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Flow resistance reduction, quantified as a change in flow rate with respect to a reference
isothermal flow driven by the same pressure gradient, is realizable in a channel flow
using a thermal wave applied on the bounding wall. Countercurrent waves provide
a resistance-reducing effect at any wave velocity, Reynolds number and wavenumber
considered. Cocurrent waves can reduce resistance only if the wave velocity is lower than
a certain threshold, and the Reynolds number is larger than a certain threshold, otherwise,
such waves increase resistance. The increase of the wave amplitude increases resistance
reduction and resistance increase up to a specific limit. It is possible to reduce resistance
up to 20 times compared with the isothermal channel using proper waves. It is shown that
the same effect is achieved regardless of the waves applied at the upper and lower walls.
The wave-modified flows are shown to be stable for the conditions used in this study.

Key words: drag reduction

1. Introduction

Bounding surfaces in a fluid flow create frictional resistance, leading to energy expenditure
required to maintain the flow. This resistance causes an increase in pressure gradient when
a fixed mass flow rate is desired and a reduction of the flow rate when a fixed pressure
gradient is available. In general, friction occurs due to fluid viscosity, and its magnitude
is proportional to the wall-normal velocity gradient. The only possibility for resistance
reduction for a given fluid is altering the fluid flow character near the wall. Several
techniques have been developed to induce near-wall flow modifications. Examples of
passive means include proper surface topography and replacing liquid–solid contact with a
liquid–gas interface. An active means introduces a physical quantity, such as piezoelectric
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actuators (Fukunishi & Ebina 2001), sound (Kato, Fukunishi & Kobayashi 1997), plasma
(Inasawa, Ninomiya & Asai 2013), surface transpiration (Bewley & Alamo 2004; Min
et al. 2006; Bewley 2009; Hoepffner & Fukagata 2009; Mamori, Iwamoto & Marata 2014;
Jiao & Floryan 2021a,b) and surface vibrations (Floryan & Haq 2022; Floryan & Zandi
2022; Haq & Floryan 2022; Floryan & Haq 2023). While none of the methods produced
net energy savings, recent results showed that a combination of different techniques might
achieve that (Floryan 2023). Active systems may not be suitable for specific applications
like the flow of delicate constituents, e.g. bacteria and DNA samples, which are prone to
contamination and mechanical breakage.

One can reduce frictional losses by replacing liquid–solid contact with liquid–gas
contact by placing micropores on the surface and then filling the pores with gas-forming
bubbles (Ou, Perot & Rothstein 2004; Ou & Rothstein 2005; Rothstein 2010; Park, Park
& Kim 2013; Srinivasan et al. 2013; Park, Sun & Kim 2014). The shear acting at the solid
surface is replaced by shear at the gas interface, which is much lower due to lower gas
viscosity. This technique requires two phases and works only with the liquid phase as the
main working fluid. An alternate version of this technique considers the liquid infusion into
the pores to avoid a potential gas bubble collapse (Solomon, Khalil & Varanasi 2014, 2016;
Rosenberg et al. 2016). Although substantial drag reduction has been reported recently
(Van Buren & Smits 2017), the effectiveness of this technique diminishes when migration
of the infusing liquid occurs due to the variations of pressure along the surface.

One can create special surface topography, such as riblets (short wavelength longitudinal
grooves), which can reduce drag by forcing the flow stream to lift above the grooves
(Walsh 1983; Garcia-Mayoral & Jimenez 2011). Long-wavelength longitudinal grooves
can also contribute to a reduction of the solid–fluid interface friction through changes
in the distribution of the bulk flow and are effective on both laminar (Szumbarski,
Blonski & Kowalewshi 2011; Mohammadi & Floryan 2013; Moradi & Floryan 2013;
Raayai-Ardakani & McKinley 2017; Yadav, Gepner & Szumbarski 2018) and turbulent
(Chen et al. 2016; DeGroot, Wang & Floryan 2016) flows. Grooves increase the wetted
area compared with a smooth surface; thus, the reduction of the wall shear must be large
enough to overcome the increase of the shear caused by the increased area.

In addition to the above techniques, one can consider applying spatially distributed
heating patterns on the bounding surface. This heating provides a horizontal density
gradient, which creates rotary convection rolls. These rolls prevent direct contact between
the stream and the bounding surfaces, reducing the shear experienced by the stream. The
effectiveness of this method is increased by adding a uniform heating (Floryan & Floryan
2015), and heating both walls with a proper phase difference between both heating patterns
(Hossain & Floryan 2016). The method remains effective for low Reynolds numbers
(Hossain, Floryan & Floryan 2012) as stronger flows eliminate the convection bubbles.
Drag reduction can be enhanced by properly combining the heating and groove patterns
(Hossain & Floryan 2020) by activating the thermal streaming mechanism (Abtahi &
Floryan 2017; Floryan, Panday & Aman 2023a). These mechanisms have been confirmed
experimentally (Inasawa, Taneda & Floryan 2019; Floryan & Inasawa 2021; Inasawa, Hara
& Floryan 2021). The same concept works in vertical and inclined channels (Floryan et al.
2022; Floryan, Wang & Bassom 2023b).

It was demonstrated recently (Hossain & Floryan 2023) that thermal waves propagating
along the fluid–solid boundary produce a propulsive effect, generating a net horizontal
flow. The waves are characterized by a wave speed, a wavelength, an amplitude and
a wave shape. The use of thermal waves, so far, was limited to generating fluid
motion (Davey 1967; Hinch & Schubert 1971; Mao, Oron & Alexeev 2013; Reiter
et al. 2021). These analyses used the long-wavelength approximation (Davey 1967;
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Figure 1. Sketch of the flow configuration.

Hinch & Schubert 1971), considered slow to moderate wave velocities and high
Rayleigh number (Reiter et al. 2021). Mao et al. (2013) considered waves activating
the thermocapillary effect rather than the buoyancy effect, with analysis limited to long
waves. The question posed in this study is whether thermal waves can reduce resistance
in an externally driven flow. Such waves can create convection rolls near the bounding
surface (Hossain & Floryan 2023), which were essential for resistance reduction in
channels exposed to pattern heating. Thermal waves can be viewed as generating spatially
distributed propulsion instead of concentrated propulsion, which could be advantageous
in some applications such as where excess local stresses are detrimental to the surface.
Reduction of frictional losses is quantified in terms of the flow rate change compared
with the flow rate in an isothermal channel driven by the same pressure gradient. We
examine the linear stability of the flow to ascertain that no instability occurs under
the conditions used in this study, as formation of secondary states would invalidate our
predictions. The paper is organized as follows. Section 2 introduces the model problem,
and § 3 discusses its numerical solution. Section 4 presents and discusses the solution of
the linear stability problem. Section 5 discusses the flow properties starting with § 5.1,
describing waves’ pumping effect, and continuing with § 5.2, presenting wave-induced
flow modification. The mechanisms governing the flow responses are discussed in § 6,
with § 6.1 providing details of flow modifications caused by small amplitude waves, § 6.2
presenting modifications of weak flows, § 6.3 devoted to discussion of long waves and
§ 6.4 focusing on short waves. Section 7 discusses the results of linear stability analysis,
§ 8 shows the equivalence between flow response to waves applied at the upper and lower
walls and, finally, § 9 provides a summary of the conclusions.

2. Problem formulation

Consider the two-dimensional flow of a fluid confined in a channel bounded by two parallel
walls placed at a distance of 2h apart from each other, as shown in figure 1. A pressure
gradient in the positive X-direction drives the flow and the resulting velocity, pressure and
flow rate have the form

u0(X, Y) = [u0(Y), 0] = [1 − Y2, 0], p0(X, Y) = −2X/Re, Q0 = 4/3, (2.1a–c)

where u0 = (u0, v0) is the velocity vector scaled with the maximum X-velocity umax as
the velocity scale, p0 denotes the pressure scaled with ρu2

max as the pressure scale with ρ
being the density of the fluid, Q0 denotes the flow rate, and the Reynolds number is defined
as Re = umaxh/ν where ν stands for the kinematic viscosity and h is the length scale.

The flow is modified by imposing a thermal wave in the lower wall while the upper wall
is kept isothermal. The wave travelling in the positive X-direction with the phase speed c
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and wavenumber α with a known wave profile results in the wall temperatures in the form

θL(t,X) = 1
2 RaP,L cos[α(X − ct)], θU(t,X) = 0, (2.2a,b)

where θ = (T − TR)/Tκ denotes the relative temperature scaled with the temperature scale
Tκ = κν/(gγ h3) where κ is the thermal diffusivity, g is the gravitational acceleration
acting in the negative Y-direction, γ is the thermal expansion coefficient, T is the absolute
temperature and TR is the reference temperature denoting the upper wall temperature. In
the above, t denotes time, and the subscripts L and U refer to the lower and the upper wall,
respectively. Here RaP,L = gγ h3θP,L/(κν) is the wave Rayleigh number with θP,L is the
wave amplitude. The wavelength of the thermal wave λ = 2π/α.

Introduction of the thermal wave modifies the flow fields (2.1a–c), which can be
represented as a superposition of the pressure-gradient-driven and the buoyancy-driven
motions. The complete flow quantities have the form

u1(X, Y) = Re u0(Y)+ u(X, Y), v1 = v(X, Y),

θ1 = θ(X, Y), p1(X, Y) = Re2 p0(X, Y)+ p(X, Y),

}
(2.3)

where (u1, v1) represent the complete velocity vector with (X, Y) components, p1 and θ1
denote the complete pressure and temperature fields, respectively. Here (u, v) represent
the modification velocity vector with components in the (X, Y) directions, p and θ denote
the pressure and temperature modifications, respectively. The complete velocity vector
and the velocity modifications have been scaled using the convective velocity scale uν =
ν/h where umax/uν = Re, the complete pressure and the pressure modifications have been
scaled using the pressure scale ρu2

ν .
Considering the Boussinesq approximation, the resulting two-dimensional flow is

described by the unsteady Navier–Stokes, energy and continuity equations of the form

∂u
∂t

+ (Reu0 + u)
∂u
∂X

+ Rev
∂u0

∂Y
+ v

∂u
∂Y

= − ∂p
∂X

+ ∇2u, (2.4a)

∂v

∂t
+ (Reu0 + u)

∂v

∂X
+ v

∂v

∂Y
= − ∂p

∂Y
+ ∇2v + Pr−1θ, (2.4b)

∂θ

∂t
+ (Reu0 + u)

∂θ

∂X
+ v

∂θ

∂Y
= Pr−1∇2θ, (2.4c)

∂u
∂X

+ ∂v

∂Y
= 0, (2.4d)

where ∇2 denotes the Laplace operator and Pr = ν/κ is the Prandtl number. The relevant
boundary conditions at the walls are

u(t,X,−1) = u(t,X, 1) = 0, v(t,X,−1) = v(t,X, 1) = 0, (2.5a,b)

θ(t,X,−1) = θL, θ(t,X, 1) = 0. (2.5c,d)

Conditions required for the use of this approximation are discussed in Tritton (1977).
Results of experiments for thermal conditions similar to those used in this analysis
(Inasawa et al. 2019, 2021; Floryan & Inasawa 2021) demonstrate that the Boussinesq
approximation well captures the fluid response.

This analysis intends to determine the effectiveness of thermal waves in reducing flow
losses and to quantify their effectiveness. The problem is posed as the determination of
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change in the flow rate driven through the heated and isothermal channels by the same
pressure gradient. This requires imposition of the pressure gradient constraint of the form

∂p
∂X

∣∣∣∣
m

= 0, (2.6)

where the subscript m denotes the mean value.
The total mean flow rate in the channel is decomposed into two parts: the reference

isothermal flow rate and the flow rate correction Qc induced by the wave, i.e.

QT(t,X)|m = 4
3 Re + Qc(t,X)|m , Qc(t,X)|m =

[∫ 1

−1
u(t,X, Y) dY

]
m

. (2.7a,b)

Positive values of the correction Qc identify conditions leading to resistance reduction. The
flow rate increase (decrease) is better illustrated using the correction factor Γcor defined as

Γcor = Qc

4
3

Re
, (2.8)

which expresses the flow rate correction as a fraction of the reference flow rate.
Determination of surface forces acting on the fluid contributes to the understanding of

the flow mechanics. The wall shear stress at the lower wall (σX,L) can be calculated as

σX,L = − ∂u
∂Y

∣∣∣∣
Y=−1

− 2Re = σX,L,mod − 2Re, (2.9a)

where σX,L,mod is the shear stress modification due to interaction of the thermal wave,
and the corresponding X-component of the shear force modification (τX,L,mod) per its unit
length can easily be determined as

τX,L,mod = −λ−1
∫ X0+λ

X0

(
∂u
∂Y

)∣∣∣∣
Y=−1

dX, (2.9b)

where X0 is a convenient reference point. Similar quantities, i.e. σX,U and τX,U,mod, can be
defined for the upper wall.

3. Method of solution

Introduction of a frame of reference moving with the wave phase speed and use of the
relevant Galileo transformation of the form y = Y, x = X − ct leads to a steady problem
of the form

(Reu0 + u − c)
∂u
∂x

+ Rev
∂u0

∂y
+ v

∂u
∂y

= −∂p
∂x

+ ∂2u
∂x2 + ∂2u

∂y2 , (3.1a)

(Reu0 + u − c)
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∂2v

∂x2 + ∂2v

∂y2 + Pr−1θ, (3.1b)

(Reu0 + u − c)
∂θ

∂x
+ v

∂θ

∂y
= Pr−1

[
∂2θ

∂x2 + ∂2θ

∂y2

]
, (3.1c)

∂u
∂x

+ ∂v

∂y
= 0, (3.1d)
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with the boundary conditions taking the following form:

u( y = ±1) = v( y = ±1) = 0, θ( y = −1) = θL(x) = 1
2

Rap,L cos(αx),

θ( y = 1) = θU(x) = 0,
∂p
∂x

∣∣∣∣
m

= 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.1e–h)

Introduction of stream functionψ defined as u = ∂ψ/∂y, v = −∂ψ/∂x, and elimination
of pressure provide the following form of the field equations:

∇4ψ + c
∂

∂x
(∇2ψ)− Pr−1 ∂θ

∂x
= Re u0

∂

∂x
(∇2ψ)− Re

d2u0

dy2
∂ψ

∂x
+ ∂ψ

∂y
∂

∂x
(∇2ψ)

− ∂ψ

∂x
∂

∂y
(∇2ψ), (3.2a)

∇2θ + cPr
∂θ

∂x
= RePru0

∂θ

∂x
+ Pr

(
∂ψ

∂y
∂θ

∂x
− ∂ψ

∂x
∂θ

∂y

)
, (3.2b)

subject to

∂ψ

∂y
(±1) = ∂ψ

∂x
(±1) = 0, θ(−1) = 1

2
Rap,L cos(αx), θ(1) = 0,

∂p
∂x

∣∣∣∣
m

= 0,

(3.2c–f )

where ∇4 stands for the biharmonic operator.
The system of (3.2a–f ) is solved by representing the unknowns in terms of Fourier

expansions in the streamwise direction as

ψ(x, y) =
n=+∞∑
n=−∞

ψ(n)( y)einαx, θ(x, y) =
n=+∞∑
n=−∞

θ(n)( y)einαx (3.3a,b)

where the modal functionsψ(n)( y) and θ(n)( y) are to be determined. The pressure gradient
constraint (3.2f ) can be expressed in terms of modal functions as

d2ψ

dy2

(0)

(1)− d2ψ

dy2

(0)

(−1) = 0. (3.4)

For the purpose of numerical solution, expansions (3.3a,b) are truncated after a finite
number of terms NM resulting in a system of 2(NM + 1) equations which are solved using
a Chebyshev collocation technique based on NP collocation points (Canuto et al. 1996).
An under-relaxation-based iterative technique is used to control solution accuracy within
the specified tolerance limit. The number of collocation points and the Fourier modes used
in the solution have been selected through numerical experiments to guarantee at least six
digits accuracy.

Using the Fourier modal functions, the flow rate correction is simply evaluated as

Qc(x)|m = ψ(0)(1), (3.5)

and the expressions for the shear force modifications reduce to much simpler form as

τx,L,mod = −D2ψ(0)
∣∣∣
y=−1

, τx,U,mod = D2ψ(0)
∣∣∣
y=1

. (3.6a,b)
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4. Linear stability analysis

In order to have a reliable prediction of the flow rate, we determine whether the
flow discussed above undergoes any bifurcations which, if they occur, would invalidate
predictions.

We shall use linear stability theory in order to determine the onset conditions (Floryan
1997; Hossain & Floryan 2013). The analysis begins with the three-dimensional forms
of the momentum, energy and continuity equations expressed in the moving frame of
reference, shown in (3.1). We superimpose unsteady, three-dimensional infinitesimal
disturbances into the wave-modified flow and represent the flow field as

v = v1(x, y)+ v2(x, y, z, t), θ = θ1(x, y)+ θ2(x, y, z, t), p = p1(x, y)+ p2(x, y, z, t).
(4.1a–c)

In the above, the subscripts 1 and 2 refer to the wave-modified flow and the disturbance
fields, respectively, with v1 = (u1, v1, 0) standing for the modified flow velocity vector,
v2 = (u2, v2,w2) standing for the disturbance velocity vector, θ1 denoting the modified
temperature, θ2 denoting the temperature disturbance, p1 standing for the modified
pressure field and p2 standing for the disturbance pressure field. Substitution of the flow
quantities (4.1) into the field equations, subtraction of the wave-modified part (3.1) and
linearization of the resulting equations provide the following disturbance equations in
vector form:

∂v2

∂t
+ Reu0

∂v2

∂x
− c

∂v2

∂x
+ (v2 · ∇)v1 + (v1 · ∇)v2 = −∇p2 + ∇2v2 + Pr−1θ2 j,

(4.2a)

∂θ2

∂t
+ Reu0

∂θ2

∂x
− c

∂θ2

∂x
+ (v2 · ∇)θ1 + (v1 · ∇)θ2 = Pr−1∇2θ2, (4.2b)

∇ · v2 = 0, (4.2c)

where j is the unit vector along vertical y-direction. The above system is subject to the
homogeneous boundary conditions

v2(±1) = 0, θ2(±1) = 0. (4.2d,e)

System (4.2) represents a linear stability system for a thermal-wave spatially modulated
flow with its spatial distribution of modulations characterized by the wavenumber α.
Spatial distribution of disturbances is characterized by the spanwise (β) and streamwise
(δ) wavenumbers. The overall system periodicity in the spanwise direction is characterized
by β while the character of this system in the x-direction depends on the ratio of α
and δ. The system can be aperiodic in this direction for an irrational ratio of α and
δ (non-commensurate system), and could be periodic but with wavelengths varying by
several orders of magnitude (commensurate systems). Wavenumber α can be viewed as
a control parameter as its value characterizes the thermal wave of interest. The stability
analysis requires determination of the amplification rate for β ∈ (0,∞) and δ ∈ (0,∞)

which, in the case of direct-numerical-simulation-type solutions, necessitates use of very
large solution domains which makes such solutions impractical, if not impossible (Panday
& Floryan 2023). Here we follow the formulation proposed by Floryan (1997).

The disturbance quantities are represented as[
v2, θ2, p2

]
(x, y, z, t) = [V2,Θ2,P2] (x, y) exp(i(δx + βz − σ t))+ c.c., (4.3a)

where (δ, β) are the disturbance wavenumber in the (x, z) directions, the real and
imaginary parts of the complex exponent σ = σr + iσi describe the rate of growth and
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the frequency of disturbances with positive σi identifying instability and c.c. stands for
the complex conjugate. Here V2(x, y),Θ2(x, y), and P2(x, y) are the x-periodic amplitudes
functions. Substitution of (4.3a) into (4.2) leads to an eigenvalue problem for the partial
differential equations for the amplitude functions. These functions are represented as
Fourier expansions in the x-direction

[V2,Θ2,P2] (x, y) =
m=+∞∑
m=−∞

[(
f (m)u , f (m)v , f (m)w

)
, f (m)θ , f (m)p

]
( y)eimαx. (4.3b)

We transform the system (4.2a,b) into wall-normal vorticity (ζ = ∂u2/∂z − ∂w2/∂x)
and wall-normal velocity (v) form, substitute (4.3a,b) and separate the Fourier
components, after some rather lengthy algebra, to arrive at a system of linear homogeneous
ordinary differential equations of the form

A(m)ζ (m) + ReDu0βf (m)v =
n=+∞∑
n=−∞

[H(m−n)
ζ ζ (m−n) + H(m−n)

v f (m−n)
v ], (4.4a)

B(m)f (m)v − Pr−1k2
m f (m)θ = −

n=+∞∑
n=−∞

[L(m−n)
ζ ζ (m−n) + L(m−n)

v f (m−n)
v ], (4.4b)

C(m)f (m)θ = Pr
n=+∞∑
n=−∞

[J(m−n)
ζ ζ (m−n) + J(m−n)

v f (m−n)
v + J(m−n)

θ f (m−n)
θ ], (4.4c)

and the boundary conditions take the form

ζ (m)(±1) = 0, f (m)v (±1) = 0, Df (m)v (±1) = 0,

f (m)θ (±1) = 0 for −∞ < m < +∞,

}
(4.4d–g)

with the coefficients A,B,C,H, L, J being given in Appendix A.
The linear disturbance equations (4.4) represent an eigenvalue problem and are

discretized with spectral accuracy using the Chebyshev collocation method with NP
collocation points (Canuto et al. 1996) and truncating after NM modes. For the purposes
of calculations, the problem is posed as an eigenvalue problem for σ . The resulting matrix
system is solved by the ‘inverse iteration’ technique as described in Saad (2011).

5. Flow characteristics

It is convenient to start with a short outline of the reference case of Re = 0, which has
been studied previously by Hossain & Floryan (2023).

5.1. Thermal waves’ pumping effect
When there is no flow in the channel, a thermal wave acting on the lower wall can pump
fluid horizontally at a rate Q in the direction opposite to wave propagation. The flow
response for a wave travelling to the right is a mirror image of the response for a wave
travelling to the left; Q is positive for the leftward wave, whereas it is negative for the
rightward wave. Figure 2(a) shows that an increase in wave velocity |c| increases |Q| at the
rate proportional to ∼|c|, but after reaching a maximum, its further increase reduces |Q|
proportionally to ∼|c|−4. Figure 2(b) demonstrates that an excessive increase in the wave
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Figure 2. (a) Variation of the flow rate correction Qc as a function of the wave speed c, (b) wave wavenumber
α and (c) wave amplitude Rap.L for Re = 0, Pr = 0.71. Asymptotes are depicted by dashed lines. In (a,c) α = 2,
and in (b) Rap.L = 1000.
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Figure 3. Flow topology (line) and temperature (filled colour) field at Re = 0 with (a) c = 0, (b) c = 2 and
(c) c = 20 for Rap,L = 1000, α = 2, Pr = 0.71. The dashed lines show the meandering flow stream. Arrows
show the stream flow direction.

wavelength reduces |Q| proportionally to ∼ α4, whereas an excessive reduction reduces
|Q| proportionally to ∼ α−6. The largest |Q| occurs for waves with the wavenumbers
α ∈ [1, 4] and phase speed |c| ∈ [1, 5]. An increase in the wave amplitude Rap,L increases
the flow rate proportionally to ∼ Ra2

p,L, as shown in figure 2(c), but an excessively large
amplitude slows down the increase due to various saturation effects. The pumping effect
is known to be associated with the propulsion provided by the convection rollers (see
figure 3) formed due to wave diffusion into the channel interior. At large |c| and α, these
rollers appear very near to the lower wall, forming a boundary layer and reducing |Q|
drastically.

Variations of flow topology associated with variation of c are illustrated in figure 3. As
the waves diffuse into the channel interior, they are delayed by the fluid thermal inertia,
with their positions falling farther behind the surface waves as the distance from the lower
wall increases. This process results in bubbles tilting. We refer to this effect as the lagging
thermal penetration. The bubble tilting occurs leftward when the wave travels rightward
(c > 0), and rightward when the wave travels leftward (c < 0).

5.2. Flow modifications generated by thermal waves
There is an established isothermal flow from left to right characterized by Re. This
flow is modified by a thermal wave with wave velocity c applied at the lower wall.
Its response depends on Re and c. A stationary wave (c = 0) represents the reference
configuration with flow topology displayed in figure 4. The topology for Re = 0 consists
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Figure 4. Flow topology (line) and temperature (filled colour) field at c = 0 with (a) Re = 0, (b) Re = 1,
(c) Re = 10, (d) Re = 20 for Rap,L = 1000, α = 2, Pr = 0.71. The grey dashed lines show the meandering
flow stream. Arrows show the stream flow direction.
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Figure 5. Flow topology (line) and temperature (filled colour) field at Re = 1 with (a) c = 1, (b) c = 10,
(c) c = 20, (d) c = 70, (e) c = −1, ( f ) c = −10, (g) c = −20 and (h) c = −70 for Rap,L = 1000, α = 2,
Pr = 0.71. The grey dashed lines show the meandering flow stream. Arrows show the stream flow direction.

of pairs of counter-rotating rolls and has vertical mushroom-shaped isotherms (figure 4a).
Introduction of a weak flow, e.g. Re = 1, causes these rolls to separate, creating a narrow
meandering stream between them (figure 4b). The rolls morph into upper and lower wall
separation bubbles, with the upper bubbles rotating anticlockwise and the lower bubbles
rotating clockwise. The bubbles and isotherms are slightly tilted rightward. Further, an
increase in Re eliminates the upper bubbles (figure 4c), reduces the size of the lower
bubbles and increases the rightward tilt of the bubbles and isotherms. A fast enough
flow (e.g. Re > 20) washes away even the lower bubbles, bringing the flow to a parallel
form (figure 4d), with the titled isotherms concentrated only near the lower wall. The flow
advects a portion of the applied wall heat horizontally, and the rest diffuses into the interior
of the channel. We refer to this as leading thermal penetration, resulting in the bubbles and
isotherms tilting along the flow direction.

Response to the moving wave is illustrated in figure 5 for Re = 1 flow. The flow topology
remains qualitatively similar for larger Re (not shown), with the bubbles decreasing in
size. The use of low-velocity waves (c = 1) directed along the flow direction results in an
appearance of a rightward (i.e. towards flow direction) shift of the position of the bubbles
(figure 5a), which is mainly due to the formation of a thicker stream tube carrying fluid to
the right. The upper bubbles shift to the left and exhibit right tilting (figure 5b). Further
increase of c eventually eliminates the bubbles (figure 5c,d). The tilting is caused by delay
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Figure 6. Variation of the correction factor Γcor as a function of Reynolds number Re and wave speed c for
α = 2, Rap,L = 1000, Pr = 0.71. Grey shaded zone identifies conditions leading to flow rate increase with
respect to the reference isothermal flow. The thick line illustrates variation of the critical Reynolds number Ren
as a function of the critical wave velocity cn, which can be approximated as cn = 0.77Ren. Vertical (purple)
and horizontal (blue) dotted lines identify conditions used in figures 9 and 10, respectively.

associated with heat diffusion into the flow interior (the rightward wave movement is
faster than the heat diffusion across the stream), i.e. thermal lagging. Reversing the wave’s
direction to opposite the flow (see figure 5e–h) has qualitatively similar effects on the
bubbles’ sizes and their eventual elimination but causes rightward tilt, which increases
with the wave velocity. One can note that thermal lagging causes tilting along flow
direction when the wave travels leftward (c < 0). The rightward wave (c > 0) produces
tilting in the direction opposite to the flow.

The effects of Re and c can be gleaned from figure 6, displaying variations of the
correction factor Γcor = Qc/(

4
3 Re) defined in (2.8), as a function of Re and c. Conditions

leading to the reduction of flow losses are marked using grey colour. A characteristic,
nearly straight line separates the resistance-reducing from the resistance-increasing waves.
Conditions along this line identify the critical wave speed cn and the critical Reynolds
number Ren, with cn = 0.77Ren, which results in zero flow rate correction Qc = 0.
The countercurrent waves always reduce flow resistance. Their effectiveness is largest
for small Re where they can increase flow rate up to ∼20 times compared with the
reference isothermal flow. The cocurrent waves also reduce resistance, but such waves
cannot be too fast as fast enough waves increase resistance. Such waves are less effective
than countercurrent waves, providing only up to 20 % flow rate increase. These results
demonstrate a potential for significantly reducing flow losses by waves with proper
characteristics.
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Figure 7. Distribution of the modal function u(0) for selected values of c at Re = 1, Rap,L = 1000, α = 2,
Pr = 0.71.

We shall now discuss how waves affect flow structures. The introduction of waves
activate three effects. The first one is the reduction of direct contact between the stream
and the bounding walls, which reduces friction experienced by the stream. The second one
involves additional propulsion generated by the bubbles’ rotation as the bubbles rotate in
the stream direction, which is favourable to the flow. The third one is flow blockage by
the bubbles (reduction of flow cross-sectional area), which increases flow losses. As Re
increases, bubbles are eventually washed away, eliminating the resistance-reducing effect.
The net effect of waves on the flow rate can be determined by integrating the modal
function u(0) across the channel. Figure 7 illustrates the distribution of this function for
a variety of conditions. A wave with critical velocity cn = 0.77 produces modal function
u(0) = 0 across the channel, thus no change in the flow rate. Other waves generally produce
large flow rate changes in the upper portion of the channel and relatively smaller changes
in the lower portion, so the upper portion determines the overall flow rate correction.
Waves with c < cn (countercurrent waves and sufficiently slow cocurrent waves) produce
a large flow rate increase in the upper portion of the channel and the overall flow rate
increase, while sufficiently fast cocurrent waves produce large flow rate decrease in the
upper portion and the overall flow rate decrease.

Wave action changes wall shear, which may increase or decrease depending on the
flow conditions and wave characteristics. Change in the shear is responsible for the
change in the flow rate. Distributions of shear modifications for different wave velocities,
propagation directions and flow Reynolds numbers are displayed in figures 8(a) and 8(b).
The shear distribution is symmetric for waves with velocity cn, producing a zero mean
value. Waves with c /= cn break this symmetry, producing a net shear force with the
modifications equal and opposite in the lower and upper walls. Waves travelling opposite
to the flow (c < 0) and sufficiently slow waves travelling in the flow direction (c < cn)
produce positive modification at the lower wall, whereas sufficiently fast waves travelling
in the flow direction (c > cn) produce negative modifications. When mean shear at c = cn
is used as a reference point, an increase of |c − cn| causes the magnitude of the average
shear modification to initially increases, attains a maximum and then decrease with a
further increase of |c − cn| (figure 8c). The decrease at large |c| is proportionally to |c|−4

(see Appendix B for discussion on the asymptote).
Variations of the flow rate correction Qc as a function of c are illustrated in detail in

figure 9 for Re = 1, 10, 20. The critical wave velocity for each Re is cn = 0.77, 7.7, 15.4,
respectively; c < cn provides positive flow rate correction, causing an overall decrease
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Figure 8. Wall shear force modification τmod profiles and mean shear modifications τav at the (a) lower and
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Figure 9. Variation of the flow rate correction Qc as a function of wave speed c for selected values of Re. Solid
and dashed lines show positive and negative values, respectively. Large c asymptotes are shown by dotted lines.
Flow conditions used in this figure are identified by purple dotted lines in figure 6.

of flow resistance, but c > cn provides negative flow rate correction, causing the overall
increase in flow resistance. When c either increases or decreases away from cn, the flow
rate correction exhibits a qualitatively similar response – its magnitude initially increases,
attains a maximum and then gradually decreases, eventually becoming proportionally
to |c|−4.

Figure 10 illustrates in more detail how an increase of Re affects Qc. The selected curves
corresponding to c = 0,±0.1,±2 and ±10 illustrate how the flow response changes with
the wave direction change and clearly identify the change from an increase of the flow rate
to its decrease as Re increases. There are well-defined limits of Qc for Re → 0, which are
positive for negative c and negative for positive c, with c = 0 representing the boundary
between them characterized by Qc → 0 with Re → 0. The case of Re = 0 corresponds to
the pumping problem studied in Hossain & Floryan (2023) and briefly reviewed in § 5.1. It
is interesting to note that in the case of c = 0, Qc initially increases proportionally to Re,
attains a maximum and then decreases with the further increase of Re proportionally to
Re−2.5. Countercurrent waves produce Qc changing marginally with Re until Re becomes
large enough to cause a decrease proportional to Re−2.5. The behaviour of cocurrent waves
is qualitatively similar if one considers |Qc|, i.e. there is a well-defined limit for small
Re and well-defined behaviour for large Re, except in the neighbourhood of Re = Ren
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shown by dotted lines. Flow conditions used in this figure are identified by blue dotted lines in figure 6.

10–1 100 101
10–3

10–2

10–1

100

Qc

10–3

10–2

10–1

100

10

–10

0.1

–2
2

c = 0

–Qc

α

∼α4

∼α–6

Figure 11. Variation of the flow rate correction Qc as a function of wave wavenumber α for selected values of
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where Qc passes through zero. A countercurrent wave, a wave travelling opposite the flow
(c < 0), always provides Qc > 0. The cocurrent wave, a wave travelling along the flow
(c > 0), increases flow losses if Re < Ren and decreases flow losses when Re > Ren. One,
of course, needs to remember that a flow that is too fast (Re too big) washes away bubbles,
and the flow resistance loses any dependence on the thermal waves.

Effects of a wave’s wavelength are illustrated in figure 11. As the wavenumber increases,
the countercurrent waves reduce resistance (Qc > 0) proportionally to ∼α4, the resistance
reduction attains a maximum and then decreases proportionally to ∼α−6 (details of the
analysis are given in § 6). Cocurrent waves exhibit a similar trend but with a notable
difference. They reduce resistance (Qc > 0) if they are sufficiently slow and increase
resistance if they are fast enough. An estimate of the critical velocity cn can be obtained
from analytical solutions for large and small α, i.e.

cn = (1929 + 3130Pr)Re
3435(1 + Pr)

α → 0, (5.1a)

cn = (27 + 22Pr)Re
4α(1 + Pr)

α → ∞. (5.1b)
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Variations of Γcor as a function of c and α displayed in figure 12 permit a quick
identification of the most effective waves. Waves with α ≈ 2 and c ∈ [−2,−3] produce
the largest resistance reduction, and waves with α ≈ 2 and c ∈ [3, 5] produce the largest
resistance increase. The maximum resistance reduction occurs for α = αmax ≈ 2 with αmax
decreases marginally with c. The reader may note that the critical wave velocity cn varies
marginally as a function of α.

Results displayed in figure 13 demonstrate that the magnitude of change of resistance
initially increases proportionally to ∼Ra2

p,L . This growth slows down for Rap,L >∼ 2000
due to saturation effects, which suggests that excessively large heating is not beneficial.
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Also, the results of stability analysis discussed in § 7 suggest a possible transition to
secondary states for excessively large wave amplitudes.

One may wish to ascertain the effectiveness of a moving thermal wave over a stationary
heating pattern. Figure 14 displays variations of the stationary gain factor Γs, defined as

Γs = Qc − Qc|c=0

Qc|c=0
, (5.2)

with Qc|c=0 denoting the flow rate correction when c = 0. Positive values of Γs correspond
to the moving wave being more effective. Variation of the critical wave velocity cn =
0.77Re in figure 14(a,c) corresponds to Γs = −1, with cn varying marginally with α shown
in figure 14(b,d). In general, countercurrent waves are more effective (as high as ∼100 fold)
for small Re while cocurrent waves are more effective for larger Re (figure 14a,c). Use of
α = 4–5 provides the best improvement achieve by the waves (figure 14b,d).

In the next section, we analyse the mechanisms driving the flow response.

6. Mechanism governing the flow response

The mechanisms governing flow response are discussed with the help of analytic solutions,
which can be obtained in special limits. We start with the small amplitude waves.

6.1. Small amplitude wave
We introduce a small parameter ε � 1 which measures the wave amplitude. The flow
quantities are assumed to be asymptotic power series of ε as

(u, v, θ, p) = ε(U1,V1,Θ1,P1)+ ε2[U2,V2,Θ2,P2] + O(ε3). (6.1)
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Substitution of (6.1) into (3.1) leads to a system of O(ε) in the form

∇2U1 − Reu0
∂U1

∂x
− Re

du0

dy
V1 + c

∂U1

∂x
− ∂P1

∂x
= 0, (6.2a)

∇2V1 − Reu0
∂V1

∂x
+ c

∂V1

∂x
− ∂P1

∂y
= −Pr−1Θ1, (6.2b)

∇2Θ1 − RePru0
∂Θ1

∂x
+ cPr

∂Θ1

∂x
= 0, (6.2c)

∂U1

∂x
+ ∂V1

∂y
= 0, (6.2d)

U1(±1) = V1(±1) = 0, Θ1(−1) = 1
2 Rap,L cos(αx), Θ1(1) = 0, ∂P1/∂x|m = 0

(6.2e–h)
and a system of O(ε2) in the form

∇2U2 − Reu0
∂U2

∂x
− Re

du0

dy
V2 + c

∂U2

∂x
− ∂P2

∂x
= U1

∂U1

∂x
+ V1

∂U1

∂y
, (6.3a)

∇2V2 − Reu0
∂V2

∂x
+ c

∂V2

∂x
− ∂P2

∂y
= −Pr−1Θ2 + U1

∂V1

∂x
+ V1

∂V1

∂y
, (6.3b)

∇2Θ2 − Reu0Pr
∂Θ2

∂x
+ cPr

∂Θ2

∂x
= PrU1

∂Θ1

∂x
+ PrV1

∂Θ1

∂y
, (6.3c)

∂U2

∂x
+ ∂V2

∂y
= 0, (6.3d)

which is subject to homogeneous boundary conditions and a constraint associated with
constant mean-pressure-gradient.

We start with the solution of (6.2c) for the temperatureΘ1 which is subject to the forcing
(6.2f –g) leading to assume a solution in the form

Θ1(x, y) = Θ
(1)
1 ( y)eiαx + c.c., (6.4)

and energy equation (6.2c) takes the form

D2Θ
(1)
1 − (iαPrReu0 − iαcPr + α2)Θ

(1)
1 = 0, Θ

(1)
1 (1) = 0, Θ

(1)
1 (−1) = 1

4 Rap,L.

(6.5a–c)

Equations (6.2a,b) are reduced to a single equation of the form

∇4Ψ1 − Reu0
∂

∂x
(∇2Ψ1)+ Re

d2u0

dy2
∂Ψ1

∂x
+ c

∂

∂x
(∇2Ψ1) = Pr−1 ∂Θ1

∂x
, (6.6)

where Ψ1 denotes the stream function with U1 = ∂Ψ1/∂y and V1 = −∂Ψ1/∂x. The
character of the forcing on the right-hand side of (6.6) suggests a solution in the form

Ψ1(x, y) = Ψ
(1)
1 ( y)eiαx + c.c. (6.7)

Substitution of (6.4) and (6.7) into (6.6) leads to

D4Ψ
(1)
1 − (iαReu0 − iαc + 2α2)D2Ψ

(1)
1 + (iα3Reu0 + iαReD2u0 − iα3c + α4)Ψ

(1)
1

= iαPr−1Θ
(1)
1 , (6.8a)
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M.Z. Hossain and J.M. Floryan

Ψ
(1)
1 (±1) = DΨ (1)

1 (±1) = 0. (6.8b)

In the above, we assume the right-hand side as F1 = iαPr−1Θ
(1)
1 which is the x-component

of the gradient of buoyancy force and acts as a flow forcing. The velocity components have
the form

[U1,V1](x, y) = [U(1)
1 ,V(1)1 ]( y)eiαx + c.c., (6.9)

with U(1)
1 = DΨ (1)

1 and V(1)1 = −iαΨ (1)
1 . Analysis of O(ε2) equations shows that the

unknowns can be represented as

[Θ2,U2,V2](x, y) = [Θ(0)
2 ,U(0)

2 ,V(0)2 ]( y)+ [Θ(2)
2 ,U(2)

2 ,V(2)2 ]( y)ei2αx + c.c. (6.10)

It is easy to show that V(0)2 = 0. Substitution of (6.9) and (6.10) into (6.3a) and extraction
of the zero modal function combined with the enforcement of the mean-pressure gradient
constraint lead to the following flow problem:

D2U(0)
2 = V(−1)

1 DU(1)
1 + V(1)1 DU(−1)

1 , U(0)
2 (±1) = 0. (6.11a,b)

Double integration of (6.11a,b) yields

U(0)
2 =

∫ y

−1
g(η) dη − 1

2

∫ 1

−1
(1 + y)g( y) dy, (6.12a)

where
g( y) = V(−1)

1 U(1)
1 + V(1)1 U(−1)

1 , (6.12b)

and leads to evaluate the flow rate correction Qc as

Qc =
∫ 1

−1
U(0)

2 dy =
∫ 1

−1

∫ η

−1
g(η) dη dy −

∫ 1

−1
g( y) dy. (6.13)

In the above, g( y) represents the Reynolds stress created by the buoyancy-induced motion
resulting from effect of the thermal wave, and its sign dictates whether Qc is positive or
negative. Numerical solution of (6.5) and (6.8) have been carried out using the collocation
method as described in § 3, and integrations present in (6.12) and (6.13) have been
performed with an accuracy of fourth-order.

Solution of Θ(1)
1 reveals that the modal functions are purely real in the absence of wave

motion or the external flow, but the presence of wave movement or external flow causes this
modal function to become complex. Hence the imaginary part, shown in figure 15(a), has
two components: wave-induced correction and flow-induced correction. Both corrections
contribute to the driving force F1 (see (6.8)) with the flow-induced correction always
assisting the bulk flow whereas the wave-induced correction assists for the wave moving
opposite to the flow direction (countercurrent wave) and opposes for the wave moving
in the flow direction(cocurrent wave) if the wave velocity exceeds certain threshold. The
complex modal function Θ(1)

1 produces a phase shift Φ with respect to the wave imposed
at the lower plate and is shown in figure 15(b). The interplay of wave-induced and
flow-induced corrections creates either a negative phase shift causing the net horizontal
flow rate to increase (overall resistance reduction in the channel) or a positive phase shift
causing the net flow rate to decrease (overall resistance increase in the channel). The phase
shift Φ = 0 produces Qc = 0.
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Figure 15. (a) Distributions of the imaginaryΘ(1)
i parts of the temperature modal functionΘ(1)

1 , (b) the phase
shift Φ of Θ(1)

1 with respect to the wave at the lower plate and (c) distribution of the Reynolds stress g( y)
for α = 2, Rap,L = 200, Pr = 0.71. In (c), solid, dashed and dotted lines represent Re = 1 with wave velocity
(c /= 0), Re = 1 with stationary wave (c = 0), and Re = 0 with wave velocity (c /= 0), respectively, and the
grey shaded zone denotes flow rate increase over the stationary wave limit.

Next, we look into the Reynolds stress developed due to the interaction of the convective
flow modifications generated from the thermal waves acting on the lower wall (see
figure 15c). A stationary wave as well as a countercurrent wave generate positive Reynolds
stress causing the resistance reduction in the channel, but a cocurrent wave (higher than the
threshold) creates negative Reynolds stress causing the resistance increase in the channel.
Increase or decrease of resistance reduction over the stationary wave limit is dictated by the
increase or decrease of the Reynolds stress compared with the Reynolds stress developed
by the stationary wave, as depicted by the grey colour in figure 15(c).

Furthermore, small amplitude waves, i.e. ε = Rap,L → 0, reveal that the velocity
components U(1)

1 and V(1)1 present in the Reynolds stress g( y) are proportional to Rap,L.
Hence, the flow rate correction Qc varies proportionally to Ra2

p,L, as shown in figure 13.
Next, we focus our attention to a weak flow with Re → 0.
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6.2. Weak flow
We assume Re is small but finite, and represent the solutions of (3.1) as

[u, v, θ, p] = [U0,V0,Θ0,P0] + Re[U1,V1,Θ1,P1] + O(Re2). (6.14)

Substitution of (6.14) into (3.1) results in the following leading-order systems: for O(1)
we have

∇2U0 + c
∂U0

∂x
− U0

∂U0

∂x
− V0

∂U0

∂y
− ∂P0

∂x
= 0, (6.15a)

∇2V0 + c
∂V0

∂x
− U0

∂V0

∂x
− V0

∂V0

∂y
− ∂P0

∂y
+ Pr−1Θ0 = 0, (6.15b)

Pr−1∇2Θ0 + c
∂Θ0

∂x
− U0

∂Θ0

∂x
− V0

∂Θ0

∂y
= 0,

∂U0

∂x
+ ∂V0

∂y
= 0, (6.15c,d)

which describes the system that produces a pumping effect by thermal waves with a net
horizontal flow rate Q00 = ∫ +1

−1 U0 dy (Hossain & Floryan 2023); for O(Re) we have

∇2U1 + c
∂U1

∂x
− U0

∂U1

∂x
− U1

∂U0

∂x
− V0

∂U1

∂y
− V1

∂U0

∂y
− ∂P1

∂x
= u0

∂U0

∂x
+ V0

∂u0

∂y
,

(6.16a)

∇2V1 + c
∂V1

∂x
− U0

∂V1

∂x
− U1

∂V0

∂x
− V0

∂v1

∂y
− V1

∂V0

∂y
− ∂P1

∂y
+ Pr−1Θ1 = u0

∂V0

∂x
,

(6.16b)

Pr−1∇2Θ1 + c
∂Θ1

∂x
− U0

∂Θ1

∂x
− U1

∂Θ0

∂x
− V0

∂Θ1

∂y
− V1

∂Θ0

∂y
= u0

∂Θ0

∂x
, (6.16c)

∂U1

∂x
+ ∂V1

∂y
= 0, (6.16d)

where u0 = 1 − y2 is the reference isothermal flow whose effects are evident in the
right-hand side of (6.16a–c) and acts as a forcing function which certainly provides a
non-zero U1. Therefore, the flow rate correction can be represented as

Qc =
∫ +1

−1
(U0 + ReU1) dy + O(Re2) = Q00 + ReQ1 + O(Re2), (6.17)

with Q00 representing flow rate at Re = 0 and Q1 representing flow rate modification due
to the presence of reference flow. Figure 10 demonstrates that, for c /= 0, Qc approaches a
well-defined limit Q00 as Re → 0.

The case c = 0 is special as it does not produce any pumping in the limit Re → 0 and
separates conditions leading to positive and negative c (see figure 10). We assume the
unknowns present in (6.5) and (6.8) as

[Θ(1)
1 , Ψ

(1)
1 ] = [Θ̂0, Ψ̂0] + Re[Θ̂1, Ψ̂1] + Re2[Θ̂2, Ψ̂2] + O(Re3). (6.18)

Substitution of (6.18) into (6.5) and (6.8) leads to the following: for O(1) we have

D2Θ̂0 − α2Θ̂0 = 0, D4Ψ̂0 − 2α2D2Ψ̂0 + α4Ψ̂0 = iαPr−1Θ̂0; (6.19a,b)
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On the reduction of flow rate losses using thermal waves

and for O(Re) we have

D2Θ̂1 − α2Θ̂1 = iαPru0Θ̂0, (6.19c)

D4Ψ̂1 − 2α2D2Ψ̂1 + α4Ψ̂1 = iαPr−1Θ̂1 + iαu0D2Ψ̂0 − (iα3u0 + iαD2u0)Ψ̂0. (6.19d)

The analytical solution of (6.19a) reads

Θ̂0 = Rap,L
sinh(ϑ(1 − y))

4 sinh(2ϑ)
eiαx, ϑ =

√
(α2 − icαPr), (6.20a,b)

whereas (6.19b–d) warrant a numerical solution. Nevertheless, a qualitative analysis can
be performed by assuming Θ̂0 = Θ̂r0 + iΘ̂i0, Θ̂1 = Θ̂r1 + iΘ̂i1, Ψ̂0 = Ψ̂r0 + iΨ̂i0, Ψ̂1 =
Ψ̂r1 + iΨ̂i1, and separating real and imaginary parts of the resulting equations,
which reveals that Θ̂i0 = 0, Ψ̂r0 = 0, Ψ̂i1 = 0. Further simplification provides the
velocity components as U(1)

1 = ReDΨ̂r1 + O(Re3)+ i[DΨ̂i0 + O(Re2)] and V(1)1 =
αΨ̂i0 + O(Re2)+ i[−αReΨ̂r1 + O(Re3)], leading to the form of the Reynolds stress
function as

g( y) = 2ReΨ̂i0DΨ̂r1 + O(Re2), (6.21)

which demonstrates that the flow rate correction Qc increases proportionally to Re as
shown in figure 10 for c = 0.

6.3. Long-wavelength waves
In order to gain further insight of the flow mechanism we consider long-wavelength waves
that correspond to the limit α → 0. Introduce a wave-wavelength-based scale ξ = αx, and
represent the unknowns as expansions in terms of α as

[u(ξ, y), v(ξ, y)] =
4∑

n=1

αn[Un(ξ, y),Vn(ξ, y)] + O(α5), (6.22a)

[θ(ξ, y), p(ξ, y)] =
3∑

n=0

αn[Θn(ξ, y),Pn(ξ, y)] + O(α4). (6.22b)

Substitution of (6.22) into field equations (3.1) and extraction of the leading-order terms
results in the following system:

∂2Θ0

∂y2 = 0,
∂P0

∂y
= Θ0

Pr
,

∂2U1

∂y2 = ∂P0

∂ξ
,

∂V1

∂y
= 0, (6.23a–d)

Θ0(−1) = 0.5Rap,L cos(αx), Θ0(1) = 0, U1(±1) = V1(±1) = 0, ∂P0/∂ξ |m = 0.
(6.23e–h)

Its solution is given as

Θ0 = 1
4

Rap,LHΘ,01( y) cos ξ, U1 = Rap,L

480Pr
HU,11( y) sin ξ, V1 = 0, (6.24a–c)

where the coefficients HΘ,01 and HU,11 are polynomials in y, and given in Appendix C.
Both temperature and the horizontal velocity are periodic and unaffected by the wave and
the external flow.

997 A12-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.696


M.Z. Hossain and J.M. Floryan

The next order of system,
∂2Θ1

∂y2 = RePru0
∂Θ0

∂ξ
− cPr

∂Θ0

∂ξ
,

∂P1

∂y
= Θ1

Pr
,

∂2U2

∂y2 = ∂P1

∂ξ
+ Reu0

∂U1

∂ξ
+ V2Re

du0

dy
− c

∂U1

∂ξ
,

∂U1

∂ξ
+ ∂V2

∂y
= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.25a–d)

Θ1(±1) = 0, U2(±1) = V2(±1) = 0, ∂P1/∂ξ |m = 0, (6.25e–g)

has the following solution:

Θ1 = 1
240

PrRap,L[HΘ,11( y)Re + HΘ,12( y)c] sin ξ,

U2 = − Rap,L

403 200Pr

[[
HU,21( y)+ PrHU,22( y)

]
Re + [

HU,23( y)+ PrHU,24( y)
]

c
]

cos ξ,

V2 = − Rap,L

480Pr
HV,21( y) cos ξ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.26)

with definitions of all coefficients given in Appendix C. At this level of approximation, the
external flow and the wave generate temperature corrections which produce corrections
in horizontal fluid motion. The complementary vertical fluid motion (due to continuity)
is a consequence of the previous horizontal velocity correction. All corrections are still
periodic.

The next order of system,

∂2Θ2

∂y2 = RePru0
∂Θ1

∂ξ
− cPr

∂Θ1

∂ξ
+ PrU1

∂Θ0

∂ξ
+ PrV2

∂Θ0

∂y
− ∂2Θ0

∂y2 ,

∂P2

∂y
= ∂2V2

∂y2 + Θ2

Pr
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.27a,b)

∂2U3

∂y2 = ∂P2

∂ξ
+ Reu0

∂U2

∂ξ
+ V3Re

du0

dy
− c

∂U2

∂ξ
− ∂2U1

∂ξ2 + U1
∂U1

∂ξ
+ V2

∂U1

∂y
,

∂U2

∂ξ
+ ∂V3

∂y
= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(6.27c,d)

Θ2(±1) = 0, U3(±1) = V3(±1) = 0, ∂P2/∂ξ |m = 0, (6.27e–g)
has solution of the form

Θ2 = − Rap,L

403 200

[
Rap,LHΘ,20( y)+ {HΘ,21( y)+ Pr2[HΘ,22( y)Re2 + HΘ,23( y)cRe

+ HΘ,24( y)c2]} cos ξ + Rap,LHΘ,25( y) cos(2ξ)
]
,

U3 = Rap,L

[
c2[PrHU,31( y)+ HU,32( y)] + 1

Pr
[HU,33( y)+ c2HU,34( y)]

]
sin ξ

+
Ra2

p,L

Pr2 [PrHU,35( y)+ HU,36( y)] sin(2ξ),

V3 = − Rap,L

1 209 600Pr

[[
HV,31( y)+ PrHV,32

]
Re + [

HV,33( y)+ PrHV,34
]

c
]

sin ξ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.28)
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with definitions of all coefficients (except for U3 due to length) given in Appendix C. An
aperiodic part (first term of the Θ2 solution) is produced in the temperature correction,
whereas the velocity corrections are still purely periodic. As we are interested in the
aperiodic velocity correction, it is sufficient to consider the following equations for the
next order of the system:

∂2U4

∂y2 = ∂P3

∂ξ
+ Reu0

∂U3

∂ξ
+ V4Re

du0

dy
− c

∂U3

∂ξ
− ∂2U2

∂ξ2 + U1
∂U2

∂ξ
+ U2

∂U1

∂ξ

+ V2
∂U2

∂y
+ V3

∂U1

∂y
, (6.29a)

U4(±1) = 0, ∂P3/∂ξ |m = 0. (6.29b,c)

The last four terms F( y) = U1(∂U2/∂ξ)+ U2(∂U1/∂ξ)+ V2(∂U2/∂y)+ V3(∂U1/∂y) of
(6.29a) provide an aperiodic forcing which is capable of producing an aperiodic velocity
correction U4,ap which can be expressed as

U4,ap =
∫ y

−1

∫ μ

−1
F(η) dη dμ− y + 1

2

∫ 1

−1

∫ μ

−1
F(η) dη dμ, (6.30a)

and reduced after integration to

U4,ap =
Ra2

p,L

8 717 829 120 000Pr2

[[
HU,41( y)+ PrHU,42( y)

]
Re

+ [
HU,43( y)+ PrHU,44( y)

]
c
]
, (6.30b)

giving the flow rate correction

Qc,ap =
∫ 1

−1
U4,ap dy =

α4Ra2
p,L

12 770 257 500Pr2 [(1929 + 3130Pr)Re − 3435(1 + Pr)c] .

(6.31)

Definitions of HU,41−44 are given in Appendix C. The flow rate correction is proportional
to ∼α4 and this limit is shown in figure 11 and has two components: one associated
with the flow Re and the other associated with the wave velocity c. Countercurrent waves
produce positive corrections at all Re and c. Cocurrent waves produce Qc = 0 at the critical
velocity cn = (1929 + 3130Pr)Re/3435(1 + Pr) and critical Reynolds number Ren =
3435(1 + Pr)c/(1929 + 3130Pr); waves with c < cn and Re > Ren produce positive
corrections and waves with c > cn and Re < Ren produce negative corrections.

The net shear force correction can be calculated as

τL,net =
Ra2

p,Lα
4

1 702 701 000Pr2 [3(17 + 717Pr)Re − 143(3 + 17Pr)c] = −τU,net. (6.32)

Next, we focus our attention to the short wavelength heating, as again, this case can be
solved analytically.

6.4. Short wavelength waves
Consider short wavelength waves that correspond to α → ∞, and in this limit,
the conduction temperature field is approximated as θ0 = 1

2 Rap,Le−α(1+y) cos(αx),
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demonstrating formation of a thin boundary layer close to the lower wall. Introduce
a wavelength-related scale ξ = αx in the streamwise direction and a stretched scale
Ω = α(1 + y) along the spanwise direction and express the solution in the inner layer
in terms of the following expansions as

[uin, vin, θin] =
6∑

n=1

α−n[Un(ξ,Ω),Vn(ξ,Ω),Θn(ξ,Ω)] + O(α−7), (6.33a)

[pin] =
5∑

n=0

α−n[Pn(ξ,Ω)] + O(α−6). (6.33b)

Substitution of (6.33) into (3.1) and retention of the leading-order terms result in the
following O(α−1) system:

∂2U1

∂ξ2 + ∂2U1

∂Ω2 − ∂P0

∂ξ
= 0,

∂2V1

∂ξ2 + ∂2V1

∂Ω2 − ∂P0

∂Ω
= 0, (6.34a,b)

∂2Θ1

∂ξ2 + ∂2Θ1

∂Ω2 = 1
2

cPrRap,Le−Ω sin ξ, (6.34c)

U1(−1) = V1(−1) = 0, Θ1(−1) = 0, ∂P0/∂ξ |m = 0, (6.34d–f )
and its solution, which can be determined using method of separation of variables, has the
form

U1 = 0, V1 = 0, Θ1 = −1
4 cPrRap,LΩe−Ω sin ξ. (6.34g–i)

One can observe that only the wave, not the external flow, affects the temperature,
resulting in no convection. System O(α−2) has the following form:

∂2U2

∂ξ2 + ∂2U2

∂Ω2 − ∂P1

∂ξ
= 0,

∂2V2

∂ξ2 + ∂2V2

∂Ω2 − ∂P1

∂Ω
= −Rap,L

2Pr
e−Ω cos ξ, (6.35a,b)

∂2Θ2

∂ξ2 + ∂2Θ2

∂Ω2 = −RePrRap,LΩe−Ω sin ξ − cPr
∂Θ1

∂ξ
, (6.35c)

U2(−1) = V2(−1) = 0, Θ2(−1) = 0, ∂P1/∂ξ |m = 0, (6.35d–f )
and its solution can be written as

U2 = Rap,L

16Pr
Ω(−2 +Ω)e−Ω sin ξ, V2 = Rap,L

16Pr
Ω2e−Ω cos ξ, (6.35g–h)

Θ2 = 1
16

PrRap,LΩ(1 +Ω)e−Ω
[
4Re sin ξ − Prc2 cos ξ

]
. (6.35i)

At this level of approximation, both the external flow and the wave affect the temperature
resulting in a periodic motion. System O(α−3) has the following form:

∂2U3

∂ξ2 + ∂2U3

∂Ω2 − ∂P2

∂ξ
= −c

∂U2

∂ξ
,

∂2V3

∂ξ2 + ∂2V3

∂Ω2 − ∂P2

∂Ω
= −c

∂V2

∂ξ
− Θ1

Pr
, (6.36a,b)

∂2Θ3

∂ξ2 + ∂3Θ3

∂Ω2 = 2RePrΩ
∂Θ1

∂ξ
+ 1

2
PrRap,Le−Ω [(ReΩ2 − U2) sin ξ − V2 cos ξ ]

− cPr
∂Θ2

∂ξ
, (6.36c)

U3(−1) = V3(−1) = 0, Θ3(−1) = 0, ∂P2/∂ξ |m = 0, (6.36d–f )
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and its solution can be written as

U3 = cRap,L

192Pr
e−ΩKU3 cos ξ, V3 = −cRap,L

192Pr
e−ΩKV3 sin ξ, (6.36g,h)

Θ3 = 1
256

[Ra2
p,L + 256B2Ω] − 1

512
Ra2

p,Le−2Ω [KΘ31 + KΘ32 cos(2ξ)]

− 1
96

Rap,LPrΩe−Ω{4ReKΘ33 sin ξ + cPr2[(c2KΘ34 − 4ReKΘ33) cos ξ

− 4ReKΘ34 sin ξ ]}, (6.36i)

with KU3 = Ω[−6 − 3Ω + 2Ω2 + 2Pr(−6 +Ω2)], KV3 = Ω2[3 + 2Ω + 2Pr(3 +Ω)],
KΘ31 = 2(1 + 2Ω + 2Ω2), KΘ32 = Ω(1 + 2Ω), KΘ33 = 3 + 3Ω + 2Ω2 and KΘ34 =
3 + 3Ω +Ω2. The velocity field remains periodic, whereas the temperature field produces
a net heat transfer between the plates described by the first bracketed term in Θ3 and the
constant B2 in this term is to be calculated from the matching with the outer solution. The
system O(α−4) has the following form:

∂2U4

∂ξ2 + ∂2U4

∂Ω2 − ∂P3

∂ξ
= 2ReΩ

∂U2

∂ξ
+ 2ReV2 − c

∂U3

∂ξ
, (6.37a)

∂2V4

∂ξ2 + ∂2V4

∂Ω2 − ∂P3

∂Ω
= 2ReΩ

∂V2

∂ξ
− c

∂V3

∂ξ
− Θ2

Pr
, (6.37b)

∂2Θ4

∂ξ2 + ∂3Θ4

∂Ω2 = 2RePrΩ
∂Θ2

∂ξ
− RePrΩ2 ∂Θ1

∂ξ
− cPr

∂Θ3

∂ξ

+ Pr
[

U2
∂Θ1

∂ξ
+ V2

∂Θ1

∂Ω

]

− 1
2

PrRap,Le−Ω [U3 sin ξ + V3 cos ξ ], (3.37c)

U4(−1) = V4(−1) = 0, Θ4(−1) = 0, ∂P3/∂ξ |m = 0, (6.37d–f )

whose solution can be written as

U4 = −Rap,Le−Ω

768Pr
[Re(KU41 + PrKU42) cos ξ

+ c2(KU43 + PrKU44 + Pr2KU45) sin ξ ], (6.37g)

V4 = −Rap,Le−Ω

768Pr
[−Re(KV41 + PrKV42) sin ξ

+ c2(KV43 + PrKV44 + Pr2KV45) cos ξ ], (6.37h)

Θ4 = Pr2Rap,Le−Ω

768
[Re(c2PrKΘ41 − cKΘ42 − ReKΘ42) cos ξ

+ c2Pr(c2PrKΘ41 − ReKΘ44) sin ξ ]

−
cRa2

p,Le−2Ω

12 288
[KΘ45 + PrKΘ46] sin(2ξ), (6.37i)

with KU41 = 6Ω(−18 − 3Ω +Ω3), KU42 = 4Ω(−30 − 3Ω + 2Ω2 +Ω3), KU43 =
Ω(−12 − 6Ω +Ω3), KU44 = Ω(−18 − 9Ω + 2Ω2 +Ω3), KU45 = Ω(−30 − 3Ω +
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2Ω2 +Ω3), KV41 = 6Ω2(9 + 4Ω +Ω2), KV42 = 4Ω2(15 + 6Ω +Ω2), HV43 =
Ω2(6 + 4Ω +Ω2), HV44 = Ω2(3 +Ω)2, KV45 = Ω2(15 + 6Ω +Ω2), KΘ41 =
4Ω(15 + 15Ω + 6Ω2 +Ω3), KΘ42 = 16Ω(9 + 9Ω + 5Ω2 + 2Ω3), KΘ43 = 16Ω(15 +
15Ω + 10Ω2 + 3Ω3), KΘ44 = 4Ω(33 + 33Ω + 18Ω2 + 5Ω3), KΘ45 = Ω(9 +
18Ω + 8Ω2) and KΘ46 = 24Ω(1 +Ω)2. The velocity field is still periodic, so we look
into the order O(α−5) system which has the following form:

∂2U5

∂ξ2 + ∂2U5

∂Ω2 − ∂P4

∂ξ
= 2ReΩ

∂U3

∂ξ
− ReΩ2 ∂U2

∂ξ
+ 2ReV3 − 2ReΩV2 − c

∂U4

∂ξ

+ U2
∂U2

∂ξ
+ V2

∂U2

∂Ω
, (6.38a)

∂2V5

∂ξ2 + ∂2V5

∂Ω2 − ∂P4

∂Ω
= 2ReΩ

∂V3

∂ξ
− ReΩ2 ∂V2

∂ξ
− c

∂V4

∂ξ
+ U2

∂V2

∂ξ

+ V2
∂V2

∂Ω
− Θ3

Pr
, (6.38b)

∂2Θ5

∂ξ2 + ∂3Θ5

∂Ω2 = 2RePrΩ
∂Θ3

∂ξ
− RePrΩ2 ∂Θ2

∂ξ
− cPr

∂Θ4

∂ξ

+ Pr
[

U2
∂Θ2

∂ξ
+ U3

∂Θ1

∂ξ
+ V2

∂Θ2

∂Ω
+ V3

∂Θ1

∂Ω

]

− 1
2

PrRap,Le−Ω [U4 sin ξ + V4 cos ξ ], (6.38c)

U5(−1) = V5(−1) = 0, Θ5(−1) = 0, ∂P4/∂ξ |m = 0. (6.38d–f )

The above system still provides only a periodic velocity field, and does not contribute to the
next-order aperiodic velocity. Hence it is necessary to analyse the ξ -momentum equation
in the O(α−6) system, i.e.

∂2U6

∂ξ2 + ∂2U6

∂Ω2 − ∂P5

∂ξ
= 2ReΩ

∂U4

∂ξ
− ReΩ2 ∂U3

∂ξ
+ 2ReV4 − 2ReΩV3 − c

∂U5

∂ξ

+ U2
∂U3

∂ξ
+ U3

∂U2

∂ξ
+ V2

∂U3

∂Ω
+ V3

∂U2

∂Ω
. (6.39a)

U6(−1) = 0, ∂P5/∂ξ |m = 0. (6.39b,c)

The last four terms of the right-hand side of (6.39a) are aperiodic, and the aperiodic part
of the solution U6,aper can easily be determined as

U6,aper = B3Ω −
cRa2

p,L(1 + Pr)

4096Pr2

[
1 − 1

3
(3 + 6Ω + 6Ω2 + 4Ω3 + 2Ω4)e−2Ω

]
.

(6.40)
The constant B3 needs to be determined by matching with the outer solution.
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The above aperiodic solution does not capture the effect of Re, hence we consider the
ξ -momentum equation in the O(α−7) system,

∂2U7

∂ξ2 + ∂2U7

∂Ω2 − ∂P6

∂ξ
= 2ReΩ

∂U5

∂ξ
− ReΩ2 ∂U4

∂ξ
+ 2ReV5 − 2ReΩV4 − c

∂U6

∂ξ

+ U2
∂U4

∂ξ
+ U3

∂U3

∂ξ
+ U4

∂U2

∂ξ
+ V2

∂U4

∂Ω

+ V3
∂U3

∂Ω
+ V4

∂U2

∂Ω
. (6.41a)

U7(−1) = 0, ∂P5/∂ξ |m = 0. (6.41b,c)

Since the outer solution is invariant in x, we assume the outer solution as

uouter(x, y) = α−6Û6 + α−7Û7 + O(α−8), vouter(x, y) = 0,

θouter(x, y) = α−3Θ̂3 + O(α−4).

}
(6.42a–c)

Substitution of (6.42) into the field equations leads to

∂2Û6

∂y2 = 0,
∂2Û7

∂y2 = 0,
∂2Θ̂3

∂y2 = 0, (6.43a–c)

whose solutions have the form

Û6( y) = Â6( y − 1), Û7( y) = Â7( y − 1), Θ̂3( y) = Â3( y − 1). (6.43d–f )

Constants Â3, Â6 and Â7 are determined from the matching with the inner solution, and
the matching process provides

uouter =
Ra2

p,L

32 768Pr2 ( y − 1)[4c(1 + Pr)α−6 − Re(27 + 22Pr)α−7] + O(α−8). (6.44)

Therefore, the flow rate correction

Qc =
Ra2

p,Lα
−7

16 384Pr2 [−4c(1 + Pr)α + Re(27 + 22Pr)] + O(α−8), (6.45)

and this large α limit is shown in figure 11. The flow rate correction Qc is negative for a
wave with wave velocity c > Re(27 + 22Pr)/4α(1 + Pr).

7. Verification of flow stability

Having insight into the flow responses and the underlying flow mechanisms, we now
examine the stability of the flow in the parameter range considered in the analysis. The
formulation of the stability problem is given in § 4. If the flow undergoes a transition
to a secondary state, the prediction of the flow rate correction is invalid, and further
study, which is beyond the scope of this study, is required. Hence, here, we focused on
the onset conditions of a secondary state. We have tested the flow for three possible
instability modes: travelling two-dimensional wave (β = 0), transverse roll (δ = 0) and
oblique roll (β /= 0, δ /= 0). A sample stability result is shown in figure 16. The stability
properties strongly depend on the wave properties, i.e. wave velocity, wave number,
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(b)(a) (c)

Figure 16. Variations of the critical Rayleigh number Racr as functions of (a) α at Re = 1, (b) Re at α = 2
and (c) c at Re = 1 and α = 2. Solid, dashed and dotted lines correspond to the transverse roll, oblique roll and
travelling wave, respectively. In each plot, the minimum Racr is shown by horizontal dashed line.

amplitude and the flow Reynolds number. The results are presented using wave velocity,
wavenumber and Reynolds number as the main parameters and solving the linear stability
problem to determine the maximum wave amplitude, guaranteeing flow stability. It was
determined that the flow remains stable for the whole range of parameters of interest if the
wave amplitude Rap,L does not exceed 2000. We conclude that the flow rate predictions
presented in this paper are valid as the flow is stable.

8. Thermal wave applied at the upper wall

We briefly mention the situation when the thermal wave is switched from the lower to the
upper wall, i.e.

θU(t,X) = 1
2 RaP,U cos[α(X − ct)], θL(t,X) = 0 (8.1a,b)

where the upper wave Rayleigh number RaP,U is an analogue of the (lower) wave Rayleigh
number defined previously. The mechanics of the flow are akin to that seen for the thermal
wave applied at the lower wall. Sample results are shown in figure 17. The similarity in the
flow patterns (compare figures 5 and 17) depending on whether the wave is applied at the
upper or lower wall is perhaps not surprising. Indeed, it is relatively simple to show that
the governing systems for the two problems are closely related. If we take the problem of
the wave at the lower wall with RaP,L = B and RaP,U = 0 and then make transformation
RaP,L → 0, RaP,U → B, u → −U, v → −V , p → P, θ → −Θ , x → −X + π, y → −Y ,
we find that the underlying equations are unchanged but the thermal boundary conditions
are reversed in sign. Given this relationship between the two cases, there is no need to dwell
further on the case of the wave applied at the upper wall, as all the interesting properties
can be inferred directly from the results of the computations when the wave is applied at
the lower wall.

9. Summary

The effect of thermal waves on the pressure-gradient-driven flow in a channel has been
studied. The isothermal flow is characterized by the Reynolds number Re, and the thermal
wave is characterized by its velocity c, wavenumber α and amplitude expressed in terms of
the relevant Rayleigh number Rap,L. The waves can travel along or against the flow, thus
forming cocurrent waves and countercurrent waves, respectively. The analysis assumes
that the pressure gradients for the isothermal and thermal-wave modulated flows remain
the same, and the effect of thermal waves is measured using the flow rate change. The
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Figure 17. Flow topology (line) and temperature (filled colour) field at Rap,U=1000, with (a) c = 1, (b) c = 10,
(c) c = −1, (d) c = −10 for Re = 1, α = 2, Pr = 0.71. The grey dashed lines show the meandering flow
stream. Arrows show the stream flow direction.

increase in this flow rate demonstrates flow resistance reduction, while the decrease
demonstrates a resistance increase. It is shown that all countercurrent waves and cocurrent
waves with velocities smaller than the critical velocity reduce flow resistance at all
Reynolds numbers Re and all wavenumbers α. Waves with velocity −10 < c < −1, and
wavenumbers in the range 1 < α < 3 produce the largest reduction in resistance. An
increase of Re beyond Re ≈ 20 eliminates this effect for all practical purposes, and the flow
behaves as an isothermal flow regardless of whether the wave is present. An increase in
the wave amplitude decreases resistance proportionally to the second power of the relevant
Rayleigh number for Rap,L <∼ 2000 when saturation effects slow down this growth.

Analysis of the mechanism governing the flow response shows that waves with velocities
smaller than the critical velocity produce positive Reynolds stresses, which are responsible
for the resistance reduction. However, faster waves create negative Reynolds stresses,
which cause the resistance to increase. It is shown that the flow response is the same
regardless of whether the wave is applied at the upper or lower walls. It is also shown that
the modified flow is stable for the range of wave amplitudes being of interest in the study,
i.e. for Rap,L <∼ 2000.
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Appendix A. Coefficients of the liner stability

The coefficients of the liner stability are

A(m) = D2 − k2
m − i(tm(Reu0 − c)− σ), (A1)

B(m) = (D2 − t2m)
2 − i(tm(Reu0 − c)− σ)(D2 − t2m)+ itmReD2u0, (A2)

C(m) = D2 − k2
m − iPr(tm(Reu0 − c)− σ), (A3)

H(m−n)
ζ = itmu(n)1 + k−2

m−n(β
2 + tm−ntm)v

(n)
1 D,

H(m−n)
v = −βDu(n)1 + inαβk−2

m−nv
(n)
1 D2,

⎫⎬
⎭ (A4a,b)
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L(m−n)
ζ = nαβk−2

m−n[2tm−nu(n)1 D + (tm + tm−n)Du(n)1 − ik2
mv

(n)
1 − iv(n)1 D2], (A5a)

L(m−n)
v = k−2

m−n[inα(β2 − tmtm−n)Du(n)1 D + k2
m(β

2 + tm−ntm−2n)v
(n)
1 D]

+ k−2
m−n[i(−k2

m−ntm + 2nαβ2)u(n)1 D2 + (nαtm − k2
m)v

(n)
1 D3]

− ik2
mtm−2nu(n)1 + itmD2u(n)1 , (A5b)

Jζ = −inαβk−2
m−nθ

(n)
1 , Jv = −nαk−2

m−ntm−nθ
(n)
1 D + Dθ(n)1 ,

Jθ = −itm−nu(n)1 + v
(n)
1 D,

}
(A6a–c)

Dn = dn/dyn, tm = δ + mα, k2
m = t2m + β2. (A7a–c)

Appendix B. Fast waves (c → ∞) solution

A high-velocity wave produces thin velocity and temperature boundary layers adjacent to
the lower wall. Decomposition of the temperature field into two parts: θ0 associated with
the conduction state that occurs before the onset of the convection, and θ1 associated with
the convective modifications, such that θ = θ0 + θ1, facilitates to simplify the conduction
solution at c → ∞ as θ0 = (Rap,L/4) exp(−A(1 + y)) exp(iA(1 + y)) exp(iαx)+ c.c.,
with A = √

αcPr/2. The term exp(−A(1 + y)) produces an exponential decay of
temperature amplitude with the increase of y and the term exp(iA(1 + y)) produces a
sinusoidal temperature variation with y.

We introduce a stretched scale η = √
c(1 + y) in the vertical direction, and denote the

inner solution as expansions of the form

[uinner, vinner, θinner] =
8∑

n=2

c−n/2[Un(x, η),Vn(x, η),Θn(x, η)] + O(c−9/2), (B1a)

[ pinner] =
7∑

n=1

c−n/2Pn(x, η)+ O(c−4). (B1b)

Substitution of (B1) into the field equations (3.1) and separation of terms of equal orders
of magnitude yields the following equations with non-zero solutions:

O(c−1) :
∂P1

∂η
= θ0

Pr
(B2)

which dictates that the thermal wave generates a periodic pressure field P1;

O(c−3/2) :
∂2U3

∂η2 + ∂U3

∂x
= ∂P1

∂x
,

∂2Θ3

∂η2 + Pr
∂Θ3

∂x
= 2ηRePr

∂θ0

∂x
(B3a,b)

which shows that P1 produces a periodic horizontal-velocity U3, and the interaction of the
external flow and the imposed wave generates a temperature correction Θ3;

O(c−2) :
∂U3

∂x
+ ∂V4

∂η
= 0,

∂P3

∂η
= ∂2V4

∂η2 + ∂V4

∂x
,

∂2Θ4

∂η2 + Pr
∂Θ4

∂x
= −η2RePr

∂θ0

∂x
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B4a–c)

997 A12-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.696


On the reduction of flow rate losses using thermal waves

which shows that conservation of mass produces a periodic vertical velocity V4 which then
produces a periodic pressure P3. The interaction of the external flow and the imposed wave
generates another temperature correction Θ4. Further analysis shows that

O(c−5/2) :
∂2U5

∂η2 + ∂U5

∂x
= ∂P3

∂x
− ∂2U3

∂x2 ,
∂P4

∂η
= Θ3

Pr
,

∂2Θ5

∂η2 + Pr
∂Θ5

∂x
= PrU3

∂θ0

∂x
+ PrV4

∂θ0

∂η
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B5a–c)

with the resulting U5 being periodic but Θ5 becoming aperiodic and the Θ3 generating a
periodic pressure P4. Analysis in the next step shows that

O(c−3) :
∂2U6

∂η2 + ∂U6

∂x
= ∂P4

∂x
+ 2ηRe

∂U3

∂x
+ 2ReV4,

∂U5

∂x
+ ∂V6

∂η
= 0, (B6a,b)

∂P5

∂η
= ∂2V6

∂η2 + ∂V6

∂x
+ ∂2V4

∂x2 + Θ4

Pr
,

∂2Θ6

∂η2 + Pr
∂Θ6

∂x
= 2ηRePr

∂Θ3

∂x
− ∂2Θ4

∂x2 ,

(B6c,d)

with the resulting U6, V6, P5 and Θ6 – all being periodic. In the next step

O(c−7/2) :
∂2U7

∂η2 + ∂U7

∂x
= ∂P5

∂x
− ∂2U5

∂x2 −η2Re
∂U3

∂x
− 2ηReV4,

∂U6

∂x
+ ∂V7

∂η
=0,

(B7a,b)

∂P6

∂η
= ∂2V7

∂η2 + ∂V7

∂x
− 2ηRe

∂V4

∂x
+ Θ5

Pr
, (B7c)

U5 and P5 generate the periodic velocity U7, the mass conservation produces periodic
velocity V7 and the interaction of external flow, V7, V4 and Θ5 produces periodic pressure
P6. Analysis in the next step shows that

O(c−4) :
∂2U8

∂η2 + ∂U8

∂x
= ∂P6

∂x
− ∂2U6

∂x2 + 2ηRe
∂U5

∂x
− η2Re

∂U4

∂x
+ 2ReV6 − 2ηReV5

+ U3
∂U3

∂x
+ V4

∂U3

∂η
, (B8)

with the resulting U8 being an aperiodic velocity, and the constants involved in evaluating
U8 being determined by matching with the outer solution (see § 6.2). Evaluation of the
flow rate correction yields

Qc = c−4
∫ 1

−1
U8 dy + O(c−9/2), (B9)

and the asymptote is shown in figure 9.
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Appendix C. Coefficients of the long-wavelength solution

The coefficients of the long-wavelength solution are

HΘ,01 = 1 − y, HU,11 = −A(1 + 20y − 5y2), A = −1 + y2; (C1a–c)

HΘ,11 = −10A(−3 + y), HΘ,12 = −A(25 − 7y − 5y2 + 3y3), (C2a,b)

HU,21 = A(−29 − 760y + 199y2 + 640y3 − 151y4 − 200y5 + 45y6), (C2c)

HU,22 = A(−63 − 6200y + 365y2 + 800y3 − 125y4 − 40y5 + 15y6), (C2d)

HU,23 = 4A(11 + 490y − 70y2 − 210y3 + 35y4), (C2e)

HU,24 = 5A(5 + 378y − 28y2 − 42y3 + 7y4), HV,21 = (−5 + y)A2; (C2f,g)

HΘ,20 = −3(−35 − 79y + 70y2 + 26y3 − 35y4 + 5y5),

HΘ,21 = −2A(25 200 − 8400y),

⎫⎬
⎭ (C3a,b)

HΘ,22 = A(7555 − 491y − 2945y2 + 489y3 + 905y4 − 225y5 − 75y6 + 35y7), (C3c)

HΘ,23 = 20A(−889 + 69y + 266y2 − 50y3 − 49y4 + 13y5), (C3d)

HΘ,24 = 140A(75 − 7y − 15y2 + 3y3), (C3e)

HΘ,25 = 2(140 − 128y + 35y2 + 47y3 − 35y4 + 5y5); (C3f )

HV,31 = 3A2(−145 + 29y + 90y2 − 18y3 − 25y4 + 5y5), (C4a)

HV,32 = A2(−4455 + 189y + 390y2 − 50y3 − 15y4 + 5y5), (C4b)

HV,33 = 12A2(105 − 11y − 35y2 + 5y3),

HV,34 = 60A2(91 − 5y − 7y2 + y3);

⎫⎬
⎭ (C4c,d)

HU,41 = −51B(1 + y)+ 3(1 + y)4(703 942 − 3 519 710y

+ 7 180 755y2 − 6 845 195y3 + 1 723 435y4 + 2 459 373y5

− 2 517 375y6 + 978 615y7 − 16 9125y8 + 10 725y9),

B = 5120,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C5a,b)

HU,42 = −2151B(1 + y)+ 15(1 + y)4(927 687 − 2 881 680y + 4 155 555y2

− 3 389 995y3 + 1 549 765y4 − 289 079y5 − 65 415y6 + 48 455y7

− 10 120y8 + 715y9), (C5c)

HU,43 = 429B(1 + y)+ 2145(1 + y)4(−2501 + 10 405y − 19 665y2 + 20 545y3

− 12 215y4 + 3927y5 − 595y6 + 35y7), (C5d)

HU,44 = 2431B(1 + y)+ 715(1 + y)4(−21 839 + 67 615y − 97 635y2 + 81 235y3

− 40 565y4 + 11 781y5 − 1785y6 + 105y7). (C5e)
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