
‖u‖≤s,(t,x)∈J

{(
min

1≤i≤n
{bi (t, x, u)− αi , βi − bi (t, x, u)}

)−1}
≤ max
‖u‖≤s,(t,x)∈J

{(
min

1≤i≤n
{αi + φi (t, x, ‖u‖)− αi , βi − βi + ϕi (t, x, ‖u‖)}

)−1}
= max
‖u‖≤s,(t,x)∈J

{(
min

1≤i≤n
{φi (t, x, ‖u‖), ϕi (t, x, ‖u‖)}

)−1}
.

Thus∫
∞

0

1
δ(s)

ds ≥
∫
∞

0

(
max

‖u‖≤s,(t,x)∈J

{(
min

1≤i≤n
{φi (t, x, ‖u‖), ϕi (t, x, ‖u‖)}

)−1})−1
ds

≥

∫
∞

0
min

1≤i≤n,(t,x)∈J
{φi (t, x, ‖s‖), ϕi (t, x, ‖s‖)} ds.
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Then, by (1.5) in assumption (A1), Lemma 2.1 (with (3.6)) and Lemma 3.1, the
system (1.1) has a unique generalized solution u ∈ (L2(J ))n for every h ∈ (L2(J ))n .
The proof is complete. 2

We now use the following assumption.

(A2). There exist two symmetric n × n matrices A and B such that

A + φ(t, x, ‖u‖)I ≤ V ′′ ≤ B − ϕ(t, x, ‖u‖)I

on J × Rn , and the eigenvalues of A and B are αi , βi , i = 1, . . . , n, respectively,
where I is the n × n identity matrix, φi (t, x, s) and ϕi (t, x, s), i = 1, . . . , n, are
continuous functions defined from J × [0,∞) to (0,∞) that are nonincreasing with
respect to s, and ∫

+∞

0
min

(t,x)∈J
{φ(t, x, s), ϕ(t, x, s)} ds =+∞. (3.9)

Here αi , βi ∈ σ(L), i = 1, . . . , n, are consecutive.

Essentially the same reasoning as in Theorem 3.2 yields the following result.

THEOREM 3.3. Assume that (A2) and (3.5) hold. Then (1.1) with the periodic-
Dirichlet boundary conditions on J has a unique generalized solution u ∈ (L2(J ))n
for every h ∈ (L2(J ))n .

REMARK 3.4. Theorems 3.2 and 3.3 allow the eigenvalues of V ′′(t, x, u), when
‖u‖→∞, to interact with points of the spectral set {m2

− l2
| l ∈ Z, m ∈ N∗}.

Consider the nonlinear semilinear-wave equation

ut t − uxx + V ′(t, x, u)= h(t, x), ∀(t, x) ∈ J , (3.10)

with the periodic-Dirichlet boundary conditions on J . Let

V ′(t, x, u)= mu −
sin2(t)+ 1

4
ln(u +

√
1+ u2), m ∈ {1, 2, . . .},

and let h : J → R be in L2(J ). Theorem 3.2 guarantees the existence of a unique
periodic-Dirichlet solution to (3.10) since

m − 1+
1
2
≤ V ′′(t, x, u)= m −

sin2(t)+ 1

4
√

1+ u2
≤ m.

Also,
lim
‖u‖→∞

‖V ′′(t, x, u)− m‖ = 0.

We now discuss the case where the eigenvalues of V ′′(t, x, u) do not interact with
points of the spectral set {m2

− l2
| l ∈ Z, m ∈ N∗} as ‖u‖→∞.
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COROLLARY 3.5. Suppose that

A1 ≤ V ′′ ≤ B1, αi < µi ≤ νi < βi , (3.11)

where µi and νi are eigenvalues of the symmetric n × n matrices A1 and B1,
respectively, and αi , βi ∈ σ(L), i = 1, . . . , n, are consecutive. Assume that (3.5)
holds. Then (1.1) with the periodic-Dirichlet boundary conditions on J has a unique
generalized solution u ∈ (L2(J ))n for every h ∈ (L2(J ))n .

PROOF. It follows from (3.11) that the eigenvalues λi , i = 1, . . . , n, of V ′′ satisfy

αi + min
1≤i≤n

(µi − αi )≤ λi (V
′′)≤ βi − min

1≤i≤n
(βi − νi ).

If we let φ j (t, x, s)=min1≤i≤n (µi − αi ), ϕ j (t, x, s)=min1≤i≤n (βi − νi ), j =
1, . . . , n, then (1.5) holds. The result follows from Theorem 3.2. 2

REMARK 3.6. Since αi , βi ∈ σ(L), i = 1, . . . , n, are consecutive in Corollary 3.5,
the respective eigenvalues µ1 ≤ µ2 · · · ≤ µn and ν1 ≤ ν2 · · · ≤ νn of A1 and B1
satisfy

n⋃
k=1

[µi , νi ] ∩ {m
2
− l2
| l ∈ Z, m ∈ N∗} =∅. (3.12)

Then Theorem 1.1, that is, the main result of [6], is a special case of Corollary 3.5,
when the perturbing term F(t, x, u)= 0.
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