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Abstract
At present, industrial scenes with sparse features and weak textures are widely encountered, and the three-
dimensional reconstruction of such scenes is a recognized problem. Pressure pipelines have a wide range of
applications in fields such as petroleum engineering, chemical engineering, and hydropower station engineering.
However, there is no mature solution for the three-dimensional reconstruction of pressure pipes. The main reason is
that the typical scenes in which pressure pipes are found also have relatively few features and textures. Traditional
three-dimensional reconstruction algorithms based on feature extraction are largely ineffective for such scenes that
are lacking in features. In view of the above problems, this paper proposes an improved interframe registration
algorithm based on point cloud fitting with cylinder axis vector constraints. By incorporating geometric feature
parameters of a cylindrical pressure pipeline, specifically the axis vector of the cylinder, to constrain the traditional
iterative closest point algorithm, the accuracy of point cloud registration can be improved in scenarios lacking fea-
tures and textures, and some environmental uncertainties can be overcome. Finally, using actual laser point cloud
data collected from pressure pipelines, the proposed fitting-based point cloud registration algorithm with cylinder
axis vector constraints is tested. The experimental results show that under the same conditions, compared with other
open-source point cloud registration algorithms, the proposed method can achieve higher registration accuracy.
Moreover, integrating this algorithm into an open-source three-dimensional reconstruction algorithm framework
can lead to better reconstruction results.

1. Introduction
Pressure piping serves as a vital channel for transporting materials such as oil, natural gas, and chemi-
cals. The three-dimensional reconstruction of pressure piping can provide geometric information about
pipelines as an important basis for pipeline design, maintenance, and safety assessment.

Recently, with the rapid development of three-dimensional laser radar technology, this technol-
ogy has achieved great success in unmanned driving [1, 2], remote sensing mapping [3], robot
navigation and positioning [4], and other fields [5–10]; examples of specific applications include
the creation of high-precision maps in unmanned driving, the rapid acquisition of digital eleva-
tion models in remote sensing mapping, and navigation and obstacle avoidance in mobile robots.
Moreover, three-dimensional reconstruction based on laser point clouds is a popular topic of cur-
rent research [11–15]. Scholars in China and elsewhere have conducted much-related research
on this subject. Some representative programs include Bundle Adjustment for Lidar Mapping
(BALM) [16], tightly coupled laser-inertial odometry and mapping with bundle adjustment (BA-
LIOM) [17], Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain
(LeGO-LOAM) [18], Direct LiDAR Odometry (DLO) [19], Lidar Inertial Odometry Via Smoothing
And Mapping (LIO-SAM) [20], Fast Direct LiDAR-Inertial Odometry (FAST-LIO2) [21], and
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Lightweight Tightly Coupled Lidar-Inertial Odometry Using Parallel Sparse Incremental Voxels (Faster-
LIO) [22]. However, although these programs can achieve very good results in laboratory environments
and on public datasets, they often fail easily for scenes with sparse textures and features [12]. This is
because most of the existing three-dimensional reconstruction methods rely on the approach of extract-
ing points, lines, surfaces, and other features to achieve point cloud registration, which is not suitable
for such scenes; consequently, these methods cannot meet practical needs [4].

The point cloud registration algorithm is the core technology of three-dimensional reconstruction
and thus has an important impact on the accuracy of the reconstruction results. Therefore, research on
point cloud registration technology for scenes with sparse textures and features is the key to the three-
dimensional reconstruction of such scenes [7, 13]. However, there is currently relatively little research
on the point cloud registration issues that arise in scenarios with sparse features and textures. This is
mainly because, in such scenarios, the feature and texture information contained in the point cloud data
is limited or nonexistent, posing significant challenges for registration algorithms [10].

To solve the problem of the three-dimensional reconstruction of pressure piping in special industrial
scenarios, this paper proposes a fitting-based point cloud registration algorithm with cylinder axis vector
constraints. By using certain geometric parameters of the pressure piping to be modeled as constraints
and incorporating them into the traditional iterative closest point (ICP) algorithm, three-dimensional
reconstruction of pressure piping with sparse textures and features can be achieved.

The main contributions of this article include the following:

• To address the three-dimensional reconstruction problem for cylindrical or cylinder-like
pipelines, an improved ICP algorithm is proposed that relies on point cloud fitting with constraint
conditions on the cylinder axis vectors.

• For scenes with environmental interference, incorporating the proposed point cloud registration
algorithm into the front-end part of the 3D reconstruction algorithm can improve the accuracy
of 3D reconstruction under certain conditions.

• A multifunctional dual-track wall-climbing robot system has been designed to achieve efficient
detection of pressure pipelines to support their intelligent operation and maintenance.

This paper is organized as follows. In Section 2, related work regarding point cloud registration is pre-
sented. The principle of the improved fitting-based ICP algorithm with cylinder axis vector constraints
is described in Section 3. Experimental studies are introduced in Section 4, and the experimental results
are discussed in Section 5. Finally, in Section 6, the conclusion and plans for future work regarding the
proposed method are presented.

2. Related work
Accurate point cloud registration is the key to three-dimensional reconstruction. At present, the most
widely used algorithm for laser point cloud registration is the ICP algorithm [23]. There are also many
optimized variants of the ICP algorithm, such as PL-ICP [24], NICP [25], GICP [26], Robust ICP [27],
Sparse ICP [28], AA-ICP [29], Symmetric ICP [30], and Go-ICP [31]. The basic idea of the classical
ICP algorithm is to construct an error function in accordance with the correspondence relationships
between point pairs in two frame point clouds and then obtain the optimal pose transformation parame-
ters by minimizing the error function. Other improved algorithms based on ICP include the addition of
constraints when constructing the error function and the adoption of different optimization algorithms
when minimizing the error function. The disadvantage of the ICP algorithm is that it depends heavily
on the initial values and can easily fall into a locally optimal solution. When the initial values are not
suitable, the number of iterations will increase, and with sufficiently large initial errors, incorrect results
may be obtained. Moreover, the ICP algorithm exhibits first-order convergence, and the convergence
speed is slow. The ICP algorithm is ideal for the registration of point sets with distinctive local charac-
teristics. However, for spheres, cylinders, cubes, and other regular geometric shapes, the classical ICP
algorithm cannot achieve convergence because it cannot correctly determine the corresponding point of
any particular point on such a shape.
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Other point cloud registration algorithms based on the Gaussian hypothesis include normal
distribution transformation (NDT) [32] and coherent point drift (CPD) [33]. The basic idea of the NDT
algorithm is to use the characteristics of a Gaussian distribution to construct a multidimensional normal
distribution based on the reference point cloud and then determine the pose parameters that maximize
the probability density of the converted point cloud in the reference point cloud coordinate system.
The pose parameters obtained in this way are considered the optimal pose parameters. Variants of the
NDT algorithm include The three-dimensional normal-distributions transform (3D-NDT) [34], Point-
to-Distribution Normal Distributions Transform (P2D-NDT) [35], and Distribution-to-Distribution
Normal Distributions Transform (D2D-NDT) [35]. The advantage of the NDT algorithm is that it can
process large point cloud datasets; however, it needs to convert the original point cloud data into a
Gaussian distribution, and its calculation speed is relatively slow.

The CPD algorithm converts the point set registration problem into a probability density estimation
problem. The advantages of the CPD algorithm are that it can handle both rigid and nonrigid trans-
formations and that it performs well for the registration of partially overlapping or noisy point clouds.
However, this algorithm is nevertheless sensitive to noise, and its registration effect is not ideal for scenes
with uncertain noise. Super4PCS [36] is a point cloud registration method that does not require an ini-
tial pose, exhibits good robustness, and has a wide range of applications. However, this method is slow,
has low accuracy, and requires multiple iterations. TEASER [37] is an algorithm for three-dimensional
point cloud registration that is suitable for situations with many outliers. It uses a truncated least squares
cost function to reformulate the registration problem, making the pose estimation less sensitive to many
false corresponding points. This algorithm also runs very fast. However, the introduction of the trun-
cated least squares function can lead to nonconvex optimization problems that are difficult to solve and
can easily become trapped in local optima.

Another type of model-free point cloud registration algorithm is based mainly on machine learn-
ing or deep learning. The basic idea of deep learning-based point cloud registration algorithms is to
use an end-to-end neural network to transform the registration problem into a regression problem.
The input provided to the neural network is the two frame point clouds to be registered, and the out-
put is the transformation matrix between the two frame point clouds. Representative programs include
GeoTransformer [38], CoFiNet [39], Predator [40], Efficient LO-Net [41], REGTR [42], and RGM [43].
The performance and speed of these deep learning models on test datasets are far better than those
of the ICP and NDT algorithms. However, because the estimation of the transformation parameters is
regarded as a black box in the regression process, the distances are measured in a coordinate-based
Euclidean space and thus are sensitive to noise. Moreover, methods based on deep learning require data
to be collected in advance and labeled to some extent, so they are not suitable for the three-dimensional
reconstruction of unknown environments.

To address the problems encountered by the point cloud registration algorithms mentioned above in
scenarios with sparse features and textures, this paper proposes a novel point cloud registration method.
The proposed method can solve the problem of point cloud registration when textures and features are
scarce. Through practical testing, the effectiveness of the proposed point cloud registration algorithm is
verified.

3. Point cloud registration algorithm based On fitting with cylinder axis vector constraints
The complete execution process of the improved point cloud registration algorithm based on point cloud
fitting with cylinder axis vector constraints is shown in Fig. 1. The technical details are described
in detail below. For two overlapping frame point clouds P = {

pi|pi ∈ R3, i = 1, 2, . . . m
}

and Q ={
qj|qj ∈ R3, j = 1, 2, . . . n

}
in Euclidean space, the basic principle of the classical ICP algorithm is to

achieve the registration of P and Q through rigid transformation. Let the transformation matrices be
denoted by [R, t]; then, the function for transforming the point cloud P into the point cloud Q via the
transformation matrices [R, t] is denoted by F (R, t), and the optimal transformation matrices can be
obtained by solving min (F (R, t)). Here, F (R, t) can be expressed as shown in Eq. 1. PL-ICP is based on
a constraint relationship constructed in terms of the distance from a point to a line and obtains the optimal
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Figure 1. Complete technical roadmap of the improved point cloud registration algorithm based on
point cloud fitting with cylinder axis vector constraints.

pose transformation matrices by minimizing the point-to-line distance. The error function E (R, t) of the
point-to-line distance in the PL-ICP algorithm is expressed as shown in Eq. 2, where ni represents the
normal vector of the line on which qi is located. Although the PL-ICP algorithm converges faster than
the ICP algorithm, it also falls into local extrema more easily.

F (R, t) =
n∑

i=1

||Rpi + t − qi||2 (1)

E (R, t) = 1

n

n∑
i=1

((pi − (Rqi + t)) · ni)
2 (2)

Inspired by the above registration algorithm in combination with the geometric characteristics of
the point cloud to be registered, we consider an approach in which the point cloud to be registered is
first fit to a certain geometric shape, and then point cloud registration is realized based on similarity to
that geometric shape. This method can reduce the computational burden of point cloud registration to
some extent while improving the accuracy of registration. Here, the algorithm proposed in this paper
is described by taking the three-dimensional reconstruction of a penstock as an example. In accordance
with the distinctive geometric characteristics of a penstock, it can be considered to be composed of sev-
eral cylinder-like components. Therefore, the penstock point cloud data collected via three-dimensional
lidar can be theoretically fit to a cylindrical geometry. The specific fitting method used can be the least
squares method.

According to the geometric characteristics of a cylinder, the distance from any point A (x, y, z) on
the surface of a cylinder to its axis is equal to its radius r. A cylinder can be uniquely determined by
any point M0 (x0, y0, z0) on the axis of the cylinder and the cylinder axis vector V (l, s, k). The equation
describing a cylinder is given in Eq. 3.

(x − x0)
2 + (y − y0)

2+(z − z0)
2−

[l(x − x0) + s(y − y0) + k(z − z0)]2 = r2 (3)

The first step of cylinder fitting is to determine the initial values of the cylinder model parameters,
and the second step is to establish an error equation to solve for the optimal parameter values.

The initial estimate of the fitted cylinder axis vector, V0
(
l0, s0, k0

)
, is obtained as follows. First, an

arbitrary point on the surface of the cylinder is selected, and its adjacent points are used to perform
local plane fitting to obtain the unit normal vector at that point. This process is repeated for a number
of surface points, and then, principal component analysis is used to fit all of the unit normal vectors
obtained in this way to a plane. Finally, the unit normal vector of the fitted plane is taken as the initial
estimate of the cylinder axis vector.

Here, we assume that the initial cylinder axis vector is a unit vector pointing in the positive direction
that satisfies Eq. 4, such that l0 ≥ 0; if l0 = 0, then s0 > 0; if l0 = 0 and s0 = 0, then k0 > 0. Notably, l0,
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s0, and k0 cannot be simultaneously zero here.

l2
0 + s2

0 + k2
0 = 1 (4)

Based on the aforementioned axis vector constraints, Eq. 5 can be used to obtain the initial coordinates
of any point on the cylinder axis.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 =

N∑
i=1

xi

N
, |l0| > |s0| ∩ |l0| > |k0|

y0 =

N∑
i=1

yi

N
, |s0| > |l0| ∩ |s0| > |k0|

z0 =

N∑
i=1

zi

N
, |k0| > |l0| ∩ |k0| > |s0|

(5)

Subsequently, an error function can be built based on the distance from any point on the surface of the
cylinder to a point on its axis, as shown in Eq.6.

e = (x − x0)
2 + (y − y0)

2 + (z − z0)
2−[

l (x − x0) + s (y − y0) + k (z − z0)
]2 − r2 (6)

By linearizing the equation for the error e, Eq. 7 is obtained.

e = e0 + ∂e
∂x

x + ∂e
∂y

y + ∂e
∂z

z + ∂e
∂l

l + ∂e
∂s

s + ∂e
∂k

k + ∂e
∂r

r (7)

where e0 can be obtained from Eq. 8 and ∂e
∂x

, ∂e
∂y

, ∂e
∂z

, ∂e
∂l

, ∂e
∂s

, ∂e
∂k

, and ∂e
∂r

can be obtained from Eq. 9 to
Eq. 15.

e0 = (x − x0)
2 + (y − y0)

2 + (z − z0)
2−[

l0 (x − x0) + s0 (y − y0) + k0 (z − z0)
]2 − r0

2 (8)

∂e
∂x

= −2 ∗ l ∗ (l ∗ (x − x0) + s ∗ (y − y0) + k ∗ (z − z0)) + 2 ∗ (x − x0) (9)

∂e
∂y

= −2 ∗ s ∗ (l ∗ (x − x0) + s ∗ (y − y0) + k ∗ (z − z0)) + 2 ∗ (y − y0) (10)

∂e
∂z

= −2 ∗ k ∗ (l ∗ (x − x0) + s ∗ (y − y0) + k ∗ (z − z0)) + 2 ∗ (z − z0) (11)

∂e
∂l

= −2 ∗ (l ∗ (x − x0) + s ∗ (y − y0) + k ∗ (z − z0)) ∗ (x − x0) (12)

∂e
∂s

= −2 ∗ (l ∗ (x − x0) + s ∗ (y − y0) + k ∗ (z − z0)) ∗ (y − y0) (13)

∂e
∂k

= −2 ∗ (l ∗ (x − x0) + s ∗ (y − y0) + k ∗ (z − z0)) ∗ (z − z0) (14)

∂e

∂r
= −2 ∗ r (15)

Writing the error equation in matrix form yields Eq. 16:

Nn×1 = An×7X7×1 − On×1 (16)

where A =
⎡
⎣

∂e
∂x1

∂e
∂y1

∂e
∂z1

∂e
∂l1

∂e
∂s1

∂e
∂k1

∂e
∂r1· · · · · · · · · · · · · · · · · · · · ·

∂e
∂xn

∂e
∂yn

∂e
∂zn

∂e
∂ln

∂e
∂sn

∂e
∂kn

∂e
∂rn

⎤
⎦ and X = [

x y z l s k r
]T . Setting Oi = (xi − x0)

2 +

(yi − y0)
2 + (zi − z0)

2 − r2
0 − [

l0 (xi − x0) + s0 (yi − y0) + k0 (zi − z0)
]2, we can write O =[

O1 · · · On

]T .
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Figure 2. Flow chart of the improved ICP-based point cloud registration algorithm based on fitting
with cylinder axis vector constraints.

Figure 3. Schematic diagram of the structure of the dual-track wall-climbing robot system.

Finally, according to the least squares principle NTN = min, the final cylinder parameters can be
obtained from Eq. 17.

X = (
ATA

)−1
ATO (17)
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Table I. Technical specifications of the dual-track wall-climbing robot.

Technical parameter Design value
Dimensions (mm) 644 x 250 x 157
Robot body weight (kg) 150
Maximum load capacity (kg) 240
Maximum movement speed (m/ min) 14
Communication distance (m) 120
Control method Wireless remote control
IP rating IP65
Operating temperature 0 ∼ 55◦C
Operation mode Semiautomatic or manual
Working environment Variable-curvature permeable wall surface
Cross-barrier capability < 10 mm welding seam
Anti-slip-and-fall safety method Safety rope traction protection

Figure 4. Schematic diagram of the structure of the diversion penstock.

Figure 5. Actual three-dimensional reconstruction of the penstock and schematic diagram of the water
flow reflecting the laser.

Because some outliers will be filtered out when a point cloud is fitted to a cylinder, this method can also
somewhat mitigate the influence of noise on the point cloud registration accuracy. The ICP algorithm
is improved by introducing the above process of fitting each point cloud to a cylinder and adding a con-
straint between the fitted cylinder axis vectors. The calculation equations of the improved ICP algorithm
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Table II. Main parameters of the 3D lidar.

3D lidar
Laser channels 32
Range 0 ∼ 200m
Ranging accuracy ±3 cm
Single echo data rate 6.5 × 105points/s
Horizontal field angle 360◦

Vertical field angle −16◦ ∼ +15◦

Horizontal angle resolution 0.18◦

Vertical angle resolution 1◦

Scanning speed 10 Hz

Figure 6. Histogram of the radius parameter values obtained from cylindrical fitting of actual point
cloud data collected from the diversion penstock.

are shown in Eq. 18.
⎧⎪⎪⎨
⎪⎪⎩

F (R, t) =
n∑

i=1

||Rpi + t − qi||2

arccos

(
(li ,si ,ki)·(lj ,sj ,kj)√

l2i +s2
i +k2

i ·
√

l2j +s2
j +k2

j

)
< θthreshold

(18)

Here, (li, si, ki) and
(
lj, sj, kj

)
correspond to the cylinder axis vectors fitted from the two frame point

clouds to be registered. θthreshold is a predefined angle threshold, and actual test results show that good
results can be achieved when 0.01◦ ≤ θthreshold ≤ 1◦.

The above Eq. 18 can be solved using various optimization methods, such as the gradient descent
method, the Gauss–Newton method, or the Levenberg–Marquardt algorithm. The main steps of the
improved ICP-based point cloud registration algorithm are summarized in Fig. 2.

https://doi.org/10.1017/S0263574724000845 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000845


Robotica 9

Table III. Comparison of root mean square errors of the fitted cylinder
radius values.

Interval [m] Frame count Percentage [%] rRMSE [m]
< 5.7 32 0.395 0.8073
(5.7, 5.8] 1441 17.799 0.4559
(5.8, 5.9] 961 11.870 0.3558
(5.9, 6.0] 533 6.876 0.2520
(6.0, 6.1] 512 6.324 0.1525
(6.1, 6.2] 4617 57.028 0.0347

Figure 7. Axial vector distribution map obtained from cylindrical fitting of actual three-dimensional
lidar point cloud data collected from the diversion penstock.

4. Experimental results
To achieve intelligent operation and maintenance of steel pressure pipes for water diversion at large
hydropower stations, the current mainstream solution worldwide is to use robots in place of humans to
complete related inspection and maintenance tasks. Due to the inability of conventional robots to oper-
ate on vertical surfaces, customized robot designs are required for special scenarios such as hydropower
stations. Based on the actual requirements of the inspection and maintenance tasks for the steel pressure
pipes for water diversion at the Three Gorges Hydropower Station, a dual-track wall-climbing robot sys-
tem was designed in this study, as shown in Fig. 3. The entire system mainly consists of an adsorption
mechanism, a track module, a machine vision module, and a 3D reconstruction system. The techni-
cal parameters of the system are shown in Table I, and the subsequently reported experiments were
conducted using the designed system.

To verify the effectiveness of the point cloud registration algorithm proposed in this paper, the
diversion penstock at the Three Gorges Hydropower Station was taken as the reconstruction target in
experiments. A structural diagram of the diversion penstock is shown in Fig. 4. The basic dimensions of
the diversion penstock are 12.4 m in diameter and 110 m in axial length, and its shape is similar to that
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Figure 8. Cylinder fitted from a real three-dimensional lidar point cloud of the diversion penstock.

of a cylindrical pipe. The basic configuration of the experimental equipment is shown in Fig. 5, and the
main parameters of the three-dimensional lidar data are shown in Table II. During the experiments, the
wall-climbing robot was controlled by a remote controller to move along the axis of the diversion pen-
stock. Due to the limited cable length, the wall-climbing robot could not collect laser point cloud data
along the entire length of the pressure piping during its motion. Therefore, we selected only a section
of the pressure piping for laser point cloud data collection and testing. The measured three-dimensional
lidar data were collected by running the Robot Operating System (ROS) program on a Jetson Xavier
NX controller.

First, to verify the feasibility of fitting point clouds to cylinders and obtaining the corresponding
cylinder parameters, real point cloud data collected from pressure pipes were used, which contained a
total of 8096 frames. The distribution of the cylinder radius values obtained via actual fitting is shown
in Fig. 6.

As seen from the histogram of the fitted cylinder radius values, for 3825 frames of the fitted point
cloud data, the cylinder radius distribution lies in the range of [6.15, 6.18], which is very close to the
true radius of the diversion penstock; thus, the histogram shows that the fitting results are correct. The
cylindricity error of the fitted cylinders can be obtained from Eq. 19.

rRMSE =

√√√√√
n∑

i=1

(r − rtruth)
2

n
(19)

Table III quantitatively compares the distributions of the fitted cylinder radii in different intervals, the
percentage of the total number of point cloud frames that fall in each interval, and the root mean square
error of the fitted cylinder radii.

Figure 7 shows the distribution of the cylinder axis vectors obtained by fitting the actual laser point
cloud data of the pressure pipes. The reference axis vector distribution represents the initial axis vector
distribution, while the abnormal axis vector distribution represents the distribution of problematic axis
vectors obtained when fitting the point clouds to cylinders. This figure indicates very good consistency of
the fitted cylinder axis vectors, which is significant for the subsequent improvement of the ICP algorithm
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Table IV. Comparison of pose transformation parameters and running times of different point cloud
registration algorithms.

Algorithm Pos.x [m] Pos.y [m] Pos.z [m] Roll [rad] Pitch [rad] Yaw [rad] Time [s]
pt2pt-ICP [23] −0.3960 −0.3869 −0.4378 0.1073 0.0522 −0.0787 1.4402
pt2pl-ICP [24] −0.3145 −0.2926 −0.3027 0.0954 0.0367 −0.0512 1.4587
Robust ICP [27] −0.2183 −0.2549 −0.3831 0.0274 0.1083 −0.0767 1.4589
Sparse ICP [28] −0.1160 −0.3836 −0.4927 0.0635 0.0922 −0.0573 1.4396
Sparse pt2pl-ICP [28] −0.1924 −0.3867 −0.5811 0.0549 0.0783 −0.0564 1.4651
AA-ICP [29] −0.1160 −0.2867 −0.3865 0.0549 0.0281 −0.0464 1.4428
NDT [32] −0.1895 −1.0257 −0.4161 −0.1322 −0.5772 −1.7779 1.6603
CPD [33] −0.1226 −0.2031 −0.3860 2.0778 0.4066 −1.1969 4.1534
TEASER [37] −0.1195 −0.9702 0.5163 −0.1322 0.0235 0.0311 1.8961
FAST ICP [39] −0.1032 −0.1678 −0.2869 0.0435 0.0313 −0.0457 1.4645
FilterReg [44] −0.0280 −0.1829 −0.3746 0.8281 −1.5003 −0.9267 1.5018
GMMTree [45] −0.3016 −0.2332 −0.1677 9.0954 −8.4459 −3.1772 11.2676
SVR [46] −0.0679 −0.1238 −0.4179 −0.0536 −0.5355 −1.8848 1.6600
Improved ICP −0.0708 −0.1336 −0.1677 −0.0385 0.0182 0.0311 1.9483

Figure 9. Schematic of the Jetson Xavier NX module.

based on cylinder axis vector constraints. Figure 8 shows the results of a cylinder fitting test using
the abovementioned point cloud fitting algorithm on real penstock point cloud data containing noise
interference. As seen from this figure, cylinder fitting can eliminate the influence of the water flow on
laser reflection in the point cloud.

Second, the same test data were used to quantitatively compare the accuracy of different point cloud
registration algorithms. The test data were collected via lidar at different times at the same location. The
original point cloud contained 60,057 data points. To improve the efficiency of point cloud registration,
the original point cloud was resampled to a test point cloud with only 11,497 data points, and the initial
position and attitude were set to 0. Table IV compares the results of different point cloud registration
algorithms in terms of the determined position and attitude transformations and the running time. All
algorithms except the improved ICP algorithm were implemented based on open-source code.

All point cloud registration algorithms in Table IV were tested on the Jetson Xavier NX controller,
which is shown in Fig. 9. The main technical parameters of the Jetson Xavier NX are given in Table V.
Table IV shows that under the same conditions, the accuracy of the improved ICP algorithm is superior
to that of other point cloud registration algorithms. However, although the improved ICP algorithm is
more accurate than other ICP algorithms, its efficiency is reduced.
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Table V. Main technical parameters of the NVIDIA Xavier NX controller.

Main technical parameters
Type Jetson Xavier NX (8 GB)
AI performance 21 TOPS
GPU 384-core NVIDIA Volta GPU and 48 Tensor Cores
CPU 6-core NVIDIA Carmel ARM v8.2 64-bit CPU
Flash 8 GB 128-bit LPDDR4x 51.2 GB/s
Memory 16 GB eMMC5.1
Power 10 W|15 W
PCIe 1 x 1 (PCIe Gen3); 1 x4 (PCIe Gen4)
Deep learning accelerator 2 NVDLA engines

Figure 10. Comparison of the changes in the displacement parameters found by different interframe
point cloud registration algorithms.

Based on the comparative testing of the point cloud registration algorithms mentioned above, the
ICP, NDT, CPD, and improved ICP algorithms were further applied in consecutive frame-to-frame
registration tests on the previously collected 8096 frames of penstock point cloud data. During the test-
ing process, the parameters found for pose transformation between each pair of frames were recorded.
Figure 10 and Fig. 11 show the position and attitude parameter change curves obtained by different
frame-to-frame registration algorithms. It can be seen from these figures that the improved ICP algorithm
results in gentler fluctuations in the position and attitude curves.

Then, for quantitative comparison of the interframe registration algorithms, three main indicators
commonly used in point cloud registration, namely, the root mean square error, the maximum common
point set, and the Hausdorff distance were calculated. The equation for calculating the Hausdorff distance
is shown in Eq. 20. The quantitative comparison of the different interframe registration algorithms in
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Figure 11. Comparison of the changes in the attitude parameters found by different interframe point
cloud registration algorithms.

terms of the calculated evaluation indicators is shown in Table VI.⎧⎪⎨
⎪⎩

H (P, Q) = max (h (P, Q) , h (Q, P))

h (P, Q) = max
p∈P

{min
q∈Q

||p − q||}
h (Q, P) = max

q∈Q
{min

p∈P
||q − p||}

(20)

Here, H (P, Q) is the bidirectional Hausdorff distance between point sets p and Q, and h (P, Q) is the
unidirectional Hausdorff distance from point set p to point set Q.

Finally, by transforming the point cloud registration results obtained by different point cloud regis-
tration algorithms into a unified world coordinate system, laser-based odometry can be achieved. Due
to the lack of higher-precision instruments for recording the actual movement trajectory of the lidar dur-
ing the process of point cloud collection for the experimental penstock, relative evaluation metrics are
used in this article to assess the accuracy of the various point cloud registration algorithms. Figure 12
and Fig. 13 show the position and attitude parameter change curves of laser-based odometry as imple-
mented based on the different point cloud registration algorithms. It can be seen from these figures that
the improved ICP algorithm yields the smallest cumulative error. A quantitative comparison is shown in
Table VII.

Considering that extensive previous research on three-dimensional reconstruction algorithms has
yielded several representative methods that achieve high reconstruction accuracy, such as LeGO-LOAM,
FAST-LIO2, and DLO, this article first investigates the results obtained by using LeGO-LOAM, FAST-
LIO2, and DLO directly for the three-dimensional reconstruction of the experimental penstock, without
first fitting the point clouds to cylinders. These results are then compared with the three-dimensional
penstock reconstruction results obtained after performing cylinder fitting of the point clouds to improve
the point cloud registration in LeGO-LOAM, FAST-LIO2, and DLO, revealing the effectiveness of the
proposed cylinder fitting approach in improving the accuracy of three-dimensional reconstruction.

LeGO-LOAM is based on feature extraction and realizes lidar odometry by means of the ICP algo-
rithm. FAST-LIO2 directly registers the point clouds without feature extraction. In the actual registration
process, inertial measurement sensor data are added to correct point cloud distortions. This method also
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Table VI. Comparison of quantitative evaluation indicators for interframe point cloud
registration.

Algorithm RMSE [m] Overlap Hausdorff distance
NDT 0.2328 0.3950 0.8073
CPD 0.4321 0.7990 0.4559
pt2pt-ICP 0.1883 0.9140 0.3558
Improved ICP 0.1785 0.9141 0.2520

Figure 12. Comparison of the position results obtained in lidar odometry based on different registration
algorithms.

relies on the ICP algorithm for point cloud registration. DLO is a lightweight front-end lidar odometry
method that achieves accurate real-time pose estimation through generalized ICP point cloud matching.

Using the aforementioned three-dimensional reconstruction algorithms, practical three-dimensional
reconstruction tests were conducted based on a portion of the penstock shown in Fig. 4. A comparison
of the actual reconstruction effects before and after the incorporation of the proposed improvements into
the three-dimensional reconstruction algorithms is shown in Fig. 14. It is clear from this figure that the
improved reconstruction algorithms can achieve higher reconstruction accuracy.

5. Discussion
This article has studied point cloud registration algorithms for the three-dimensional reconstruction of
diversion penstocks at large-scale hydropower stations. Due to the sparse features and complex internal
environmental conditions of diversion penstocks, existing three-dimensional reconstruction algorithms
are often ineffective and unable to achieve accurate penstock reconstruction. By considering the geomet-
ric shape of a penstock as cylindrical, this article has proposed a method of fitting cylindrical pipes using
point cloud data to obtain the axis vectors of a penstock. These axis vectors are then used as constraints
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Figure 13. Comparison of the attitude results obtained in lidar odometry based on different registration
algorithms.

in the traditional ICP algorithm, thereby improving the accuracy of three-dimensional reconstruction
and overcoming uncertain environmental interference to some extent. However, the proposed improved
ICP algorithm based on point cloud fitting with cylinder axis vector constraints still has some limita-
tions because it is not applicable to target objects with noncylindrical shapes. Moreover, many different
types of scenes with sparse features may be encountered in practical applications, some of which may
not contain any regular geometric shapes, so the proposed method may not be generally applicable to
scenes with sparse features. Therefore, further research is still needed to develop point cloud registration
algorithms suitable for arbitrary scenes with sparse features.

6. Conclusion
This article mainly focuses on the registration of three-dimensional lidar point clouds for the three-
dimensional reconstruction of scenes with sparse textures and features. Taking a diversion penstock
with a certain geometric structure as an example, a geometric model of the point cloud data collected via
three-dimensional lidar is fitted, and its parameters are obtained. Based on the obtained partial geometric
model parameters, the widely used ICP algorithm is improved. Specifically, the axis vectors of the fitted
geometric models of the point clouds to be registered are used to add constraints to the classical ICP
algorithm, thereby constructing the proposed improved ICP algorithm. The feasibility of fitting point
clouds to cylinders is verified based on actual point cloud data collected from a diversion penstock,
and the same data are used to compare the improved ICP algorithm with current representative point
cloud registration algorithms such as ICP, NDT, and CPD. Then, the pose parameters obtained through
lidar odometry implemented based on different interframe registration algorithms are quantitatively
compared. Finally, the improved ICP algorithm is integrated into three current open-source algorithms
for three-dimensional reconstruction, and the reconstruction effects achieved in actual three-dimensional
reconstruction of the diversion penstock using the resulting improved algorithms are compared with
those of the original algorithms. The experimental results show that the accuracy of the improved ICP

https://doi.org/10.1017/S0263574724000845 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724000845


16 Yulong Zhang et al.

Table VII. Quantitative comparison of the position and attitude parameters obtained in
lidar odometry implemented based on different interframe registration algorithms.

Algorithm Pos.x [m] Pos.y [m] Pos.z [m] Roll [rad] Pitch [rad] Yaw [rad]
NDT 1.2495 13.3260 −6.7348 0.0112 0.3960 −0.4683
CPD −7.4889 10.6005 11.9056 −2.4943 0.5287 −0.9047
pt2pt-ICP 0.9503 −1.5594 0.2274 0.8079 0.0604 0.7324
Improved ICP 0.6899 −1.4914 0.1110 0.7790 0.0463 0.7072

Figure 14. Comparison of the three-dimensional reconstruction results obtained for the diversion
penstock based on different reconstruction algorithms.

algorithm is higher than that of currently used schemes for both interframe point cloud registration and
three-dimensional reconstruction.
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