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Compositio Math. 151 (2015), 1288–1308.

doi:10.1112/S0010437X1400791X

https://doi.org/10.1112/S0010437X1400791X Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X1400791X
https://doi.org/10.1112/S0010437X1400791X


Compositio Math. 151 (2015) 1288–1308

doi:10.1112/S0010437X1400791X

Spherical subgroups in simple algebraic groups

Friedrich Knop and Gerhard Röhrle
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Abstract

Let G be a simple algebraic group. A closed subgroup H of G is said to be spherical
if it has a dense orbit on the flag variety G/B of G. Reductive spherical subgroups
of simple Lie groups were classified by Krämer in 1979. In 1997, Brundan showed
that each example from Krämer’s list also gives rise to a spherical subgroup in the
corresponding simple algebraic group in any positive characteristic. Nevertheless, up
to now there has been no classification of all such instances in positive characteristic.
The goal of this paper is to complete this classification. It turns out that there is only
one additional instance (up to isogeny) in characteristic 2 which has no counterpart in
Krämer’s classification. As one of our key tools, we prove a general deformation result
for subgroup schemes that allows us to deduce the sphericality of subgroups in positive
characteristic from the same property for subgroups in characteristic zero.

1. Introduction

Let G be a simple algebraic group defined over an algebraically closed field k of characteristic
p > 0. A closed subgroup H of G is said to be spherical if it has a dense orbit on the flag variety
G/B of G. Alternatively, B acts on G/H with an open dense orbit. Accordingly, a G-variety
with this property is also referred to as spherical.

The purpose of this paper is to classify connected reductive spherical subgroups of simple
groups in arbitrary characteristic, thereby generalizing Krämer’s classification [Krä79] in
characteristic zero.

The class of reductive spherical subgroups is of particular importance. This is evident from the
fact that Krämer’s list permeates much of the theory of spherical varieties in characteristic zero.
In particular, this kind of subgroup provides many of the building blocks for arbitrary spherical
subgroups (see, e.g., [BP11]). We expect reductive spherical subgroups to play a similar role
for arbitrary p. In fact, the results of the present paper were already used in [Kno14] to list all
spherical subgroups of rank 1, which is crucial for the theory of general spherical varieties.

For p 6= 2, the class of reductive spherical subgroups includes all symmetric subgroups,
i.e. subgroups which are fixed points of an involutory automorphism of G (see, e.g, [Spr85]).
On the other hand, for p = 2 symmetric subgroups are not well behaved at all. Thus, reductive
spherical subgroups seem to be the correct replacement.

Note that the requirement of having an open orbit in G/B entails that H has only finitely
many orbits (see, e.g., [Kno95]). Therefore, our classification theorem can also be viewed as a
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Spherical subgroups in simple algebraic groups

contribution to the program of Seitz [Sei98] to classify all pairs of subgroups (X,Y ) of a reductive
group G such that there are only finitely many (X,Y )-double cosets in G (see also [Bru98] and
[Duc04]).

The most important previous work is the aforementioned paper [Krä79] by Krämer. Not only
do we use Krämer’s list as a guideline but, more importantly, it enters our computations crucially
even in positive characteristic. This is because we employ extensively the technique of reduction
mod p that was first used by Brundan in this context [Bru98] in that he showed that all items
from Krämer’s list descend to arbitrary positive characteristic. To this end, Brundan proved,
[Bru98, Theorem 4.3], that if H and G are defined over Z and an additional technical condition
holds, then H is spherical for any p > 0 if and only if H is spherical for p = 0. In Theorem 3.4
of the present paper, we remove the technical condition, making the reduction mod p technique
much more flexible to use. In particular, we barely ever need to check sphericality of a given
subgroup; instead, we just have to look it up in Krämer’s list.

Note that for the purpose of classifying spherical subgroups, we may replace G with an
isogenous group (using Lemma 2.7). Therefore, the simply connected Spin groups do not make
an appearance in Table 1, for instance, but rather their isogenous counterparts do.

We now describe our results in detail. The only surprise is that, up to isogeny, there is
only one case, namely in characteristic 2, which is genuinely unique to positive characteristic,
i.e. which has no counterpart in Krämer’s classification.

Theorem. Let G be a simple algebraic group and let H ⊂ G be a closed connected reductive
subgroup of G. Then H is spherical in G if and only if H is one of the groups in Table 1 (G
classical) or Table 2 (G exceptional).

Our classification is actually a bit more comprehensive, since we classify the connected
reductive spherical subgroups of all classical groups up to not only outer but even inner
automorphisms of G. Here, by a classical group we mean one of the groups SL(n) (n > 2), SO(n)
(n > 1) and Sp(n) (n > 2 even), which includes also the non-simple groups SO(2) and SO(4).
In positive characteristic, the latter group contains infinitely many ‘new’ spherical subgroups,
namely the images of ∆q where ∆q : SL(2) → GL(4) denotes the irreducible representation of
SL(2) of highest weight (q+ 1)ω1, with q = pm > 1. Since ∆q is self-dual, its image lies in SO(4).
We note that the images of ∆q are special cases of finite orbit modules involving Frobenius twists;
cf. [GLMS97, Lemma 2.6].

Note that the left columns of Tables 1 and 2 just reproduce Krämer’s results. The cases in
the right columns are new in the positive-characteristic setting. They are arranged in such a
way that each case on the right can be obtained from the corresponding one on the left by a
non-central isogeny of G. Thus, the only new case which has no counterpart in Krämer’s table is

H = G2×Sp(2) ⊂ Sp(6)× Sp(2) ⊂ G = Sp(8)

for p = 2. Of course, there is also G2×SO(3) ⊂ SO(9), which is isogenous to this case.
In Table 2, Ã1 and Ã2 refer to subgroups of G of types A1 and A2, respectively, whose root

systems consist only of short roots.

2. Preliminaries

2.1 Notation
Throughout, G is a simple algebraic group and B denotes a Borel subgroup of G. We denote the
rank of G by rkG. Let H be a closed subgroup of G. Then Ru(H) denotes the unipotent radical
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Table 1. Spherical pairs H ⊂ G with G classical.

Cases for all p > 0 Additional cases for p > 0

H G H G

SO(n)(1) SL(n) (n > 2)

S(GL(m)×GL(n)) SL(m+n) (m > n > 1)

SL(m)× SL(n) SL(m+n) (m > n > 1)

Sp(2n) SL(2n) (n > 2)

Gm · Sp(2n) SL(2n+ 1) (n > 1)

Sp(2n) SL(2n+ 1) (n > 1)

GL(n) Sp(2n) (n > 1)

Gm × Sp(2n− 2) Sp(2n) (n > 2)

Sp(m)×Sp(n) Sp(m+n) SO(m)×SO(n) SO(m+n−1) p = 2

m, n > 2 even m, n > 3 odd

G2×SO(3) SO(9) p = 2

GL(n)(2) SO(2n) (n > 2)

SL(n) SO(2n) (n > 3 odd)

Sp(4)⊗ Sp(2)(3)(4) SO(8)

Spin(7)(3)(5) SO(8)

G2 SO(8)

SO(2)× Spin(7) SO(10)

GL(n) SO(2n+ 1) (n > 2)

SO(m)×SO(n) SO(m+n) SO(2m)×Sp(2n) Sp(2m+2n) p = 2

m > n > 1 m > 1, n > 0

Spin(7) SO(9) Spin(7) Sp(8) p = 2

G2 SO(7) G2 Sp(6) p = 2

G2×Sp(2) Sp(8) p = 2

∆q SL(2)(3) SO(4) q > 1
(1) For p = 2 and n > 3 odd, there are two classes which are swapped by an outer automorphism

of G.

(2) For n even, there are two classes which are swapped by an outer automorphism of G.
(3) There are two conjugacy classes of H in G which are swapped by an outer automorphism of G.
(4) Using triality, H ⊂ G is equivalent to SO(5)× SO(3) ⊂ SO(8).
(5) Using triality, H ⊂ G is equivalent to SO(7) ⊂ SO(8).

of H. If G acts on the variety X, we denote the H-orbit of x in X by H · x and the stabilizer in
H by CH(x).

In what follows we label the Dynkin diagram of a simple group G according to the tables
in Bourbaki [Bou68], and ωi denotes the ith fundamental dominant weight of G with respect to
this labeling.

For a dominant weight χ of G, we denote by L(χ) the irreducible G-module of highest weight
χ and by H0(χ) the G-module of global sections of the G-line bundle L(kχ) on G/B afforded by
the weight χ, so that L(χ) = socGH

0(χ). Note that H0(χ) has the same character as the Weyl
module of highest weight χ; for details, see [Jan03, II.2].
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Table 2. Spherical pairs H ⊂ G with G exceptional.

Cases for all p > 0 Additional cases for p > 0

H G H G

A2 G2 Ã2 G2 p = 3

A1 × Ã1 G2

B4 F4 C4 F4 p = 2

C3 ×A1 F4 B3 × Ã1 F4 p = 2

C4 E6

F4 E6

D5 E6

Gm ·D5 E6

A5 ×A1 E6

Gm · E6 E7

A7 E7

D6 ×A1 E7

D8 E8

E7 ×A1 E8

By a classical group we mean one of the groups SL(n) (n > 2), SO(n) (n > 1) and Sp(n)
(n > 2 even). Here, SO(n) is the reduced, connected identity component of O(n), i.e. the kernel
of the determinant character det, unless p = 2 and n is even, in which case det has to be replaced
by the Dickson invariant.

2.2 Basic results for spherical subgroups
While elementary, one of our main tools for identifying spherical subgroups (apart from
Theorem 3.4 below) is the following necessary condition.

Lemma 2.1. Let H ⊆ G be spherical in G. Then

dimH > dimG/B = 1
2(dimG− rkG). (2.2)

Proof. By definition, B has an open orbit in G/H. Hence dimB > dimG/H, which is equivalent
to (2.2). 2

Below we use the following ‘transitivity’ property for spherical subgroups without further
comment.

Lemma 2.3. Let H1 ⊆ H2 ⊆ G be connected reductive subgroups of G. If H1 is spherical in G,
then H1 is spherical in H2 and H2 is spherical in G.

Proof. Suppose that H1 is spherical in G. Then H1 acts on G/B with a dense orbit, and so does
H2; thus H2 is spherical in G.

Let B2 ⊂H2 be a Borel subgroup ofH2. Then there is a Borel subgroup B ofG such that B2 =
H2 ∩ B; see, e.g., [BMR05, Corollary 2.5]. Consider the canonical embedding H2/B2 → G/B.
Thanks to the finiteness result for irreducible, spherical G-varieties in arbitrary characteristic
(see [Kno95, Corollary 2.6]), since H1 is spherical in G, H1 admits only a finite number of orbits
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in G/B. Thus there is only a finite number of H1-orbits in H2/B2 and, in particular, there is a
dense one. Consequently, H1 is spherical in H2. 2

The following compatibility property of sphericality for direct products is immediate from
the definition of a spherical subgroup and is used below without further reference.

Lemma 2.4. Let Hi ⊆ Gi be a reductive subgroup of Gi for i = 1, 2. Then H1 ×H2 is spherical
in G1 ×G2 if and only if Hi is spherical in Gi for both i = 1, 2.

Sometimes the following stronger bound on dimH is needed in place of the inequality (2.2).

Lemma 2.5. Let H ⊆ G be spherical and let B · x0 ∈ G/H be the open B-orbit in G/H. Then

dimH = dimG/B + dimCB(x0). (2.6)

Proof. This follows because dimB−dimCB(x0) = dimB ·x0 = dimG/H = dimG−dimH. 2

We also frequently use the following observation.

Lemma 2.7. Let G1 and G2 be connected reductive groups and ϕ : G1 → G2 an isogeny. Then
ϕ induces a bijection between the sets of (conjugacy classes of) connected (reductive) spherical
subgroups of G1 and G2.

Lemma 2.7 has several immediate consequences.

Remark 2.8. (i) The triality automorphism of Spin(8) acts on the conjugacy classes of connected
reductive spherical subgroups of SO(8) as well. This action is indicated in Table 1.

(ii) In characteristic p = 2, there is a bijective non-central isogeny SO(2n + 1) → Sp(2n).
Thus, if G is a classical group, we can (and will) safely assume that G is strictly classical in the
sense that G is not isomorphic to SO(2n+ 1), where n > 1 when p = 2. Equivalently, a classical
group is strictly classical if its natural representation is completely reducible.

3. Deformation of spherical subgroups

In this section, we prove that ‘sphericality’ is invariant under deformations. This enables us
to compare spherical subgroups in positive characteristic to those in characteristic zero. This
approach reduces most of the classification work to Krämer’s paper [Krä79].

For simplicity, we restrict ourselves to base schemes S which are of the form SpecA, where
A is a Dedekind domain,1 i.e. an integrally closed Noetherian domain of dimension 1.

In what follows, let G→ S be a split reductive group scheme (this entails connected geometric
fibers); see, e.g., [SGA3, Exp. I, 4.2]. Let T be a split maximal torus of G. Using [SGA3,
Exp. XXII, Corollaire 5.5.5(iii)], a Borel subgroup scheme B of G containing T has the form
BR+ , where R+ is a system of positive roots for G. Then, thanks to [SGA3, Exp. XXII,
Lemme 5.5.6(iii)], B is the semi-direct product B = T · U for a smooth subgroup scheme U ,
and Uk is a maximal connected unipotent subgroup in Gk for any A-algebra k which is a field.
Let Ξ be the character group of B. For an affine S-scheme X → S, let O(X ) be its ring of regular
functions.

We need the following extension property for invariants due to Seshadri [Ses77]. See
also [FvdK10] for a simplified approach.

1 Our main assertion is surely valid in greater generality, but due to technical difficulties stemming from the
construction of coset schemes in [Ana73] and closures of subgroup schemes in [BT84], we shall stick to Dedekind
rings.
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Lemma 3.1. Let X → S be an affine G-scheme and Y ⊆ X a closed G-invariant subscheme of
X . Then, for any G-invariant function f ∈ O(Y)G , there is an n > 1 such that fn extends to a
G-invariant function f on X .

Next, we prove that the extension property from Lemma 3.1 also holds for B-semi-invariants.

Lemma 3.2. Let X and Y be as in Lemma 3.1. Let f ∈ O(Y) be a B-semi-invariant function for
a character χ ∈ Ξ. Then there is an exponent n > 1 such that fn extends to a B-semi-invariant
function f ∈ O(X ) for the character nχ.

Proof. Let G//U be the basic affine space of G; it is the spectrum of
⊕

χ∈ΞH
0(χ). (Note that

H0(χ) is a free A-module, thanks to [Jan03, II 8.8].) Thus G//U is an affine scheme over S which
contains G/U as dense open subset. In particular, G//U contains an S-point e. The Ξ-grading of
O(G//U) induces an action of T = B/U which commutes with the G-action.

Consider the closed embedding X id×e−−−→ X ×S G//U . It is well known [FvdK10, proof of
Lemma 24] that restriction to X induces a T -equivariant isomorphism

O(X ×S G//U)G
∼−→ O(X )U .

Thus our assertion follows from Lemma 3.1 applied to Y ×S G//U ⊆ X ×S G//U and the fact that
T is linearly reductive. 2

Remark 3.3. If Y is actually defined over a prime field, say Q or Fp, then the exponent n in
Lemmas 3.1 and 3.2 can be chosen to be n = 1 and n ∈ pN, respectively.

Now we are in a position to prove our main deformation statement.

Theorem 3.4. Let H ⊆ G be a subgroup scheme which is flat over S. Assume that for some
geometric point x of S, the geometric fiber Hx is a spherical subgroup of Gx. Then all geometric
fibers of H are spherical.

Proof. Since S is the spectrum of a Dedekind ring, the closure H of H in G is also a flat closed
subgroup scheme; cf. [BT84, 1.2.6, 1.2.7, 2.1.6, 2.2.2]. Moreover, Hx is spherical in Gx if and only
if Hx is (since the former is open and hence of finite index in the latter). Thus, after replacing
H by H, we may assume that H is closed in G.

In that case, it is known that the homogeneous space X ′ := G/H exists as a scheme which is
flat and of finite type over S (see [Ana73]). Moreover, by Sumihiro ([Sum75]; see also [Tho87]),
this scheme is equivariantly quasiprojective over S. This means that there is a G-vector bundle
V over S and an equivariant embedding of X ′ in the projective space PS(V). Let X ′′ ⊆ PS(V) be
the closure of X ′. This is a scheme which is projective and flat over S. Moreover, each geometric
fiber X ′x = Gx/Hx is an open subset of the fiber X ′′x .

Now let X ⊆ AS(V) := SpecS•V be the affine cone of X ′′. The affine scheme X affords an
action of G̃ := G×S (Gm)S . Moreover, an irreducible subvariety of X ′′x is spherical as a Gx-variety
if and only if its affine cone in Xx is a spherical G̃x-variety. Thus, by replacing G with G̃ we may
assume that X ′ = G/H is an open dense subscheme of an affine scheme X .

Suppose that Xx has a spherical irreducible component. Let y ∈ S be a second geometric
point. We have to prove that every component of Xy is spherical as well. Let η be the generic
geometric point of S. We will show that Xη and, subsequently Xy, is spherical. This amounts to
assuming that either y = η or x = η.

Assume first that y = η. Let Y ⊆ Xx be a spherical irreducible component. This means that
somewhere on Y the dimension of the isotropy subgroup of B is as small as possible, namely
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dimBx − dimXx = dimB − dimX . By semi-continuity, this holds on a non-empty open subset
X 0 of X . Because then X 0 ∩Xη 6= ∅, we conclude that Xη is spherical (for this, observe that Xη
is irreducible since it contains an open dense Gη-orbit).

Finally, let x = η and suppose that some component Y of Xy is not spherical. Then, by
[Ros56], Y admits a non-constant rational By-invariant function f . Because Y is affine, this
function can be written as f = f1/f2, where f1, f2 ∈ O(Y ) are By-semi-invariants for the same
character χ ∈ Ξ. By Lemma 3.2, there is an n ∈ N such that fn1 and fn2 extend to B-semi-invariants
f1 and f2 for the same character nχ on all of X . Now, since X is integral, we obtain a B-invariant
rational function f = f1/f2 on X which is not a constant, i.e. a pull-back of a function on S.
Thus, in particular, the generic fiber Xx is not spherical, contrary to our assumption. 2

Upon applying Theorem 3.4 to S = SpecZ, we get the following result, which was previously
obtained by Brundan [Bru98, Theorem 4.3] using a representation-theoretic approach and which
is partially based on case-by-case considerations.

Corollary 3.5. Let HR ⊆ GR be a pair of compact Lie groups in Krämer’s list, i.e. with HR
spherical in GR. Then the complexification HC ⊆ GC has a Z-form HZ ⊆ GZ. Moreover, for any
field k, the induced pair Hk ⊆ Gk is spherical.

Proof. The first statement follows by inspection of Krämer’s list. The second follows from the
first together with Theorem 3.4 for S = SpecZ. 2

In the reverse direction, we recover a classification of Duckworth [Duc04, Theorem 2], which
can be formulated as follows.

Corollary 3.6. Assume that p 6= 2 if G is of type Bn, Cn or F4 and that p 6= 3 if G is of
type G2. Then the classification of pairs (G,H), where G is a simple group and H is a spherical
subgroup of G with rkH = rkG, is independent of p.

Proof. Under the given restrictions, H corresponds to an additively closed subroot system.
Therefore it lifts to characteristic zero. Then apply Theorem 3.4 for S = SpecZ. 2

4. Special cases of spherical subgroups

For an arbitrary G-variety X, let Ξ(X) be the group of characters of B-semi-invariant rational
functions on X. We define the rank of X to be the Z-rank of Ξ(X). Let S0 be the set of simple
roots α such that the coroot α∨ is orthogonal to Ξ(X). Then, attached to S0 is a parabolic
subgroup P = P (X) of G such that Ξ(X) ⊆ Ξ(P ), where Ξ(P ) is the character group of P . We
define the subgroup P0 of P by P0 = {y ∈ P | χ(y) = 1 for all χ ∈ Ξ(X)}.

Theorem 4.1. Let X be a quasiaffine G-variety. Let P = P (X) as above. Then there is a P -
invariant dense open subset X0 of X such that CP (x)Ru(P ) = P0 and CP (x)∩Ru(P ) is finite for
all x ∈ X0. In particular, CP (x) is a reductive group which is isogenous to a Levi subgroup of P0.

Proof. According to [Kno93, Satz 2.10], there is a parabolic subgroup P of G and a P -stable
dense open subset X0 ⊆ X such that:

(i) the action of Ru(P ) on X0 is proper;

(ii) the orbit space Y := X0/Ru(P ) exists;

(iii) if P1 is the kernel of the P -action on Y , then P/P1 is a torus;

(vi) the action of P/P1 on Y is free.

1294

https://doi.org/10.1112/S0010437X1400791X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1400791X


Spherical subgroups in simple algebraic groups

Let π : X0 → Y be the quotient map and let x ∈ X0. Then CP (x) ∩ Ru(P ) is finite by (i). We
have CP (x)Ru(P ) ⊆ CP (y) with y = π(x). Moreover, for z ∈ CP (y) there is u ∈ Ru(P ) with
zx = ux. Thus CP (x)Ru(P ) = CP (y). Finally, CP (y) = P0 by (iv).

It remains to show that P = P (X) and P1 = P0, as defined above. For this we use the fact
that X0 is constructed as the non-vanishing set of a B-semi-invariant section σ of a sufficiently
high power Ln of any ample line bundle on X. Since X is quasiaffine, we can take L = OX .
Moreover, P is the stabilizer of the line kσ. Since σ is a regular function on X, the G-module
M := 〈Gσ〉k generated by σ is finite-dimensional, and σ is a highest weight vector in M with
weight denoted by χ. This implies that P is the parabolic subgroup attached to the set S1 of
simple roots α with 〈χ, α∨〉 = 0. From the construction it is easy to see that χ can be chosen
such that S1 = S0. This shows that indeed P = P (X). Finally, observe that Ξ(X) = Ξ(Y ). Thus
properties (iii) and (iv) ensure that P1 is the common kernel of all χ ∈ Ξ(X), i.e. P1 = P0. 2

Lemma 4.2. Let X = SO(n)/SO(n − m) or X = Sp(2n)/ Sp(2n − 2m) with 2m 6 n. Then
Ξ(X) ⊆ 〈ω1, . . . , ω2m〉Z.

Proof. For X = SO(n)/ SO(n −m) or X = Sp(2n)/Sp(2n − 2m) with 2m 6 n, let G = SO(n)
and H = SO(n−m) or G = Sp(2n) and H = Sp(2n− 2m), respectively. Write X = G/H. First,
observe that X lifts to characteristic zero, thanks to Corollary 3.5. Since the character group
Ξ(X) is the same in characteristic zero and in positive characteristic p (after inversion of p), we
may assume from the outset that char k = 0.

Since X is affine, every rational B-semi-invariant is the ratio of two regular ones. Moreover,
a regular B-semi-invariant with character χ corresponds to a non-zero H-fixed vector in the
dual irreducible H-module L(χ)∗. Now it follows readily from classical branching laws (see, e.g.,
[GW09, ch. 8]) that χ is a linear combination of the first 2m fundamental weights. 2

Lemma 4.3. (i) Let H ⊂ SO(m) be a proper, reductive subgroup of SO(m) such that the group
H × SO(n−m) is spherical in SO(n). Then 2m > n.

(ii) Let H ⊆ Sp(2m) be a reductive subgroup such that H × Sp(2n − 2m) is spherical in
Sp(2n). Assume that 2m 6 n. Then dimH > dim SO(2m) = m(2m− 1).

Proof. (i) Suppose that H̃ := H × SO(n−m) is spherical in SO(n) and 2m 6 n. Let x0 ∈ G/H̃
be in the open B-orbit in G/H̃. Then, by (2.6), we have

dim H̃ = dimG/B + dimCB(x0).

By Theorem 4.1 and Lemma 4.2, the generic isotropy group of B on SO(n)/SO(n−m) contains
a subgroup which is isogenous to a Borel subgroup, say B2, of SO(n − 2m). Thus Lemma 2.5
implies dimCB(x0) > dimB2. To keep the dependence on the parity of n to a minimum, observe
that dim SO(n) = 1

2n(n−1) and rk SO(n)− rk SO(n−2m) = m for all n and m. Hence we arrive
at the following contradiction:

dimH > 1
2(dim SO(n)− rk SO(n)) + 1

2(dim SO(n− 2m) + rk SO(n− 2m))− dim SO(n−m)

= 1
2m(m− 1) = dim SO(m).

For (ii) we argue in the same way and get

dimH > n2 + (n− 2m)(n− 2m+ 1)− (n−m)(2n− 2m+ 1) = m(2m− 1). 2

Corollary 4.4. Let p = 2 and n > 5. Then H = Spin(7)× Sp(2n− 8) ⊂ Sp(8)× Sp(2n− 8) is
not spherical in G = Sp(2n).
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Proof. For n = 5, 6 and 7, the result follows from (2.2). Now let n > 8. Noting that 21 =
dim Spin(7) < dim SO(8) = 28, it follows from Lemma 4.3(ii) that H is not spherical. 2

Proposition 4.5. Let p = 2 and n > 4. Then H := G2×Sp(2n − 6) ⊂ Sp(6) × Sp(2n − 6) is
spherical in G = Sp(2n) if and only if n = 4. In that case, Ξ(G/H) = 〈ω1 + ω4, ω2, ω3〉Z.

Proof. For n = 5, the result follows from (2.2). Let n > 6. Since dim G2 = 14 < dim SO(6) = 15,
the assertion follows from Lemma 4.3(ii).

It remains to check that H is spherical if n = 4. Let H̃ := Sp(6)×Sp(2) and write H̃0(χ) for
the corresponding H̃-module and L̃(χ) for the simple H̃-module of highest weight χ.

We first show that A := {ω1 + ω4, ω2, ω3} ⊆ Ξ(G/H), which is equivalent to the G-modules
H0(χ) with χ ∈ A having an H-fixed vector.

For χ = ω2 this follows from the fact that even H̃ has a fixed vector. Moreover, it is known
that G2 fixes a vector in the H̃-module H̃0(ω3), which in turn is contained in H0(ω3).

For χ = ω1 + ω4, it suffices to show that the irreducible G-module L(χ) ⊂ H0(χ) contains
the H̃-module H̃0(ω3). Using the known characters of Weyl modules and the dimensions of
the irreducible modules in [Lüb01], one easily computes that, as an H̃-module, L(χ) has the
composition factors L̃(ω1 + ω2 + ω′1), L̃(2ω3 + 2ω′1) and L̃(ω3), the first two occurring with
multiplicity one and the third with multiplicity two. Since L(χ) is self-dual, (at least) one of the
two copies of L̃(ω3) has to appear in the socle. This concludes the proof that H0(ω1+ω4)H 6= {0}.

Since there is no simple coroot which is orthogonal to all the weights in A, we infer from
Theorem 4.1 that the connected B-isotropy group of a generic point x ∈ G/H is a torus of
dimension at most 1. Thus dimB · x > 19, whereas dimG/H = 36 − 14 − 3 = 19. This shows
that G/H is spherical of rank 3. In particular, Ξ(G/H) is spanned by A, as claimed. 2

5. Irreducible spherical subgroups of classical groups

Let G be a classical group with natural representation V . A subgroup H ⊆ G is said to be
irreducible if V is irreducible as an H-module; otherwise, H is said to be reducible. Clearly,
irreducible subgroups only exist if G itself is irreducible, i.e. strictly classical and not equal to
SO(2). It is well known that connected irreducible subgroups are necessarily semi-simple.

In preparation for determining the non-simple irreducible spherical subgroups, we consider
some very special cases.

Lemma 5.1. Of the following pairs H ⊂ G,

SL(m)⊗ SL(n) ⊂ SL(mn), m > n > 2,

SO(m)⊗ SO(n) ⊂ SO(mn), m > n > 2, m and n even if p = 2,

Sp(m)⊗ Sp(n) ⊆ SO(mn), m > n > 2, m and n even,

Sp(m)⊗ SO(n) ⊂ Sp(mn), m, n > 2, m even, n even if p = 2,

only the following are spherical:

SL(2)⊗ SL(2) ⊂ SL(4),

SO(2)⊗ SO(2) ⊂ SO(4),

Sp(2)⊗ Sp(2) = SO(4),

Sp(4)⊗ Sp(2) ⊂ SO(8),

Sp(2)⊗ SO(2) ⊂ Sp(4).
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Proof. There are two possible proofs. First, observe that all subgroups lift to characteristic zero.

Hence, the assertion follows (apart from the trivial case G = SO(4)) from Corollary 3.5 and

Krämer’s classification [Krä79]. The second proof consists in directly using the inequality (2.2),

which is easy and left to the reader. 2

Next, we determine the irreducible, spherical subgroups which are not simple.

Lemma 5.2. Let G be a classical group and H ⊂ G a proper, connected, irreducible, spherical

subgroup which is not simple. Then the pair H ⊂ G is one of the following:

SO(4) ⊂ SL(4),

Sp(4)⊗ Sp(2) ⊂ SO(8),

SO(4) ⊂ Sp(4) (if p = 2).

Proof. By assumption, there are decompositions H = H1 ·H2 and V = V1 ⊗ V2, where Vi is an

irreducible Hi-module. For G = SL(n), Lemma 5.1 shows that H1, H2 ⊆ SL(2), which implies

that H1 = H2 = SL(2), and hence H = SO(4).

Now let G = SO(V ) or G = Sp(V ), and assume first that p 6= 2. Since V = V1 ⊗ V2 is

self-dual, the same holds for the factors Vi. Thus, Hi is either symplectic or orthogonal. Since

H 6= G, we have G 6= SO(4). Therefore the only case to consider, according to Lemma 5.1,

is H1 × H2 ⊆ H̃ := Sp(4) × Sp(2) and G = SO(8). But in that case dimG/B = 12 while

dim H̃ = 13. This impliesH = H̃, since a semi-simple group does not contain a reductive subgroup

of codimension 1.

Now assume that p = 2 and that V is self-dual. Then each factor Vi is still self-dual, and we

claim that it is even symplectic. To show this, let β : Vi × Vi → k be a non-zero Hi-invariant

pairing. Schur’s lemma implies that β is unique up to a scalar. It is symmetric, since otherwise

β′(u, v) = β(u, v) + β(v, u) is non-zero and symmetric. But then `(v) :=
√
β(v, v) is an Hi-

invariant linear form. The irreducibility of Vi implies ` = 0. Thus β(v, v) ≡ 0, proving the

claim.

Consequently, we have

H ⊆ Sp(V1)⊗ Sp(V2) ⊆ SO(V ) ⊂ Sp(V ).

According to Lemma 5.1, we are left with the following cases. If G = SO(V ), then H = Sp(4)⊗
Sp(2) as before. If G = Sp(V ), then H is spherical in SO(V ) as well. Thus, either H = SO(4) ⊂
G = Sp(4) (which is spherical) or H = Sp(4) ⊗ Sp(2) ⊂ G = Sp(8) (which is not spherical by

(2.2), because dimG/B = 16 and dimH = 13). 2

To determine all simple irreducible spherical subgroups, we need the following estimate

to bound the dimension of a simple H-module. The proof of the result follows easily by

inspection.

Lemma 5.3. Let H be a simple group with Weyl group WH , and let ω be a fundamental dominant

weight of H with

|WH · ω| 6 2
√

dimH + 1/4 + 1.

Then the pair (H,ω) appears in Table (5.4).
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H ω

A1 ω1

A2 ω1, ω2

A3 ω1, ω2, ω3

A4 ω1, ω2, ω3, ω4

An, n > 5 ω1, ωn
B3 ω1, ω3

Bn, n > 4 ω1

H ω

C2 ω1, ω2

C3 ω1, ω3

Cn, n > 4 ω1

D4 ω1, ω3, ω4

Dn, n > 5 ω1

G2 ω1, ω2

(5.4)

Now we determine the simple, irreducible, spherical subgroups H of a classical group G.

Lemma 5.5. Let G be a classical group and H ⊂ G a proper, connected, irreducible, spherical
subgroup. Then, up to conjugacy in G, the pair (G,H) appears in Table (5.6).

H Weight G Conditions on p

SO(n)(1) ω1 SL(n) n > 3 p 6= 2 for n odd

Sp(2n) ω1 SL(2n) n > 2

G2 ω1 SO(7) p 6= 2

∆q SL(2)(2) (q + 1)ω1 SO(4) q = pm > 1

Spin(7)(2) ω3 SO(8)

Sp(4)⊗ Sp(2)(2) ω1 + ω′1 SO(8)

SO(2n) ω1 Sp(2n) n > 2 p = 2

G2 ω1 Sp(6) p = 2

Spin(7)(1) ω3 Sp(8) p = 2
(1) Not maximal for p = 2.
(2) There are two conjugacy classes.

(5.6)

Proof. In view of Lemma 5.2, we may assume that H is simple. Let ω be the highest weight
of H in the defining representation V of G. If p > 0, recall that ω is said to be p-restricted if
〈ω, α∨〉 < p for all simple roots α of H. In any case, there is a unique expansion

ω =
m∑
i=0

piω(i) with ω(m) 6= 0,

where each ω(i) is p-restricted. We may assume that ω(0) 6= 0 as well, since otherwise H → G
factors through a Frobenius morphism. Steinberg’s tensor product theorem asserts that

V = V0 ⊗ · · · ⊗ Vm,
where Vi is simple with highest weight piω(i). If m > 1, then the embedding H → G factors
through one of the subgroups in Lemma 5.1. It follows easily that G = SO(4) and H = ∆q SL(2)
for q = pm > 1.

Thus, we may assume from now on that ω = ω(0) is p-restricted. The inequality (2.2) implies
the following upper bounds on dimV :

dimV 6



√
2
√

dimH + 1/8 + 1
2 if G = SL(n),

2
√

dimH + 1 if G = SO(2n+ 1),

2
√

dimH + 1/4 + 1 if G = SO(2n),

2
√

dimH if G = Sp(2n).

(5.7)
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Thus,

dimV 6 2
√

dimH + 1/4 + 1

in all cases. Now we use the trivial dimension estimate dimV > |WH · ω| to conclude that H is
one of the groups in Table (5.4) and ω is a linear combination of the fundamental weights in the
right column of that table.

Assume first that ω is not a fundamental weight. Then we claim that the inequalities in (5.7)
leave only two cases to consider, namely (H,ω) = (A1, 2ω1) and (H,ω) = (A1, 3ω1).

For groups of small rank (rkH 6 4 will do), this can be checked using the tables of
Lübeck [Lüb01]. So let rkH > 5 and suppose that ω is not a multiple of a fundamental weight.
Then, according to Lemma 5.3, H = An and ω = aω1 + bωn with a, b > 1. In that case, it is
readily checked that the Weyl group orbit of ω is too big.

Next, we consider the case where ω = aω1 with 2 6 a < p. Then

ω′ := ω − α1 = (a− 2)ω1 + bω2

is also a weight of V , where b = −〈α1, α
∨
2 〉 > 0. But ω2 does not occur in Table (5.4), excluding

this possibility. This finishes the proof of the claim.
Finally, it remains to check whether the representations of H with highest weight ω define

a proper spherical subgroup of a classical group where ω is one of the fundamental weights
of Lemma 5.3 or one of the exceptional cases (A1, 2ω1) or (A2, 3ω1). To make it easier, some
remarks are in order: first, it clearly suffices to check the ω up to an automorphism of H. Second,
the representations (C2, ω2) for p = 2, (C3, ω3) for p = 2 and (G2, ω2) for p = 3 factor through
(C2, ω1), (B3, ω3) and (G2, ω1), respectively, and therefore they can be omitted. The result is
summarized in the following table.

H Weight G = SL G = SO G = Sp

An−1 (n > 2) ω1 = − −
Bn (n > 3, p 6= 2) ω1 SO(2n+1) ⊂ SL(2n+1) = −
Cn (n > 2) ω1 Sp(2n) ⊂ SL(2n) − =

Dn (n > 4) ω1 SO(2n) ⊂ SL(2n) = SO(2n) ⊂
p=2

Sp(2n)

A1 (p 6= 2) 2ω1 SO(3) ⊂ SL(3) = −
A1 (p 6= 2, 3) 3ω1 × − ×
A3 ω2 SO(6) ⊂ SL(6) = SO(6) ⊂

p=2
Sp(6)

A4 ω2 × − −
B3 ω3 × Spin(7) ⊂ SO(8) Spin(7) ⊂

p=2
Sp(8)

C2 (p 6= 2) ω2 SO(5) ⊂ SL(5) = −
C3 (p 6= 2) ω3 × − ×
G2 ω1 × G2 ⊂

p 6=2
SO(7) G2 ⊂

p=2
Sp(6)

G2 (p 6= 3) ω2 × × ×

Here the notation is as follows: ‘−’ means that H is not a subgroup of G; ‘=’ means
that H equals G; and ‘×’ means that H is not spherical in G in all cases, because (2.2) is
violated. 2
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6. G-completely reducible, spherical subgroups of classical groups

Following [Ser05], we say that a subgroup H of a reductive group G is G-completely reducible
if whenever H is contained in a parabolic subgroup P of G, it is contained in a Levi subgroup
of P . Thanks to [Ser05, Proposition 4.1], a G-completely reducible subgroup of G is reductive.

Suppose that G is classical with natural module V . Note that for G = SL(V ), a
subgroup H of G is G-completely reducible if and only if V is semi-simple as an H-module
[Ser05, Exemples 3.2.2(a)]. If p 6= 2, then this also holds for G = SO(V ) or Sp(V ); see
[Ser05, Exemples 3.2.2(b)]. However, if p = 2, these two notions differ, and for G = SO(V ) or
Sp(V ) both implications may fail. For example, if p = 2, then H = SO(2n− 1) is G-completely
reducible in G = SO(2n) (in fact, H is not contained in any proper parabolic subgroup) but V is
not a semi-simple H-module for n > 2. See [BMR05, Example 3.45] for an example of a simple
subgroup of Sp(V ) which is semi-simple on V but not G-completely reducible when p = 2.

In the following, we always assume that G is strictly classical, i.e. we exclude the case of
G = SO(n) when p = 2 and n is odd.

Lemma 6.1. Let G be a strictly classical group and let H ⊂ G be maximal among connected
spherical, G-completely reducible subgroups. Then H is contained in the following table.

H G
S(GL(m)×GL(n)) SL(m+ n) m > n > 1

GL(n) SO(2n) n > 1

GL(n) Sp(2n) n > 1 p 6= 2

Sp(2m)× Sp(2n) Sp(2m+ 2n) m > n > 1

SO(m)× SO(n) SO(m+ n) m > n > 1 p 6= 2

SO(2m)× SO(2n) SO(2m+ 2n) m > n > 1 p = 2

SO(2n− 1) SO(2n) n > 2 p = 2

(6.2)

Proof. Let ω be the defining symplectic form of Sp(2n) and let q be the defining quadratic form
of SO(n).

Choose a non-zero H-invariant subspace U ⊆ V of minimal dimension. If G = SL(n) or U
is isotropic, i.e. ω|U = 0 in the case G = Sp(2n) and q|U = 0 in the case G = SO(n), then
the stabilizer of U is a parabolic subgroup P of G. The G-complete reducibility of H implies
that H is contained in a Levi complement L of P . Since H is spherical, so is L by Lemma 2.3.
The maximality of H implies H = L. Since all Levi subgroups lift to characteristic zero, it is
easy to derive a list of spherical Levi subgroups from Krämer’s list (cf. [Bru98, Theorem 4.1]).
One checks that all of them are contained in the table except for GL(n) ⊂ SO(2n + 1) and
Gm × Sp(2n− 2) ⊂ Sp(2n), which are not maximal.

Now assume that U is anisotropic. Then, in particular, G 6= SL(V ).
If G= Sp(2n), then U∩U⊥ ( U , and therefore U∩U⊥ = 0 by the minimality of U . This means

that U is completely anisotropic and that H is contained in a conjugate of Sp(2m)×Sp(2n−2m).
The same reasoning works for p 6= 2 and G = SO(n).

So let G = SO(2n) and p = 2. Then the associated bilinear form

ωq(u, v) = q(u+ v)− q(u)− q(v)

is actually a symplectic form on V . Again, if U ∩ U⊥ωq = 0, then U is necessarily even-
dimensional and H ⊆ SO(2m) × SO(2n − 2m). But there is another possibility: U is isotropic
with respect to ωq but q|U 6= 0. Then ω|U = 0 implies q|U = `2, where ` is an H-invariant linear
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form on U . By minimality of U we have ker ` = 0 and therefore dimU = 1. Thus H is a subgroup
of SO(U⊥ωq ) ∼= SO(2n− 1). 2

Corollary 6.3. Let G be strictly classical and H ⊂ G a subgroup which is maximal among
connected spherical G-completely reducible proper subgroups. Then either:

(i) H is a maximal irreducible subgroup in Table (5.6); or

(ii) H is contained in Table (6.2).

In the final lemmas of this section, we classify all spherical G-completely reducible subgroups
of the classical groups.

Lemma 6.4. Let G = SL(n) with n > 2, and let H ⊂ G be spherical, G-completely reducible
and reducible. Then H is listed in Table 1.

Proof. The assumptions on H and Lemma 6.1 imply that H ⊆ Gm · SL(m) · SL(n − m) for
1 6 m 6 n− 1. We consider first the case H = Gm ·H1 · SL(n−m) where H1 ⊂ SL(m). Then,
by induction on dimG, we may assume that H1 is contained in Table 1. One then checks that
H1 ⊂ SL(m) lifts to characteristic zero. Hence H is spherical if and only if it is in Krämer’s list.
This happens in a single case, namely H = Gm × Sp(n− 1) ⊂ SL(n) with n > 3 odd.

By symmetry, we do not need to consider subgroups of the form Gm · SL(m) ·H2. Also, no
subgroups of the form H = Gm ·H1 ·H2 with H1 ⊂ SL(m) and H2 ⊂ SL(n −m) are spherical.
Thus it remains to check H = Gm · SL(m) where the SL(m) factor is diagonally embedded into
SL(m) · SL(m) with n = 2m > 4. However, in that case H is not spherical, by (2.2).

Finally, assume that H = H ′ is semi-simple. Then Gm ·H ′ is one of the instances above. As
H ′ lifts, it is contained in Krämer’s table and thus covered by Corollary 3.5. The only cases of
that form are H = SL(m) · SL(n −m) ⊂ SL(n) with m 6= n −m and H = Sp(n − 1) ⊂ SL(n)
with n odd. 2

Lemma 6.5. Let G = Sp(2n) with n > 2, and let H ⊂ G be spherical, G-completely reducible
and reducible. Then H is listed in Table 1.

Proof. The assumptions on H and Lemma 6.1 imply that either H ⊆ GL(n) or H ⊆ Sp(2m)×
Sp(2n− 2m) for 0 < m < n.

In the first instance, the inequality (2.2) shows that H = GL(n). In the second case, we first
consider subgroups of the form H = H0 × Sp(2n− 2m) with H0 ⊂ Sp(2m). Then, by induction
on dimG, we may assume that H0 is contained in Table 1. Moreover, if H0 ⊂ Sp(2m) lifts to
characteristic zero, then H is spherical if and only if it is in Krämer’s list. One can check that
there is a single case of that form, namely H = Gm × Sp(2n− 2).

Next, we consider those H0 ⊂ Sp(2m) which do not lift. This means that p = 2 and we have
to deal with the following cases.

(i) H = SO(2l) · Sp(2m− 2l) · Sp(2n− 2m) with 1 6 l 6 m < n. Then H is contained in the
liftable subgroup Sp(2l) · Sp(2m− 2l) · Sp(2n− 2m), which is spherical if and only if one of the
factors is trivial. Thus, for H to be spherical, we need l = m. In that case, H is indeed spherical,
because then H ⊂ G is isogenous to the liftable subgroup SO(2m)·SO(2n−2m+1) ⊂ SO(2n+1).

(ii) H = Spin(7) · Sp(2n− 8) with n > 5 is never spherical, by Corollary 4.4.
(iii) H = G2 · Sp(2n− 6) with n > 4 is spherical only for n = 4, by Corollary 4.5.
(iv) H = G2 · Sp(2) · Sp(2n − 8) with n > 5 is never spherical, since it is contained in the

non-spherical subgroup Sp(6) · Sp(2) · Sp(2n− 8).
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Now we discuss groups of the form H = H1 · H2 ⊂ Sp(2m) · Sp(2n − 2m). It follows from

the discussion above that Hi is one of Gm ⊂ Sp(2) for p 6= 2, SO(2m) ⊂ Sp(2m) for p = 2, or

G2 ⊂ Sp(6) for p = 2. This leads to the following possibilities for H.

(i) p 6= 2 and H = Gm ·Gm ⊂ Sp(4), which is not spherical, by (2.2).

(ii) p = 2 and H = SO(2m) ·SO(2n−2m) with 1 6m < n, in which case H ⊂ G is isogenous

to the liftable and non-spherical subgroup SO(2m) · SO(2n− 2m) ⊂ SO(2n+ 1).

(iii) p = 2 and H = G2 · SO(2) ⊂ Sp(8), which is not spherical, by (2.2).

Finally, a general subgroup H is obtained from a group of the form H1 ·H2 by replacing one

or several isogenous factors with diagonal subgroups. This is only possible in the following cases.

(i) H ⊂ Sp(2m) · Sp(2m) ⊆ Sp(4m) with m > 1, in which case H is not spherical, by (2.2).

(ii) H ⊂ SO(4) · Sp(2) ⊂ Sp(6); again, H is not spherical, by (2.2).

This finishes the proof of the lemma. 2

Lemma 6.6. Let G = SO(n) where n > 2 (with n even if p = 2), and let H ⊂ G be spherical,

G-completely reducible and reducible. Then H is listed in Table 1.

Proof. Thanks to Lemma 6.1, either H ⊆ GL(m) ⊂ SO(n) for n = 2m > 2, or H ⊆ SO(m) ·
SO(n−m) ⊂ SO(n) where 1 6 m < n. For p = 2, we may assume in the latter case that either

both m and n are even or n is even and m = 1.

Assume first that H ⊆ GL(m) ⊂ SO(2m). Then the dimension estimate (2.2) implies that

the codimension of H in GL(n) is at most n. Thus, the codimension of H0 = (H ∩ SL(n))◦ in

SL(n) is also at most n. The list of maximal spherical subgroups of SL(n) (see Corollary 6.3)

shows that H0 = Gm ⊂ SL(2). Thus, the only instance is H = SO(2) · SO(2) ⊂ SO(4).

Now we treat the case where H ⊆ SO(m) · SO(n−m) for p 6= 2 or p = 2 and m,n are both

even. First, let H = H0 ·SO(n−m) ⊂ SO(n), where H0 ⊂ SO(m). By induction, we may assume

that H0 is contained in Table 1. If H0 is liftable, then sphericality can be checked with Krämer’s

table. It turns out that there is no instance of this type. On the other hand, there is only one

non-liftable case, namely H = ∆q SL(2) · SO(n − 4) ⊂ SO(n) with n > 5 and q = ps > 1. None

of these subgroups is spherical: use inequality (2.2) for n = 5, 6, 7 and Lemma 4.3 for n > 8.

The remaining case to consider is where H is obtained from SO(m) ·SO(n−m) by replacing

some isogenous factors with a diagonal subgroup. Then either H ⊂ SO(m) · SO(m) ⊂ SO(2m)

with m > 2 or H ⊂ SO(3) · SO(4) ⊂ SO(7). None of these subgroups can be spherical, by (2.2).

Now we treat the case where p = 2, n = 2d is even and m = 1, i.e. H ⊂ SO(2d−1) ⊂ SO(2d).

There is a bijective isogeny SO(2d− 1) → Sp(2d− 2), and all G-completely reducible, spherical

subgroups of Sp(2d− 2) are known, by Lemma 6.5. Thus we arrive at the following cases:

(i) H = GL(2d− 1) ⊂ SO(2d) lifts and is not spherical;

(ii) H = SO(2) · SO(2d− 3) ⊂ SO(2d) lifts and is not spherical;

(iii) H = SO(2l − 1) · SO(2d− 2l + 1) ⊂ SO(2d) lifts and is spherical for all 1 6 l 6 d;

(iv) H = SO(2l) · SO(2d− 2l − 1) ⊂ SO(2d) lifts and is not spherical;

(v) H = Spin(7) ⊂ SO(10) lifts and is not spherical;

(vi) H = G2 ⊂ SO(8) lifts and is spherical;

(vii) H = G2 ·SO(3) ⊂ SO(10) is not spherical, by (2.2).

This finishes the proof of the lemma. 2
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This concludes our classification of the spherical, G-completely reducible subgroups of strictly
classical groups.

7. G-completely reducible, spherical subgroups of exceptional groups

Throughout this section, let G be a simple group of exceptional type.

Lemma 7.1. Let G be a simple group of exceptional type and H ⊂ G a subgroup which is
maximal among proper, connected, G-completely reducible, spherical subgroups of G. Then one
of the following holds:

G = E6 and H ∈ {A1A5,Gm ·D5,F4,C4 (p 6= 2)},
G = E7 and H ∈ {A1D6,A7,Gm · E6},
G = E8 and H ∈ {A1E7,D8},
G = F4 and H ∈ {A1C3 (p 6= 2),B4,C4 (p = 2)},
G = G2 and H ∈ {A1Ã1,A2, Ã2 (p = 3)}.

Proof. Assume first that rkH = rkG. If p 6= 2 for G = F4 and p 6= 3 for G = G2, then H is
given by an additively closed subroot system. In particular, H lifts to characteristic zero and
the spherical cases can be read off Krämer’s list. Observe that H = A1C3 in G = F4 is no longer
maximal for p = 2, since it is contained in a subgroup of type C4.

Now suppose that G = F4 and p = 2 or G = G2 and p = 3, that rkH = rkG, and that H
does not lift. Then the remaining possibilities for H have been determined by Liebeck and Seitz
(see [LS04, Table 10.4]), namely (G,H) = (F4,C4) or (G,H) = (G2, Ã2). Using the inseparable
isogeny of G in both cases, H is mapped to a subgroup which lifts and is spherical. So H itself
is spherical in both instances.

Finally, assume that rkH < rkG. Then we claim that H is a maximal connected subgroup
of G. Indeed, if H were contained in a proper parabolic subgroup P of G, then the G-complete
reducibility of H implies that H lies in a Levi subgroup L of P . Since L is G-completely reducible
as well, we get H = L by maximality of H, which contradicts our assumption on the rank of
H. But H cannot be a proper subgroup of a connected proper subgroup K of G either, since K
would then be G-completely reducible and hence also reductive. In fact, by the argument above,
K would not be contained in any proper parabolic subgroup of G. This finishes the proof of the
claim.

Now we know that H is one of the subgroups of [LS04, Table 1]. None of them is spherical
for dimension reasons, except (G,H) = (E6,F4) and (G,H) = (E6,C4) (p 6= 2). In both cases,
H lifts and is spherical; cf. [Spr85] and [Bru98]. Observe that for p = 2, the group H = C4 is not
maximal in G = E6, because then it is contained in a subgroup of type F4. 2

Lemma 7.2. Let G be a simple group of exceptional type and H ⊂ G a proper, connected,
non-maximal, G-completely reducible, spherical subgroup of G. Then one of the following holds:

G = E6 and H ∈ {D5,C4 (p = 2)},
G = F4 and H ∈ {A1B3 (p = 2),A1C3 (p = 2)}.

Proof. Since H is spherical in G, it satisfies the inequalities

rkH 6 rkG, dimH > 1
2(dimG− rkG).
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First we claim that, except for G = F4 and p = 2 or G = G2 and p = 3, we may assume that
rkH < rkG. Indeed, if this were not the case, then H lifts and would therefore be in Krämer’s
list; but one can easily check that all maximal-rank spherical subgroups there are in fact maximal.

Another constraint on H is that it must be a proper subgroup of one of the groups in
Lemma 7.1. It is now easy, though somewhat tedious, to list all possible types for H which
match the requirements. We wind up with very few cases, as follows.

(i) G = E6 and H ∈ {D5,Gm · B4, B4,C4 (p = 2)}. We claim that all subgroups of these
types lift to characteristic zero. The subgroup H = D5 has to be the second factor in Gm · D5;
thus it lifts and is spherical. One checks that a group of type D5 contains a unique conjugacy
class of subgroups of type B4, namely SO(9) ⊂ SO(10). Thus Gm · B4 inside Gm · D5 lifts and
is not spherical. Also H = C4 lifts (cf. [Bru98]) and is spherical. There are two possibilities for
H = B4: either H is inside Gm ·D5, or it is inside F4. In both cases, H lifts and is not spherical.

(ii) G = E7 and H ∈ {D6,E6}. Here H = D6 is normal in A1D6; hence it lifts and is not
spherical. Likewise, H = E6 is normal in Gm · E6; hence it also lifts and is not spherical.

(iii) G = E8 and H = E7. Here H = E7 is normal in A1E7; hence it lifts and is not spherical.
(iv) G = F4, H ∈ {A1C3, Ã1B3,D4} and p = 2. Let H = A1C3 or H = Ã1B3. Without loss

of generality we may assume that the positive root α in the A1 factor is a dominant weight of
F4. Thus it is either the highest long root or the highest short root. The roots orthogonal to α
form a root system of type C3 or B3, respectively. Thus H = A1C3 lifts to characteristic zero,
while H = Ã1B3 differs from the former by an inseparable isogeny of F4; so both are unique
and spherical. There are two subgroups of type D4 that correspond to the two root subsystems,
consisting of all the long roots and all the short roots, respectively. Stemming from a closed root
subsystem, the first subgroup lifts, and hence so does the second, as it is obtained from the first
by the isogeny of G. Thus, none of them is spherical. 2

8. Non-G-completely reducible, reductive spherical subgroups

Now we complete the classification by considering the non-G-completely reducible subgroups
of G. Throughout this section let G be a connected reductive group over k and let H ⊆ G be
a non-G-completely reducible subgroup of G. Then there exists a parabolic subgroup P of G
containing H so that H is in no Levi subgroup of P . Indeed, there is a canonical such parabolic
subgroup P which depends only on H, called the optimal destabilizing parabolic subgroup
associated with H, obtained by means of geometric invariant theory; cf. [BMRT13, § 5.2].

It is convenient to use the characterization of parabolic subgroups of G in terms of one-
parameter subgroups of G; see, e.g., [Ric88, 2.1–2.3] and [Spr98, Proposition 8.4.5].

Lemma 8.1. Given a parabolic subgroup P of G and any Levi subgroup L of P , there exists a
one-parameter subgroup λ of G such that the following hold:

(i) P = Pλ := {g ∈ G | limt→0 λ(t)gλ(t)−1 exists};
(ii) L = Lλ := CG(λ(Gm));

(iii) the map π = πλ : Pλ → Lλ defined by

πλ(g) := lim
t→0

λ(t)gλ(t)−1

is a surjective homomorphism of algebraic groups; moreover, Lλ is the set of fixed points of
πλ and Ru(Pλ) is the kernel of πλ.
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Remark 8.2. We note that H ⊂ G is G-completely reducible if and only if for every one-

parameter subgroup λ of G with H ⊂ Pλ, H is G-conjugate to πλ(H); see [BMR05, Lemma 2.17,

Theorem 3.1] or [BMRT13, Theorem 5.8(ii)].

Our first result shows that we can reduce the question of non-G-completely reducible,

spherical subgroups of G to subgroups that are G-completely reducible and spherical. For this,

we again use the deformation theorem, Theorem 3.4, this time with S = A1
k = Spec k[t].

Proposition 8.3. Let G be a connected reductive group over k, and let H ⊆ G be a reductive

subgroup of G lying in the parabolic subgroup P = Pλ for some one-parameter subgroup λ of

G. Then H is spherical in G if and only if πλ(H) is.

Proof. Define H to be the closure of {(t, g) | t ∈ Gm, λ(t)−1gλ(t) ∈ H} in A1
k ×G. This is a flat

subgroup scheme of the trivial group scheme G = A1
k × G → A1

k whose fiber Ht is conjugate

to H for t 6= 0; cf. [BT84, 1.2.6, 1.2.7, 2.1.6]. Since πλ(h) = limt→0 λ(t)hλ(t)−1 for all h ∈ H,

we see that πλ(H) ⊆ H0. Since H is reductive, kerπλ|H = Ru(P ) ∩ H is finite and therefore

dimπλ(H) = dimH. Thus, we also have dimπλ(H) = dimH0, which implies that πλ(H)◦ = H◦0.

Hence, our assertion boils down to showing that H0 is spherical if and only if H1 = H is spherical,

and this follows immediately from Theorem 3.4 with S = A1
k. 2

We analyze the situation of Proposition 8.3 further.

Proposition 8.4. Let H ⊆ P = Pλ ⊆ G be as in Proposition 8.3, and assume that H∗ :=

πλ(H) ⊆ L = Lλ is not conjugate to H inside P . Let Z := Z(L)◦ be the connected center of

L. Then Z 6⊆ H∗. In particular, if H is spherical, then ZH∗ is a reductive, non-semi-simple,

spherical subgroup of G.

Proof. Suppose Z ⊆H∗. Then, by Lemma 8.1(ii), C∗ := λ(Gm)⊆H∗. Let C ⊆H be the preimage

of C∗ in H. Since H → H∗ is an isogeny, C is a one-dimensional torus lying in the center of

H. Moreover, C is a maximal torus of C∗Ru(P ) and hence conjugate to C∗. So we may assume

C = C∗. But then H ⊆ CG(C∗) = L and thus H = H∗, contradicting our assumptions. 2

In the following lemma, we denote by Pm the standard maximal parabolic subgroup of the

simple group G corresponding to the mth simple root in the labeling of the Dynkin diagram of

G according to [Bou68]. Let U = Ru(P ) be the unipotent radical of Pm.

Lemma 8.5. Let G be a simple group and H a connected, reductive, non-G-completely reducible,

spherical subgroup of G which is contained in the parabolic subgroup P of G. Then there are

the following possibilities for H∗ = πλ(H), P and G as in Proposition 8.4.

H∗ P G U H1
gen(H ′, U)

SL(m)×SL(n) Pm, Pn SL(m+ n), m > n > 1 km ⊗ kn
{
k, m = 2

0, m > 2

Sp(2n) P1, P2n SL(2n+ 1), n > 2 k2n k

SL(2n+ 1) P2n, P2n+1 SO(4n+ 2), n > 2 ∧2k2n+1 0

D5 P1, P6 E6 k16 (half-spin reps) 0
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In each case, the unipotent radical U of P is a vector group on which H∗ acts linearly and
irreducibly according to this table. The last column lists the first generic cohomology group in
the sense of [CPSvdK77].

Proof. The subgroups H∗ are just those G-completely reducible, spherical subgroups which are
centralized by a non-trivial torus, because this is a necessary condition by Proposition 8.4. The
cohomology groups have been calculated in, for instance, [CPS75]. 2

We keep the notation of Lemma 8.5. We know from the proof of Proposition 8.3 that the
projection π : H → H∗ is an isogeny. Its kernel U ∩ H is therefore a finite normal and hence
central subgroup of H. Moreover, U ∩H is a p-group, since it is a subgroup of U . We conclude
that U ∩H = 1, i.e. that H → H∗ is bijective.

Now let Q := H · U = H∗ n U . Our goal is to determine all conjugacy classes of subgroups
H ⊆ Q such that the induced projection π : H → H∗ is bijective. If this bijection is even an
isomorphism, then it is well known that this task is accomplished by the cohomology group
H1(H∗, U).

In general, we use the fact that each H∗ of interest is defined over Fp. This means that H∗

admits a Frobenius endomorphism F : H∗ → H∗. Because π is purely inseparable, it factors
through a sufficiently high power F s of F , i.e. there is an s > 0 and an isogeny ψ : H∗ → H such
that F s = π ◦ ψ.

Now let Q̃ be the fiber product of Q over F s : H∗ → H∗. Then we have a cartesian diagram
as follows.

Q̃
π̃ //

��

H∗

F s

��
Q

π // H∗

Moreover, ψ defines a section ψ̃ of π̃ such that H is the image of ψ̃(H∗) in Q. Now observe that
Q̃ = H∗ n U (ps), where U (ps) is the sth Frobenius twist of U . Therefore, the conjugacy class
of ψ̃ and hence of H is determined by an element of H1(H∗, U (ps)). By definition, the generic
cohomology group H1

gen(H∗, U) is the inductive limit of the system

H1(H∗, U) // H1(H∗, U (p)) // H1(H∗, U (p2)) // H1(H∗, U (p3)) // · · ·

(cf. [CPSvdK77]). It is well known that elements of H1(H∗, U (ps)) classify conjugacy classes of
(scheme-theoretic) complements of U (ps) in Q̃. Thus, the conjugacy classes of the subgroups H
are classified by elements of H1

gen(H∗, U).

Corollary 8.6. Let G be a simple group and H ⊆ G a connected, reductive, spherical subgroup
which is not G-completely reducible in G. Then G = SL(2n + 1) for some n > 1 and H =
SO(2n+ 1) or its dual SO(2n+ 1)∨.

Proof. By the definition of G-complete reducibility, there is a parabolic subgroup P ⊆ G
containing H such that H is not conjugate to H∗ = πλ(H). From the discussion above we
infer that H∗ ⊂ P is one of the cases in Lemma 8.5 with H1

gen(H∗, U) 6= 0. Thus G = SL(2n+ 1)
and H∗ = Sp(2n) with n > 1. Because the centralizer CG(H∗) ∼= Gm of Sp(2n) acts non-trivially
on H1

gen(H∗, U) ∼= k, there exists only one conjugacy class of H in G, depending, though, on the
choice of P . Thereby we obtain the two cases above. 2
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This concludes the proof of our main classification theorem: using Remark 2.8, we may assume
that G is either strictly classical or exceptional. Then the G-completely reducible, connected,
spherical subgroups are determined in Corollary 6.3 and Lemmas 7.1 and 7.2, respectively.
Finally, Corollary 8.6 lists all non-G-completely reducible subgroups.
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Lüb01 F. Lübeck, Small degree representations of finite Chevalley groups in defining characteristic,
LMS J. Comput. Math. 4 (2001), 135–169.

Ric88 R. W. Richardson, Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke
Math. J. 57 (1988), 1–35.

Ros56 M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443.

SGA3 M. Demazure and A. Grothendieck (eds), Schémas en groupes, in Séminaire de Géométrie
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