
Can. J. Math.Vol. 45 (3), 1993 pp. 517-536 

CONTRIBUTIONS TO A GENERAL THEORY 
OF VIEW-OBSTRUCTION PROBLEMS 

V. C. DUMIR, R. J. HANS-GILL AND J. B. WILKER 

ABSTRACT. In the original view-obstruction problem congruent closed, centrally 
symmetric convex bodies centred at the points of the set (— ^, — | , . . . , — ^) + N" in W1 

are expanded uniformly until they block all rays from the origin into the open positive 
cone. The central problem is to determine the minimal blocking size and this value is 
known for balls in dimensions n = 2,3 and for symmetrically placed cubes in dimen­
sions n — 2,3,4. 

In order to explain fully the distinction between rational and irrational rays in the 
original problem, we extend consideration to the blocking of subspaces of all dimen­
sions. In order to appreciate the special properties of balls and cubes, we give a dis­
cussion of the convex body with respect to reflection symmetry, lower dimensional 
sections, and duality. We introduce topological considerations to help understand when 
the critical parameter of the theory is an attained maximum and we add substantially to 
the list of known values of this parameter. In particular, when the dimension is n — 2 our 
dual body considerations furnish a complete solution to the view-obstruction problem. 

1. Introduction. In 1973, T. W. Cusick [6] introduced a problem in geometry of 
numbers which he called the view-obstruction problem. This problem in its original form 
has attracted sustained interest over the years ([3]—[12]) but we introduce it here in a 
slightly generalized form to accomodate the results we intend to present. 

Let W denote «-dimensional Euclidean space; Zn, the integer lattice; | , the point 
(j, | , . . . , | ) and A, the shifted lattice | + Zn. Let C be a closed, centrally symmetric 
convex body centred at the origin in Rn and let L be a vector subspace of the real «-space 
underlying Rn. We define the function 

z/(C,L) = inf{a > 0 : (aC + A)HL ^ 0} 

and seek to understand its behaviour, especially when C is fixed and L varies. In terms 
of the metric on W1 defined by 

dc(x, y) = inf{a > 0 : y G aC + x} 

the function i/(C, L) is just the distance between the two sets A and L, that is, 

KC,L) = dc(A,L). 
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Another useful observation to make at this stage is that if C D C and Lf D L then 
z/(C' ,L')<KC,L). 

In the original problem, attention is restricted to the open positive cone P = (W~)n 

and to rays that lie in P. The central problem is to determine 

i/(C) = i/(C, 1) = sup{i/(C,L) : L H P ^ 0,dimL = 1} 

where the supremum is known to exist because the set on the right is bounded above by 
the number dc(\,0). This statement of the problem in terms of 1-dimensional subspaces 
can be shown to be equivalent to the original formulation in terms of rays. 

In number theoretic problems involving extreme values of certain functions it is nat­
ural to study successive extreme values and find out whether a Markoff type chain of 
isolated extreme values exists. In the present context these investigations in (n — 1) di­
mensions can sometimes be used to determine z/(C, 1) in n dimensions (see [10]—[12]). 
In a later paper we shall show that these investigations for special bodies can lead to 
results about other convex bodies in the same dimension. These remarks direct interest 
to the full spectrum 

{z/(C, L) : L 1-dimension}. 

In the same spirit we shall now explain how a thorough treatment of irrational rays in the 
original problem leads very naturally to consideration of higher dimensional subspaces. 

A 1-dimensional subspace L of Rn is called rational if it can be written L = (a) with 
a G Qn; otherwise it is called irrational. If L is rational, it can be written in the form 
L = (a) with a G Zn and the fact that A and L are both invariant under the translation x —» 
x + a can be used to simplify the calculation of i/(C, L) and to improve its status from an 
infimum to an attained minimum. On the other hand, if L' is an irrational 1-dimensional 
subspace then for any e > 0 there is, by Kronecker's Theorem, a rational 1-dimensional 
subspace L = L(e) such that i/(C, L') < i/(C,L) + e. A number of authors ([5], [6], [10]) 
have used this type of reasoning in discussions of z/(C, 1) to show that is sufficient to 
take the supremum over rational subspaces, that is 

i/(C, 1) = sup{KC,L) : L H P ^ 0,dimL = l,L is rational}. 

While the argument given above is quite correct, it leaves a false impression about 
the behaviour of irrational subspaces. In dimension n — 2, the full truth is that if L is 
irrational then KC,L) = 0. In higher dimensions there are "degrees of irrationality" 
and what we can say is that an irrational 1-dimensional subspace L lies in a uniquely 
determined rational m-dimensional subspace M = M(L), 1 < m < n, and satisfies 
z/(C, L) = z/(C, M). More generally, an irrational d-space L (see §2 for definitions) lies in 
a uniquely determined rational m-space M = M(L), d < m < n, and satisfies i/(C, L) = 
z/(C, M). This general result gives good understanding about links in the full spectrum 

{z/(C, L) : L a subspace of Rn} 
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and can be used to eliminate irrational subspaces from the calculation of quantities such 
as 

i/(C,rf) = sup{z/(C,L) : L H P ^ 0,dimL = d}. 

A tool used in our proofs about irrationality is the fractional parts map (p: Rn —-> [0, \)n 

given by (f((x\,X2,... ,xw)) = ({*i}, {^2}, • • •,{*«}). By extension of an earlier remark 
we have 

i/(C,L) - </£.(A,L) - JC(^(A), y>(L)) = <fc(i, ^(L)) 

but this formula must be used with caution because the ^-distance on [0, \)n is to be 
taken in the sense of the torus [0,1 )n — W1 / Zn rather than in the sense of the metric 
subspace [0, l)n C W1. However, when the metric dc on W1 is such that the cells of the 
partition Rn = [0, \)n+Ln are Dirichlet cells for A, this distinction can be dropped, at least 
for distances measured from \ G [0,1)". We show that this situation prevails whenever 
the symmetry group of C includes reflections in all the coordinate hyperplanes X{ = 0, 
/ = 1,2,...,«, and it brings with it a substantial simplification in the calculation of 
z/(C, L). In other considerations related to the symmetries of C, we mention cases where 
the values of i/(C, L) for subspaces L lying in a coordinate hyperplane H can and cannot 
be related to the lower dimensional problem i/(C Pi H, L). 

A consideration which has not appeared previously in view-obstruction problems is 
the relation of a convex body C to its dual body C*. We exploit this relation in n dimen­
sions to give an explicit formula for i/(C, L) when L has dimension n—\. 

We have mentioned an instance of the result that when L is rational, 

i/(C,L) - dc(A,L) = inf{dc(z,x) : z G A,x G L} 

is an attained minimum. We prove this result in full generality and it prompts us to ask 
whether 

i/(C, d) = sup{z/(C, L) : L n P ^ 0, dim L = d} 

is an attained maximum. In pursuit of the answer to this question we place a metric on 
the space of subspaces of Rn which renders it compact and show that i/(C, L) is upper 
semi-continuous in L with respect to this metric. This machinery reduces the problem of 
showing that z/(C, d) is an attained maximum to the problem of showing that the set of 
subspaces L which needs to be considered, can be taken to be closed. 

Finally, by bringing all of our techniques to bear on the view-obstruction problem in 
dimension « = 2we can give a rather complete analysis. For any 2-dimensional closed, 
centrally symmetric convex body C, the value z/(C, 1) is always an attained maximum 
but there are two quite different extremes of behaviour. On the one hand we find a large 
class of bodies C including the square max{|jcj |, |*2|} < \ a nd the diskx^ +x\ < \ for 
which it is true that 

i/(C,l) = max{i/(C,((2,l))),i/(C,((l,2)))} 

https://doi.org/10.4153/CJM-1993-027-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-027-9


520 V. C. DUMIR, R. J. HANS-GILL AND J. B. WILKER 

and for which the only centres in A that are actually needed for blocking arbitrary sub-
spaces are those with x\ = \ or xi — \. In contrast we identify bodies C for which the 
critical subspace L that determines i/(C, 1) is blocked only at centres in A that are far 
from the axes. This last class of examples provides a nice justification for the original 
idea of using all the centres in A for view-obstruction. 

2. Irrational subspaces. A J-dimensional subspace L of W is called rational if it 
has a basis consisting of vectors in Qn\ 

L = (ai,a2 , . . . ,ad>; a,- e Qn, i=l,2,...d, 

or, equivalently, if it is the intersection of n — d independent hyperplanes with normals 
in Qn: 

n-d 
L = (ci ,c2 , . . .cn_ r f)

1= H CJL; cj£Qn'J= h2,...,n-d. 
7 = 1 

A subspace L of Rn which is not rational is called irrational. Any subspace L of W1 is 
contained in a unique minimal rational subspace M = M(L) which can be characterized 
as 

M(L) = p |{ c ± i c e C ^ c 1 D L } . 

Of course, if L is rational then M(L) = L. 
If L is a d-dimensional subspace and L D P ^ 0 then it is possible to translate each 

vector in an arbitrary basis for L by a vector in L D P with sufficiently large norm that the 
resulting vectors form a basis for L and lie in P. It follows that L Pi P has topological di­
mension d. On the other hand, the rational hyperplanes cx which do not contain L satisfy 
dim(c1 Pi L) < d and there are only countably many of them. These two observations 
show the existence of a vector 

a 0 G ( L n P ) \ | J { c - L : c G Q n , c x ?$ L}. 

Then L0 = (a0) is a 1-dimensional subspace of L, and 

M(Lo) = p| c1 = H c1 = M ( L ) ' 

Moreover, since Lo C L C M, 

i/(C,L0) > I / ( C , L ) > I / ( C , M ) . 

In a series of lemmas we shall show that under the fractional parts map v?(Lo) is dense 
in c (̂M) and therefore 

KC,L0) - dc{^MU)) - < / c ( ^ ( M ) ) - z/(C,M). 

This will show that i/(C, L) = z/(C, M). These results are summarized as 
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THEOREM 1. Every irrational d-space L C W1 is contained in a unique rational 
m-space M = M (L) of minimum dimension m(L) > d and this space satisfies z/(C, L) = 
z/(C,M). 

COROLLARY. The constant i/(C,d) defined earlier can be computed as 

i/(C, d) = sup{i/(C, L) : L n P ^ 0, dimL = d, L w rational}. 

PROOF OF COROLLARY. Let \J be an irrational subspace of dimension d which meets 
P. Let L be any rational subspace of M(L') = M of dimension d which meets P. Then 

I / (C ,L / ) = I / ( C , M ) < I / ( C , L ) . 

The rest of the section is devoted to the discussion required for the proof of the fact 
that < (̂Lo) is dense in <p(M). 

Suppose L is an irrational d-space given in the form 

L = (ai,a2 , . . . ,a r f). 

By writing the vectors a/ = (an, at2,..., ain) as rows we can regard L as the row space 
of the d x n matrix A — {aij). By elementary row operations and possible reordering of 
coordinates we can assume that 

1) for y < d, ay — ay, and 
2) there is an integer m with d <m < n such that the first m columns of A are linearly 

independent over Q and the remaining n — m columns are Q-linear combinations 
of the first m. 

The first condition, which is mainly intended to help fix ideas, says that the points of L 
are of the form 

L = Ux\,X2,... ,Xd,(x\,X2,... ,Xd)L) : x\,X2>... ,Xd E R\ 

where L is a real dx (n — d) matrix equal to the last n — d columns of the matrix A. The 
second condition invites us to consider the m-dimensional space 

M = {(x\,x2,... ,xm,(x\,X2, •.. ,xm)M) :x\,X29...,xm G R) 

where M is the rational m x (n — m) matrix whose y-th column gives the coefficients of 
the expression for the m +y-th column of A in terms of its first m columns. 

LEMMA 1. The subspace M defined above is equal to the minimal rational sub-
space M(L). 

PROOF. Let / be the (n — m) x (n — m) identity matrix. Then the n — m columns of 
( Mj) are independent rational vectors perpendicular to the rows of A. No rational vector 
outside their span could be perpendicular to the rows of A because it together with these 
columns would generate a non-trival Q-linear relation among the first m columns of A. 
This completes the proof that M = M(L). 
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LEMMA 2. If L D P ^ 0 there is a vector a0 = (l,#2, • •. tfm,(l,a2,... ,am)M) G 
L H P with {l,a2,... ,am} linearly independent over Q. 

PROOF. The existence of ao G L H P was argued in the preamble to Theorem 1. The 
normalization to a\ — 1 is possible because the eligible vectors form a positive cone. 
The form of ao as regards the matrix M applies to all vectors in L because L C M. The 
Q-dependence of {1, a2,..., am} would imply the existence of c G Qn with ao G c^ and 
L (jL c 1 contrary to the definition of ao. 

It is convenient to write 

Rn = Rm x Rn~m = {(u,v) : u G f , v E Rn~m}. 

Then the subspace M is equal to the graph of the linear mapping v = uM. We let q be 
the least common multiple of the denominators occurring in the rational matrix M and 
for 1 < i < m set e,- = (0,0, . . . , 0, q, 0 , . . . , 0) G Rm with q in the i-th place. The vectors 
(e/, e/M) lie in Tn and generate a translation group G consisting of symmetries for both 
A and M. As a first step in applying the fractional parts map p\Rn —> [0, \)n we define 
<p\ : Rn —• [0, q)m x Rn-m by noting that [0, q)m x Rn~m is a fundamental domain for G 
and letting <p\ be the quotient map. Since the elements of G are symmetries of A and 
M, < î(A) and v?i(M) are just the sections of A and M by the cylinder [0,q)m x Rn~m. 
The subspaces Lo = (ao) and L are nested subspaces of M and so their images under (f\ 
satisfy (f \ (Lo) C ip i (L) C <p \ (M). The sets Lp \ (L0) and p \ (L) are obtained by restricting 
v = xxM to suitable domains in [0, q)m and we can show that both these sets are dense in 
p\ (M) by showing that the domain of ^i (Lo) is dense in [0, q)m. This will complete the 
proof of Theorem 1 because ip is equal to p2 ° <£ i where p2 maps the cells of [0,1 )n + Zn 

that lie in [0, q)m x ^n"m isometrically to [0, If. 

LEMMA 3. The domain of p\ (Lo) /s ^ / Î ^ ^ m [0, ^)m. 

PROOF. With W = Rm x Rn~m, the subspace L0 is given by restricting the linear 
mapping v = uM to the domain u = (t, a2t,..., amt) with t G R. The domain of p\ (Lo) 
is given by reducing these coordinates modulo q to 

{(?{^)w{y),-..^(Y}):rGR} = f^^^a.. . ,K/})^' = ^R}. 

This set is dense in [0, q)m because a direct application of Kronecker's Theorem ([14], 
p. 382) to the rationally independent numbers {1, a2,..., am} assures us that the set 

{({t},{a2t},...,{amt}):teR} 

is dense in [0, l)m. 
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3. Rational subspaces. We have seen that i/(C,d) = sup{^/(C,L) : L H P ^ 
0, dim L = d} can be computed by considering only rational subspaces L. The object of 
this section is to investigate the calculation of z/(C, L) when L is a rational subspace. 

Since rational subspaces L satisfy M(L) = L, the analysis of §2 shows, in effect, that 
rational d-spaces admit a representation in 

Rn = Rd x Rn~d = {(u,v) : u G Rd,\ G R"-d} 

of the form v = uL where L is a rational matrix. Moreover, if q is the least common 
multiple of the denominators occurring in L then every point on L is equivalent by an 
integral translation to at least one point on the section of L by the closed cylinder [0, q]d x 
Rn~d and therefore rfc(A,L) = dc(A,L D ([0,q]d x Rn~d)). It is an important fact that 
this section is compact because this allows us to prove 

THEOREM 2. If h is a rational d-space then 

z/(C,L) = dc(A,L) = inf{dc(z,x) : z G A,x G L} 

is an attained minimum. 

PROOF. For any subset S c R " the related function/: Rn —> R defined by/(x) = 
dc(S, x) is Lipschitz in x and hence continuous. In particular the function/(x) = dc(A, x) 
is continuous and therefore attains a minimum, at xo, say, on the compact set L D ( [ 0 , ^ x 
Rn~d). Since A is discrete there must be a point z0 of A such that/(xo) = dc(zo,xo). It 
follows that dc(A, L) = dc(zo, Xo) as required. 

Theorem 2 suggests an idea for computing z/(C, L). First, by considering those z G A 
that are "near" Lfl([0, q]d x Rn~d) we can produce a finite list of zt G A which must in­
clude a closest point z0. Next we can solve the "calculus"problem of minimizing ft(x) — 
dc(Z(, x) with x G L for each of the centres zt on our list. Finally, we can obtain z/(C, L) as 
the smallest of these finitely many minima. One situation in which this algorithm works 
particularly well is when the cells of [0, \)n + Tn are Dirichlet cells for A under the metric 
dconRn. 

Let r be a shifted lattice in IRn. For zo G F, D(z$) is called a Dirichlet cell if it contains 

{x G Rn : dc(zo, x) < dc(z, x) Vz G F with z ^ z o } 

and is contained in 

{x G Rn : dc(z0,x) < dc(z,x) Vz G F with z ^ z0}. 

If T = r + d where d G Rn is fixed, then £>(z0) + d is a Dirichlet cell for z0 + d G T . 
In particular [0, \)n + Tn is a family of Dirichlet cells for A if and only if [—\, \)n + Zn 

is a family of Dirichlet cells for Zw. We proceed to give an example in IR2 which reveals 
some surprising possibilities and helps to clarify the definition of Dirichlet cell. 

Let C be the rectangular convex body 

C{(JCI,JC2) G R2 : - 3 < x{ < 3 and - 2 < x2 < 2}. 
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The inequality dc(0,x) < dc(z,x) for all z G Z2 \ {0} defines the open convex octagon 
with vertices ( | , | ) , ( | , | ) , and others related to these by reflections in the coordinate 
axes. On the other hand, the inequality dc(0,x) < dc(z,x) for all z G Z2 \ {0} defines 
the closed, non-convex (but star-shaped) octagon with vertices ( ^ , 0 , ( | , ^ ) , and others 
related to these by reflections in the coordinate axes. (See Figure 1 and note that the 
points of the closed triangle with vertices (^, | ) , ( | , \), (^, j) are all equidistant from 0 
and z = (1,0) in the metric dc). One might have expected the second set to be the closure 
of the first set, but this is not the case. One might also have expected the translates of one 
or the other of these sets to the centres of Z2 to give a partition of IR2 (modulo boundary 
points) but this too is false. Nevertheless, the set [— ,̂ ^)2 does lie between these two 
sets and its translates do give the desired partition. As a generalization of the essential 
features of this example we shall prove 

THEOREM 3. The cells o/[0, I f + ln are Dirichlet cells for A = \ + Tn under the 
metric dc whenever C is symmetric by reflection in all n coordinate hyperplanes. 

(' 

0- i) 

N > < 2 ' 3 ) 
^ 

0- -h M> 2^ 

V(X- i) 

x 

FIGURE 1 : The sets defined by dc(0,x) < dc(z, x) and by dc(0, x) < dc(z,x) with C = [-3,3J x [-2,2]. 

This theorem has a strong bearing on our algorithm for computing i/(C, L) because of 
the following 

COROLLARY. If C is symmetric by reflections in all n coordinate hyperplanes then 
at least one of the points of A closest to the rational d-space L is among the centres of 
the cells of[0, l)n + Zn which meet L H ([0, q]d x Rn~d). 

PROOF. For each point x of L, no point of A is closer than the centre of the cell to 
which x itself belongs. Accordingly we need only examine those centres z/ G A with the 
property that the cell centred at zt meets L H ([0, q]d x Rn~d) and indeed contains one 
of the points of L closest to z/. The second condition is informative but impossible to 
phrase as a selection criterion so we include only the first condition in the statement of 
the corollary. 
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As an application of the corollary we take up the example of a 1-dimensional rational 
subspace L = (a) where a G (Z+)n and g. c. d. {a\,a2,..., an} = 1. The greatest integer 
function allows us to write the finite list of centres z, G A that need to be considered, in 
the compact form 

z = 2+daiJl [02*],..., [ant]), 0 < t < - . 

The extra reduction from 0 < £ < l t o O < £ < ^ comes about because we can avail 
ourselves of the symmetry x —-> — x as well as the symmetry x —> x -I- a. The number of 
these trial centres is at most 1 +E*/Li [\ai\ where the * indicates summation over distinct 
a/'s. This is because the line L crosses [\a{\ cell walls parallel to the i-th coordinate 
hyperplane as t runs through the interval 0 < t < \ and each new crossing, counting 
simultaneous crossings as one, generates one new centre. Earlier papers have suggested 
Il/Li di trial centres in the special case when C is a ball or a box, so our reduction to fewer 
than 1 + E*/Li [\ai\ under more general conditions represents a substantial improvement. 

Before turning to the proof of Theorem 3 we should see an example where the algo­
rithm fails in the absence of the symmetry condition. Consider the 1-dimensional sub-
space L given by (t, t, 2t), t G R, in R3. The fact that it is rational implies that there are 
points z G A and x G L which realize dc(A, L) and moreover the point x can be taken to 
lie in L Pi ([0,1] x IR2). However if we take C to be a long narrow ellipsoid of revolution 
with its major axis in the direction (—1, —1,8) the possible values of z related to these 
values of x are z\ — ( | , \, — | ) which pairs with x = ( | , | , | ) and Z2 = (\, \, \) which 
pairs with x = ( | , | , | ) . Neither of the corresponding cells meets the line L. 

Now towards the proof of Theorem 3 we state and prove 

LEMMA 4. Suppose that C is invariant under reflection in the coordinate hyperplane 
parallel to the hyperplane H and a, b, and x are points ofW1 with a and b = aH mirror 
images in H. Then 

(i) ifx G H, dc(a, x) = Jc(b, x), and 
(ii) ifx lies in the same half space as a relative to H, dc(a, x) < dc(b, x). 

The inequality in (ii) is strict ifC is strictly convex. 

PROOF, (i) Suppose dc(a,x) = a so that x G bdy(aC + a). Then x = xH 

G bdy(aC + a)H. If Hi is the hyperplane parallel tô H through a, the product of re­
flections Hi H is equal to the translation x —> x + (b — a). The reflection symmetry of C 
shows that 

(crC + a)H = (aC + a)H 'H = (aC + a) + (b - a) = aC + b. 

Thus x G bdy(aC + b) and dc(b, x) = a = dc(a, x). 
(ii) Let xb meet H at y. Then 

Jc(a, x) < dc(a, y) + dc(y, x) = dc(b, y) + dc(y, x) = dc(b, x). 

The inequality comes from the triangle inequality applies to a proper triangle. It is known 
that this leads to strict inequality whenever C is strictly convex. 
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LEMMA 5. IfCis invariant under reflection in each of the coordinate hyperplanes 
andx G [—\, \)n then the inequality dc(0,x) < dc(z,x) holds for all z G Zn \ {0}. 

PROOF. The proof is by induction on <5(z) = E"=i \zi\. If S(z) = 1 and the non-zero 
coordinate of z is Zj = ±1 we apply Lemma 4(ii) to the hyperplane H given by Xj = ±^ . 

Now suppose the result is true for 6Q. Consider x G [—\, \)n and z G Zn \ {0} with 
6(z) = <50 + 1. Suppose that the segment zx meets a face H of [—\, \]n at y. If H is the 
hyperplane Xj• = ± ^ then zH differs from z only in itsy-th component and this is reduced 
by 1 in absolute value so <5(zH) = <5o and dc(z

H,x) > dc(0, x) by induction. This proves 
that 

dc(z,x) = dc(z,y) + dc(y,x) 

= </c(z
H,y) + dc(y,x) 

>dc(z
H,x) >dc(0,x) 

as required. 
Lemma 5 implies that [— ̂ , j)n + Zw is a Dirichlet partition for Zn under the metric dc 

and hence [0,1)'?+Zn is a Dirichlet partition for A. This completes the proof of Theorem 3. 

4. Sections of C. If a subspace L C Rn does not lie in any of the coordinate hy­
perplanes then it meets one of the open cones which comprise the complement of these 
hyperplanes and there is no serious loss of generality in assuming, as we have done, 
that it meets the positive cone. For by applying reflections in suitably chosen coordinate 
hyperplanes we can move L to a subspace L' that does meet P and either these reflec­
tions belong to the symmetry group of C, in which case i/(C, L) = i/(C, L;) or else they 
transform C to a related body C;, in which case interest shifts to the related problem 
i/(C, L) = z/(C7, L;). We now give some consideration to subspaces L that lie in a coor­
dinate hyperplane H; for reasons similar to the ones given above, we can assume that L 
meets the part of H that constitutes a wall of P. 

We are interested in cases where consideration of these subspaces reduces to an (n— 1 )-
dimensional problem in H = Rn~l and z/(C, L) is nicely related to v(CPiH, L). This will 
happen if, for suitable values of a, there is a function (3 = (3(a) such that 

( a C + U z j n H = /3(CnH) + U Tn~x. 

We shall see that this condition holds for many bodies including the generalized ^-balls 

c ^ E l - ^ - j <!; fc«>o, i<p<oo. 

On the other hand the property obviously fails whenever 
(1) the sections of C by hyperplanes parallel to H are not mutually similar, or 
(2) the collection of the bodies (aC + ^ + Tn) n H are not properly situated in H. 
Bodies C symmetric by reflection in the coordinate hyperplane H were an important 

feature of the last section. They reappear here whenever pairs of bodies from aC + A 
which lie closest to H but on opposite sides of H, have the same intersection with H. This 
is a very natural precursor of our desired condition, thought not the only one possible. 
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LEMMA 6. If H is a coordinate hyperplane, a $ H, and (aC+a)PlH = (aC+aH)HH 
for all a > 0 then C is symmetric by reflection in H. 

PROOF. Since H is invariant under the dilatation x —> ax, the condition can be 
rewritten 

a[(C + a_ 1a) H H] = <*[(C + a_ 1aH) H H] 

and then 
C fl (H - c r ' a ) + a _ 1a = C H (H - cT JaH) + a_ 1aH . 

If the component of a - 1 a that is perpendicular to H is denoted n = n(a), this last equa­
tion says that the symmetrically placed sets C Pi (H — n) and C H (H + n) are congruent. 
Since this holds for all n, the set C is symmetric by reflection in H. 

THEOREM 4. Let C be a convex body which is symmetric by reflection in each of the 
coordinate hyperplanes. Then if the sections of C parallel to the coordinate hyperplane 
H are mutually similar, we can compute i/(C, \S)for subspaces L C H from i/(CDH, L). 

PROOF. Suppose H is given by xn = 0. Since C is convex and symmetric by reflec­
tion in H we have for any z = (z', zn) £ | + 1n that 

[aC + ( z U ) ] n H c [aC+(z ' i ) ] n H = [ a C + ( z ' , - ^ ) l HH. 

By considering the product of reflections in the n—\ hyperplanes through the two points 
(z', ±^) and parallel in turn to the first n — 1 coordinate hyperplanes, we see that this 
intersection with H is a centrally symmetric body centred at i! G \ + Zn~l. These inter­
section bodies are mutually congruent for fixed a and varying z''. The third condition in 
the hypothesis implies that they are similar to C D H. This means that we have 

faC+|+ZJnH = /^(CnH)+|+ T-] 

as required. 
Finally we give an example of this type of computation. Suppose that C is the gen­

eralized lp-ba[\ Y%=\(i^Y < 1 with 1 < p < oo and L is the 1-dimensional sub-
space spanned by a = («i,(32,... ,an) with am+\ — am+2 = • • • = an = 0. Then 
aC + (z\, zi, • • • ,zm, \, \, • •., \) meets the m-flat xm+\ = xm+2 = • • • = xn — 0 in 

ff?M)'<1_f ;fi)'. 
t'A ab, ) - ;=~ ,W 

This means that 
r JL ( 1 \P-\1/P 

'•*I'-£(5i)l 
and 

^(CL)= ± ( i ) p
 + ̂ f cn( n H,),L) 
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where H7 is the coordinate hyperplane Xj = 0. This formula makes a useful addition to 
the short list of things that are known exactly and we take this opportunity to give a brief 
summary. 

If C is the cube max{2|jc;|} < 1 then for any L lying in a coordinate hyperplane H, 
i/(C,L) = 1. In dimensions n = 2,3,4 it is known that i/(C, 1) = ^ [6], \ ([6]-[8]), and 
| [9], respectively. See also ([1], [3], [4], [16]) where the same problem is studied in a 
different way. 

If C is the Euclidean ball £?=i(2*i)2 < 1 then for n = 2,3 it is known that i/(C, 1) = 
4= [6], and ^ [10], (see also [4]) respectively. In dimension n — 2 we can add 

i/2(C,((l,0))) = l 

and in dimension n = 3, 

z/2(C,((l ,0,0)))=2, 

and 

i/2(C,((l,a,0))) = U i / 2 ( C n H 3 , ( ( l , a ) ) ) . 

In dimension n — 4, the spectrum of the ball is not yet understood well enough to de­
termine i/(C, 1) but for 1-dimensional subspaces lying in coordinate hyperplanes we can 
use lower dimensional information to say 

z/2(C,((l,0,0,0))) = 3 

*/2(C,{(l,a,0,0))) = 2 + i / 2 (CnH 3 nH 4 , ( ( l , û ) ) ) , and 

!/2(C,((l,tf,Z?,0))) = l + z/2(CnH4,((l, a, b))). 

5. The dual body C*. Let C be a closed, centrally symmetric convex body centred 
at the origin in W1. Then 

fix) = dc(0,x) = inf{a > 0 : x G aC} 

is a norm on (Rn and in terms off the body C is the closed unit ball 

C = { x G R " :/(x) < 1}. 

Starting either from C or from/ and using the standard inner product x y = ££= { xtyt on 
W1 we can define a new centrally symmetric convex body C* and companion norm/* in 
such a way that C** = C and/** = / . See [2] Chapter IV Section 3 or [15] Section 14. 
The definitions are 

C* = {y G r : x • y < 1 for all x E C} 

and 
x • v 

/*(y) = sup — - = sup x • y; 
x ^ O / W /(x)=l 
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C* is called the polar reciprocal body of C or the dual body of C and/* is called the dual 
norm off. Among the basic properties of these objects, the inequality 

x-y</(x)/*(y) 

is most important for us because it leads to a useful expression for the distance from a 
point to an (n — l)-dimensional subspace. 

A few proofs will enhance intuition for C* and /* and clarify their definitions. The 
body C* is convex because it is the intersection of half-spaces x • y < 1 with x in C. 
The body C** is therefore also convex and C C C** because every x in C obviously 
satisfies x • y < 1 for every y admitted into C*. Since C is full dimensional, we can 
prove C = C** by showing that boundary points of C are also boundary points of C**. If 
xo G bdy C there is a yo G Rn such that the hyperplane x • yo = 1 touches C at Xo and the 
half-space x • yo < 1 contains C. These two statements imply xo • yo = 1 and yo G C*. 
But if yo G C*, xo • yo = 1 implies xo lies on the boundary of one of the half spaces 
whose intersection comprises C**. Normally this would suggest that xo ^ C** but since 
we know that x0 G C C C** it says instead that xo G bdy C** as required. 

Since C is a proper body, it contains a small Euclidean ball and is contained in a large 
Euclidean ball. This means that there is a constant k > I such that the Euclidean norm 
satisfies 

^||x||</(x)<*||x||. 

Knowing only that/ is a norm satisfying these conditions one can work from the defini­
tion of/* to show that/* is also a norm. When y ^ 0 the string of equivalent definitions 
of/*(y) can be extended to include 

f(y) = sup 7M 
x y = U W 

and this helps to show that/* is the companion norm to C*. For on any ray ty, t > 0, there 
is a vector yo such that yo is the outward pointing normal of a half-space x • yo < 1 that 
just contains C. If the boundary hyperplane touches C at xo we have in turn Xo G bdy C, 
yo G bdy C*, and/*(yo) = TT̂ -T = 1 as required for/* to be the companion norm of C*. 
This line of reasoning also shows that 

x-y</(x)/*(y) 

and any fixed value of either variable determines at least one ray in the other variable 
where equality holds. For example if xo is fixed, the possible rays in y are precisely those 
corresponding to the direction of outward normals to hyperplanes that touch C at T^T. 

THEOREM 5. Let z be a point ofW1 and let L be the (n - \)-space x • c = 0. Then 
the distance dc(z, L) is given by dc(z, L) = p^r where/* is the norm of the body C*. 

PROOF. Let us assume that the normal to the (n — l)-space is taken so that z • c = 
|z • c| > 0. In this case we have 

dc(z, L) = inf dc{z, x) = inf/(z — x) = inf /(w). 
xGL XGL W-C=Z-C 
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But w • c </(w)/*(c) and hence/(w) > ^ . Moreover with c fixed there are values of /*(c) 

w that attain equality. It follows that dc(z, L) = fif^ as required. 
As a corollary to Theorem 5 we obtain an algorithm for solving the view-obstruction 

problem completely for (n — l)-spaces. 

COROLLARY. For C G Z " with g.c.d. {c\,c2,...,cn} = 1, 

JL _ JO ifT,Uci=0 (mod 2) 
Z/(C,C } " 1 wkc) lf^=\Ci =1 (mod 2)-

If the integral vectors c satisfying c1 Hi P ^ 0 and Y%=\ Q ~ 1 (mod 2) are arranged 
in order of increasing /*(c), w obtain a display of the full spectrum. The first entry is 
HC,n- 1). 

The rest of this section is devoted to a situation where the approach yields quite ex­
plicit results. 

LEMMA 7. The dual of the generalized lp-ball 

is the generalized tq-ball £ ? = i ( ^ ) * < 1 w/r/z i + i = 1. 

PROOE This is standard except for the b-parameters and homogeneity demands that 
they may be placed in/* as we have them. 

By combining Lemma 7 and the corollary to Theorem 5 we obtain 

THEOREM 6. InR2 the bodies Cp$ satisfy 

1 1 
v(Cpfr 1) = max 

[bq
x+{2b2)«yl^ [(Ib^ + bl^lv 

We note that Theorem 6 extends the previously known values [6] for the square and 

the disk, namely i/(Coo,(i,i)> 1) = \ an(* KC2,a,i), *) = 75 • 

6. A metric on subspaces. The object of this section is to establish a useful criterion 
for deciding when the quantity 

i/(C, d) = sup{i/(C, L) : L H P ^ 0, dim L = d) 

is an attained maximum. Continuity and compactness arguments will eventually play a 
role but there are two immediate difficulties: the function z/(C, L) is not continuous in L 
and its domain is not compact. The remark about the domain stems from the obvious fact 
that P is open, but the observation about the function runs deeper. Theorem 1 indicates 
that a subset of the L's which is so large that it is bound to be dense in any reasonable 
topology, satisfies M(L) = IRn. This condition entails i/(C, L) = 0 and hence the function 
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cannot be continuous without being identically equal to zero. To escape this apparent 

impasse, we recall from general topology that we can still establish the existence of a 

maximum if we relax the hypothesis on the function from continuity to upper semi-

continuity. 

A famous metric on the non-empty compact subsets of Rn is the Hausdorff metric. 

Starting from the Euclidean metric d on Rn we define for any non-empty subset A C Rn 

and for any e > 0, the ^-neighbourhood of A 

NE(A) = {xe Rn :d(x,A)<t} 

and then for any two bounded, non-empty subsets A\, A2 C IR2, the distance 

h(Au A2) = inf{& > 0 : A^(Ai) D A2 mdN£(A2) D A , } . 

If Ai C A2 c A i , h(A\, A2) = 0 but if we restrict our attention to closed subsets, then h 

becomes a metric. It is an important theorem about the Hausdorff metric h that the family 

*B of non-empty compact subsets of a fixed compact set B comprise a compact metric 

space (*B,h). Moreover the non-empty, closed, convex subsets of B comprise a compact 

subspace of (%h). This fact is often used in convexity theory where it is known as the 

Blaschke Selection Principle ([13] p. 64 or [15] p. 11). 

If B is the unit ball {x G Rn : ||x|| < 1} we can use (®, h) to put a metric on the vector 

subspaces of Rn: for if L and L7 are vector subspaces of Rn then L Pi B and L7 D B are 

non-empty, closed, convex subsets of B and we can define 

/z(L,L7) = / * ( L n B , L 7 n B ) . 

This metric on subspaces has a number of pleasant properties. 

LEMMA 8. The Hausdorff-related metric on subspaces ofW1 satisfies: 

(i) If L and V are subspaces ofW1, h(L, L7) < 1, 

(ii) 7/dimL ^ dimL', /z(L,L;) = 1, 

(Hi) If L^ is a Cauchy sequence of subspaces, then L^ is eventually m-dimensional for 

some 0 < m < n and there is an m-dimensional subspace Lfor which hk —> L, 

(iv) If L is a subspace, XQ G L, and g > 0 there is ab > 0 with the property that any 

subspace \J with h(L, Lf) < 6 contains a point x' with d(xo, x7) < g. 

PROOF, (i) Let L and V be subspaces of Rn. Since 0 G L and L ' n B c B we have 

7Vi(LHB) D Ni({0}) DBDL'nB 

and symmetrically, N\(LnB')DLnB. This proves that A(L, V) < 1. 

(ii) Suppose d imL < dimL7. Then d i m L 1 — n — d imL > n — dimL7 . Since 

d i m L L + d i m L 7 > n there is a unit vector x7 G (L7 n B ) D L 1 . Under these circumstances 

7V£(L H B) D V H B D {x7} only if e > 1 and /z(L, L7) = 1 as required. 

(iii) If L^ is a Cauchy sequence of subspaces, (ii) implies there is an m with 0 < m < n 

such that dimL^ = m from some point onwards. We can assume that the sequence of 
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convex sets L^PB —> K where K is a non-empty, closed, convex subset of B. The proof 
that K = L P B for some ra-dimensional subspace L is similar to the known argument 
([2] p. 61) that if Q is a Cauchy sequence of convex sets and C* —» K, then K is convex, 

(iv) If g > ||xo||, any subspace L' will serve. If g < ||xo||, the cone generated by 0 
and the ball with centre xo and radius g meets B in a cone with axis A G L Pi B. If 
è = e and h(L, V) < 6 then N6(V P B) D L P B and there is a vector y G L ' f l B , 

which can write as y = ^n-, that satisfies d(y, jAr) < TT^. It follows that d(xf, xo) < g 
as required. 

THEOREM 7. The subspaces ofW are compact in the Hausdorjf-related metric and 
z/(C, L) is upper semi-continuous in L with respect to this metric. 

PROOF. The compactness follows from Lemma 8 part (iii). 
To prove the upper semi-continuity, let e > 0. There exists g = g(s) > 0 such that 

d(x, y) < g implies dc(\, y) < §. Since z/(C, L) = dc(A, L) there exist points xo G L and 
zo G A such that 

i/(C, L) = dc(A, L) < dc(z0, xo) + - . 

By Lemma 8(iv) there exists a è > 0 such that for any subspace \J with /i(L, \J) < 6 there 
exists a point x' G L' with J(xo, x') < ^. Our opening remark shows that dc(xo, xf) < | 
and therefore 

1/(0,^) = dc(AX) 

<dc(z0,x
f) 

< Jc(z0,x0) + (ic(xo,x/) 

<(*(A,L)+£) + i 

= i/(C,L) + e. 

Theorem 7 shows that i/(C, d) is an attained maximum whenever we can restrict the 
subspaces L that must be considered to a closed and therefore compact subset of these 
spaces. We shall see in §7 that this is always possible for view-obstruction problems in 
R2. 

1. View-obstruction in R2. Let C be a closed, centrally symmetric convex body 
in R2. Consider the family of bodies aC + ^ and suppose that as a increases from 0, 
aC + \ meets Li = ((2,1)) for the first time when a — a\ and L2 = ((1,2)) for the 
first time when a — a-i. Since Li and L2 are hyperplanes and z = ^ is one of the 
points of A that is closest to them in the Euclidean sense, the dual body formula assures 
us that z/(C, L/) = ai for / = 1,2. Theorem 6 shows that for a large class of bodies 
z/(C, 1) = max{ai, o^}. This was obtained from an explicit formula for the dual norm 
but in general such a formula is hard to obtain. We now supply an alternative sufficient 
condition directly in terms of C which will ensure this result. We say that C satisfies the 
blocking condition if 

(a,C + ^ n L , C [ 0 , l ] 2 
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for / = 1,2. The blocking condition is satisfied if C is symmetric by reflection in one 
and hence both of the coordinate axes or if C is symmetric by reflection in one and hence 
both of the lines X2 — =bq. 

THEOREM 8. If C is a centrally symmetric convex body that satisfies the blocking 

condition then 

i/(C, 1) = max{i/(C,Li),i/(C,L2)}. 

Moreover if h is any subspace satisfying L PI P ^ 0 then there is a point z = (z\, Zi) G A 
with z\ = \ or zi = \ such that (z/(C, 1)C + z) n L ^ 0. 

PROOF. Let us write at — i/(C, L;), / = 1,2, as in the preamble to the theorem. Then 
certainly i/(C, 1) > max{ai,a2J. We proceed to show that z/(C, 1) < max{ai,a2J 
and also that the other conditions of the theorem are fulfilled. Because of the symmetry 
between x\ and X2 it will suffice to show that if L lies on the line X2 — mx\ with slope 
m < 1 then there is a point z = (z\, zi) G A with zi — \ such that (a\ C + z) D L ^ 0. 

We know that the line xj = \x\ touches a\C + \ at a point a of [0, l]2 . By reflecting 
in the point \ we see that the parallel line X2 = \x\ + \ touches a\C + \ at a point 
b of [0, l]2 . The segment ab is a chord of a\C + ^ through ^ and it together with the 
parallel chords a„bn of ct\ C + (n + \, ^), n — 1,2,..., give a polygonal roof of the form 
^, a, bi, ai, b2, a2,... above thex\-axis. Every lineX2 — mx\ with slope 0 < m < 1 must 
pass through this roof in such a way that it meets one of the chords and hence one of the 
bodies, as claimed. 

In the corollary to Theorem 5 we showed that in n dimensions i/(C, n — 1 ) is an attained 
maximum. As an application of Theorem 7 we give an alternative proof that in 2 dimen­
sions i/(C, 1) is an attained maximum. This geometrical proof deepens our understanding 
of the 2-dimensional situation and may lead to an «-dimensional generalization. 

THEOREM 9. If C is an arbitrary closed, centrally symmetric convex body in R2 then 

i/(C, 1) = sup{z/(C,L) : L D P ^ 0,dimL = 1} 

is an attained maximum. 

PROOF. Let D be the ball x\ + x\ < \. Then there are constants \i and A such that 
/ i D c C c AD. It follows that, for any a0 > 0, 

ao/xD + A C aoC + A C «oAD + A. 

The inclusion on the right shows that if a0A < i/(D, 1) = 4= there are some subspaces 
including Li and L2 that are not met by aoC + A and hence i/(C, 1) > «o- The inclusion 
on the left shows that every subspace L with z/(D, L) < aon is met by aoC + A. This 
collection of subspaces includes those which make an angle 6 < OQ with one of the 
coordinate axes where tarin 0 = , a°^ < L For lines with small slope this is true 
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because disks of radius r with centres (n + | , | ) , n G N, meet every line xi — mx\ with 
slope 0 < m < , 2r . It follows that 

i/(C, 1) = sup|i/(C,L) : L = ((cos<9, sin0)) with eo<9<^-0o]. 

This reduction to a closed set of subspaces can be combined with Theorem 7 to prove 
that i/(C, 1) is an attained maximum. 

Theorem 9 shows that in 2 dimensions every closed, centrally symmetric convex body 
C determines a 1-dimensional subspace L = L(C) such that i/(C, 1) = i/(C,L(C)). 
Theorem 1 implies that L(C) must be rational and Theorem 2 implies that if L is any 
rational subspace then there is a point z G A such that z/(C,L) = dc(A,L) = dc(z, L). 
This point z is not unique; if L = (a) with a G Z2 then z can be replaced by its image 
under any of the symmetries of A and L generated by x —-* — x and x —-> x + a. Let us 
denote by z(C, L) the eligible point in A Pi P that lies closest to the boundary of P. If C 
satisfies the blocking condition then z(C, L(C)) = \. The rest of the paper is devoted 
to showing that this behaviour is not universal. We construct bodies C and subspaces L 
such that z(C, L) and even z(C, L(C)) lies arbitrarily deep in P. 

Let us suppose that L = {(a,b)) = ((—b^a))1 with (a,b) G N2 normalized by the 
condition g. c. d. {a, b} = 1. Theorem 5 and its corollary show that i/(C, L) > 0 if and 
only if a and b are of opposite parity and then 

i/(C,L)= \ =dc(z,L) 
2f*(-b, a) 

if and only if z = \(x,y) G A and satisfies | — bx + ay\ = 1. 
Our next lemma is motivated by properties of the continued fraction [1,1,1,.. .]. 

LEMMA 9. Let pr and qn r > — 1, be Fibonacci sequences beginning with p_i = 
po = \ and with q~\ — 0, qo = 1. For any m > 1, let a = pm and b — qm and consider 
the Diophantine equations ay — bx— ±1 . A particular solution to one of these equations 
is given by (xo,yo) — (Pm-i»^m-i)- An arbitrary solution to either of these equations 
must satisfy \x\ > ^a, \y\ > ^b. 

PROOF. It is easy to see that 

Pmqm~\ — qmPm-\ = (—l)m+ . 

This means that the vectors (a, b) and (xo,yo) °f t ne lemma satisfy ayo — bxo = (— 1 )w+1 

and the general solution to ay — bx = ± 1 is given by 

(JC, y) = (±xo + at, ±y$ + bt), tel. 

The Fibonacci sequence pr satisfies pr = pr-\ +pr-2 ^ 2/?r_i. This implies that 

3 l 

-XQ = -XQ +X 0 <pm-2 +Pm-\ = Pm = « 
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and 

a= Pm= Pm-\ +Pm-2 < 2pm-\ = 2x0. 

It follows that 
1 2 
-za <*o < -a. 

Taking into account the form of general solution (x,y) we have |JC| > \a and similarly 

\y\ > \b-

THEOREM 10. For every k > 0 there is a 1-dimensional subspace L = h(k) and a 
point z = z(k) G A with z\ > k and zi > k such that for any centrally symmetric convex 
body C in R2 the point z(C, L) is equal to z(k). Moreover it is possible to choose a body 
C = C(k) such that z(C, L(C)) is equal to z(k). 

PROOF. The quantities a — p(m) and b — q(m) of Lemma 9 can be made arbitrarily 
large. Moreover, whenever m = 1 (mod 3) a and b are of opposite parity and xo and 
yo are both odd. It follows from the preamble that we take L = ((a,b)) then for any C, 
z/(C,L) = dc(z, L) if and only if z = ^(x,y) G A satisfies \ — bx + ay\ = 1. Lemma 9 
applies again and shows that this equality can hold for z G A D P only if z\ — \x > \a 
and zi — \y > \b. It follows that by taking m = 1 (mod 3) sufficiently large the 
subspace L(k) = ((a, b)) and minimal solution z(k) satisfy the first part of theorem. 

To construct a domain C(k) which satisfies L(&) = L(C) and hence z(k) = z(C, L(C)) 
it is enough to ensure that the primitive vector (—b, a) is the first non-zero lattice point 
swallowed by the expanding family of sets AC*, A > 0. To this end we can take C* to 
be an ellipse whose major axis runs from (b, —a) to (—b, a) and whose eccentricity is 
sufficiently close to 1 to exclude all other lattice points. With this explicit choice of C* 
we conclude the theorem by defining C(k) = C**. 
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