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ISOMORPHIC SUBGROUPS OF FINITE »-GROUPS. II
GEORGE GLAUBERMAN

1. Introduction and notation. Suppose that we are given an isomorphism
¢ between two subgroups of index p in a finite p-group P. Let N(¢) be the
largest subgroup of P fixed by ¢. By a result of Sims [2, Proposition 2.1], N (¢)
is a normal subgroup of P. In [2], we showed that P/N(¢) has nilpotence
class at most two if p = 2, and at most three if $ is odd. We then applied this
result to investigate certain cases of the following question. Suppose that P is
contained in a finite group G and that some subgroup of index  in P is a normal
subgroup of G. Let a be an automorphism of P. Then, does « fix some non-
identity normal subgroup of P that is normal in G?

In this paper, we consider characteristic subgroups of P rather than normal
subgroups. For ¢ as above, we use the following notation:

(1.1) @) p is a prime;
(b) P 1s a finite p-group;
(c) Q and R are subgroups of index p in P;
(d) ¢ s an isomorphism of R onto Q;
(e) Q* = N(¢);
(f) ¢ is the milpotence class of P/Q¥.
We also consider the following hypothesis:
(1.2) (@) P S G;
(b) Q 4 G;
(c) G is generated by a subset H enjoying the property that, for every
h € H, P is conjugate to P* in (P, P*).
Note that (1.2) is satisfied when P is a Sylow subgroup of G or when G is
generated by two conjugates of P.

For every group G and every positive integer 7, let G, be the ith term of the
lower central series of G. Thus,

G1 = G and Gi+1 = [G1, G], fOI"i ; 1.
If G is a finite p-group for some prime p, let
Q,(G) = (x|x € G and x?* = 1) and 0!(G) = (x*|x € G),

for = 1,2,3,....In addition, define &/ (G) to be the set of all Abelian
subgroups of maximal order in G and J(G) to be the subgroup of G generated
by the elements of &7 (G) (the Thompson subgroup of G).
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We obtain the following results:

TueorREM 1. Assume (1.1). Then P satisfies at least one of the following
conditions:
(i) W(Z(P)) = %u(Z(Q) = U(ZR));
(i) @) p = 2 and P50 (P) = Qc120°71(Q) = R0 (R), or
(“b) p = 3 and Pc+262(P) = Qc+262(Q) = Rc+262(R)1 or
(€) p = 5 and P sB (P) = Qcrs0M(Q) = R0 (R);
(iii) J(P) = J(Q) = J(R);
(iv) P/Q* is Abelian.

COROLLARY 1. Let p be a prime, P be a finite p-group, and Q be a subgroup of
index p in P. Then P and Q satisfy at least one of the following conditions:
(A) There exists a characteristic subgroup K of P enjoying the following
properties:
(A1) Whenever ¢ satisfies (1.1), then K C R and ¢(K) = K.
(A2) Let P = P/K. Then P3(P) = 1, if p = 2, Ps02(P) = 1, if p = 3,
and PO (P) = 1,4 p = 5.
(B) Whenever ¢ satisfies (1.1), then P/N(¢) is Abelian.

THEOREM 2. Let p be a prime, P be a finite p-group, and Q be a subgroup of
index p in P. Then there exists a characteristic subgroup K of P that satisfies the
following conditions:

(a) Whenever G is a group that satisfies (1.2), then K < G.

(b) Let P = P/K. Then PB*(P) = 1,4 p = 2, P02 (P) = 1,4if p = 3, and
Py (P) = 1,if p = 5.

Some variations on Theorem 2 are given in Theorems 3.4 and 6.5.

Let us reconsider the question mentioned in the first paragraph. Suppose
that P is a Sylow p-subgroup of G and that Ce(Q) C Q. If there exists a
non-identity characteristic subgroup K of P that is normal in G, then K is
fixed by «a, regardless of the choice of a. Assume that SL (2, p) is not involved
in G. By results of J. Thompson and of the author [1, p. 19],

G = (Cs(Z(P)), Ne(J(P))).

If J(P) C Q, then J(P) = J(Q) (by Lemma 2.1) and we can let K = J(P).
If J(P)ZQ, then P=JP)Q and Ng(J(P)) = Neg(P) & Ne(Z(P)).
Hence, we may take K = Z(P), if J(P) € Q.

Thus, Theorem 2 is of interest mainly when SL(2, ) is involved in G.
Actually, Theorem 2 raises two much more general questions:

1. Can we find K if we remove the restriction that |P/Q| = p?

2. Can we find K independently of Q, even at the cost of slightly weakening
condition (b) of Theorem 2?

The anwers to these questions appear to depend on further investigation or
discovery of ‘interesting’ characteristic subgroups of p-groups.
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In general, we use the notation of our previous paper [2], to which we will
refer as I. In particular, all groups considered in this paper are finite. We
require the following additional notation. Let G be a group. For any subsets .S
and T of G, let S — T be the set of all elements of S that lie outside 7.
Suppose that p is a prime and that G is a finite p-group. Then G is a regular
p-group (4, Kap. III, § 10] if, for every x,y € G,

x?y? = (xy)?, modulo G!({x, y)').

Acknowledgement. We thank Bowdoin College, the Institute for Advanced
Study, the National Science Foundation, and the Sloan Foundation for their
partial support during the writing of this article. We also thank Bowdoin
College for the opportunity to present most of this work during the Bowdoin
Finite Groups Seminar in the summer of 1970.

2. Preliminary results. We require a number of elementary results.

LEMMA 2.1 Let G be a fintte p-group.

(@) If A € A (G), then A = Ce(4).

(b) If J(G) C H C G, then J(G) = J(H).

() If HC G and J(G) = J(H), then J(G) = J(H).

Proof. These statements are elementary consequences of the definitions.
(For a proof of (a) and (b), see [3, pp. 271-272]. The proofs of (b) and (c) are
similar.)

LEMmMA 2.2. Suppose that G is a group and that H, K, L < G. Then
[H, K, L] € [K, L, H][L, H, K].

Proof. Let N = K, L, H|[L, H, K]. For every subgroup X of G, let
X = XN/N.Then [K, L, H] = [L, H, K] = 1. By Lemma 2.6 of I, we have
[A, K, L] =1.

LeMma 2.3. Suppose that G is a group ond that H, K {4 G. Assume that
G = HK and that [H, K] C H'. Then, fori =1,2,3,...,

(@) [Hyy K] © Hig,

(b) [Ky, H] ©€ Hjyx, and

(¢c) G, = HK,.

Proof. We use induction on <. By hypothesis, (a), (b), and (c) are true for
i = 1. We will make frequent use of Lemma 2.2.

Suppose that ¢ = 1 and that (a), (b), and (c) are true for 2. We prove them
for ¢+ 4+ 1.

(a) Here,

(Hiw, K] = [H,, H, K] © [H, K, H][H,, K, H] C |Hy, Hi][H 11, K] © Hiya,

by induction.
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(b) Bv (a) and induction,
[K:, H = [Ky K, H] € [K, H, KJ[H, K, K] C [Hy, Ki][H 41, K]
C[H, K H][K;, H, HIH ;s C Hyo.
(c) By (a), (b), and induction,
G = Gy G) = [HK,, HK] = [H, H][H;, K][K, H][K, K] © H 11K i41.
Thus, Giy1 = Hiy1K 1. This completes the proof of Lemma 2.3.

Suppose that P and ¢ satisfy (1.1) and that N(¢) = 1. Then we define
integers {, #, v and elements xy, . . . , x, of P as in Section 3 of I. Here, p* = |P|;
if P is Abelian, # = ¢;if P is not Abelian, u is the smallest positive integer such
that [x4 x4 # 1 for some ¢; and v = ¢ — u. For every x € P, there exist
unique elements e(1), . . ., e(¢) of Z, such that x = x,*® . .. x,°®, Moreover,
o(x;) = xyyy, fore=1,2,...,¢t— 1.

If P and ¢ satisfy (1.1), then ¢ induces an isomorphism ¢’ of R/Q* onto
Q/0*, and N(¢') = 1. In this case, we will define ¢, u, v, and x4, ..., x, for
P/Q* as in the preceding paragraph. We use this notation in the next result.

LeEmMa 2.4. Assume (1.1). Suppose that P/Q* is not Abelian. Then
(@) Z(P/Q*) = (xXos1, . .., %) and Z(Q/Q*) = (Xp41, - - ., Xuy1), and
(b) if x € (P/Q*) — (Q/Q*) and y € Z(Q/Q*) — Z(P/Q*), then

(e, y1) = ([x1, 2ua]) & Z(P/Q¥).
Proof. This follows from Lemma 3.5 and Proposition 3.4(b) of I.

LEMMA 2.5. Assume (1.1). Suppose that G is a group that contains P and that
¥ is an isomorphism of P into G. Assume that the restriction of ¥ to R is equal to
é. Then N(¢) J (P, ¢(P)).

Proof. This follows directly from Lemma 2.4 of I.

LeMMaA 2.6. Suppose that H is a normal subgroup of a group G. Let A be the
set of all automorphisms of G that centralize H and G/H. Then A is Abelian.

Proof. Suppose that o, 8 € 4 and that g € G. Let h = g'g*and k = g~1gh.
Then &, ik € H and g* = gh, g# = gk. Let f = gkg™'. Then f € H, k = g~ 'fg,
and

k =k = (g lfg)* = h~'g"Yfgh = h~'kh.
Thus, hk = kh. Now, g8 = (gh)f = gkh = ghk = gh=.

LeMMA 2.7. Suppose that S is a Sylow p-subgroup of a finite group G and that
P is a weakly closed subgroup of S with respect to G. Then:

(a) For every g € G, P 1is conjugate to P? in (P, PY).

(b) For every p-subgroup T of G that contains P, P is weakly closed in T with
respect to G.
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(c) Suppose that P C H C G and that N < H.
Then PN/N 1is weakly closed in some Sylow p-subgroup of H/N with respect to
H/N.

Proof. Special cases of parts (a) and (b) are proved in Lemmas 7.1 and 7.2
of I. However, the proofs are valid in the general case. Part (c) follows from
part (b) by Lemma 7.9 of I.

We require a number of results on powers of products. For the following two
results, we denote by <7Z> the binomial coefficient whose wvalue is
m!/n!(m — n)!, for integers m, n such that 1 =z < m.

Prorosition 2.8. (P. Hall-Petrescu). Let G be a group gemerated by two
elements x,y. Then there exist elements C; € G, (1 = 1,2,3,...) such that, for
every positive integer m,

x"y" = (xy)mC2(2) e Cm_l("‘_l)Cm.

Proof. This is proved in [4 p. 317] for a free group on two generators. Since
G must be a homomorphic image of such a free group, the result follows.

COROLLARY 2.9. Let p be a prime and G be a p-group generated by two elements
x,y. Then

(@) xPy? = (xy)?, modulo B (G2)G,, and

(b) x7*y?* = (xy)?*, modulo B2(G2)0(G,)Gpya.

Proof. Fori = 1,2,...,p — 1, (f) is divisible by p, and (ﬁ?) is divisible
by p2. Furthermore, P;) is divisible by p for ¢ = p and 2 = p + 1. Apply
Proposition 2.8.

Corollary 2.9 (a) yields the next result:

LemMA 2.10. If p s a prime, G is a p-group, and G, = 1, then G is a regular
p-group.

LemMA 2.11. Suppose that p is a prime and that G is a regular p-group.
(@) For all x € Q(G), «? = 1.
(b) If x, vy € G, then x* = y? if and only if (xy~1)? = 1.

Proof. This is proved in (4, pp. 324-327].

LEMMA 2.12. Suppose that p is a prime and that G is a p-group generated by
two elements x,y. Assume that x* = 1. For all 1 Z 2,

0YG1) € Gipr.

Proof. We use induction on . Let H = (x, G,). Then H, C Gp41. So, by
Lemma 2.10, H/Gp41 is a regular p-group. Now, H < G. Let H* = (x’|g € G).
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Then H* < G, H* C H, and G/H* is cyclic. Hence, H* D G5 and H* = H.
Therefore, H and H/G,;1 are generated by elements of order p. By Lemma
2.11, H/G,1 has exponent 1 or p. So 81(G3) C Gpy1.

Suppose that 7 = 2 and that 0'(G;) € Gip—1. We wish to prove that
0'(Gsy1) € Giip. By considering G/Gy,, if necessary, we may assume that
Gitp = 1. Since

(Gi>11 - Gm’ c Gi+p =1,

G; is regular, by Lemma 2.10. Take any w € G; and z € G. By induction,
wP € Giyp—1 € Z(G). Hence,

1 = [w?, 2] = w?(w’).
Thus, w? = (w?)?. By Lemma 2.11, (w—w?%)? = 1. So
[w, 2] = ww?® € Q(G,).

Since w and z are arbitrary, G;y1 = [G4, G] C ©:(G;). By Lemma 2.11, G4,
has exponent 1 or p. Hence, 81(G;11) = 1 C G4y, as desired.

LEMMA 2.13. Let p be a prime and Q be a subgroup of index p in a finite
p-group P. Suppose that x € P — Q and that x* = 1. Then:

(@) For 1 =1 = p, POY(P) = PBLQ).

b) If p = 2, then P3B2(P) = Py0%(Q) and P03 (P) = PO*(Q).

()Ifp =83and 1 =i < 5, then P,B2(P) = P2(Q).

Proof. Take x € P — Q such that x? = 1. Forevery2 € P — Qand 7 = 1,
there exists y € Q such that (z**) = ((xy)?*). Now choose an arbitrary element
vy of Q and let S = (x, y).

(a) Suppose that 1 < 7 < p. By Corollary 2.9, (xy)? = xPy? = 9?, modulo
B1(S;).S,. Since S; € Q and S, € P, C Py, (xy)? € 01(Q)P,. As y is arbitrary,
U1(P) C P.06Y(Q). Therefore,

PBY(P) = P.BYQ).

(b) Suppose that p = 2. By Corollary 2.9 and Lemma 2.12, (xy)*=
x%y* = y4, modulo S;. Consequently, 82(P) C P;02(Q) and P;02(P) = P302(Q).

Take z € S3 such that (xy)* = y%, modulo Ss. Then (xy)® = 3832, modulo
Ss. By Lemma 2.12, 81(S;) € S, Hence,

PB%:(P) = Po2(Q).

(c) Suppose that p = 3 and that 1 < ¢ < 5. By Corollary 2.9 and Lemma
2.12, (xy)? = x°%? = 9% modulo Ss. Therefore,

PB*(P) = PB*Q).

3. Statement of main results. In this section, we state the main results
of the paper and derive the results of § 1 from them.
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LemMA 3.1. Assume (1.1). Then ¢ falls into at least one of the following cases:
(i) 2 (Z2(P)) = 2 (Z(Q)),

(il) Cp(Q) € Q* and Q1 (Z(P)) #= 2(Z(Q)),

(iii) J(P) = J(Q),

(iv) Z(P) C Z(Q) € Q* and J(P) # J(Q).

Proof. Assume that ¢ violates (i), (ii), and (iii), and observe that ¢ satisfies

@iv).
For our next result, we use the following restrictions on integers d, m, and 7.

Bl) @) Ifp=2,thenm =d=38andn =2,0rm = 4and n = 3.
®YIfp=3,thenm =d =8andn =1,ord Em = 5and n = 2.
) Ifp=5,thend =m =bdandn = 1.

TuaeoreM 3.2. Assume (1.1). If case (i) of Lemma 3.1 occurs, then
2 (Z(P)) = %u(Z(Q) = U(Z(R)).

Suppose that case (i) occurs. Let d =c+ 1, iof [P,Z(Q)]Z Q* or
[P, Z(R)] Z Q* and let d = ¢ + 2, otherwise. Suppose that d, m, and n satisfy
(8.1). Then P, = Q, = Ry, for all t = d, and

P5"(P) = Qu0"(Q) = R.U"(R).

If case (iii) occurs, then J(P) = J(Q) = J(R).
If case (iv) occurs, then P/Q* is Abelian and

Q* = Cp(Z(Q%)).
Remark. Since P/Q* is Abelian when ¢ = 1, in case (ii) we always have
3=d=4iip=2,and3 =d £ 5, if p is odd.

It is easy to verify cases (i) and (iii) of Theorem 3.2. (See Lemma 2.1 for
case (iii).) The proofs of cases (i) and (iv) are given in §§ 4 and 5.

Note that Theorem 3.2 yields Theorem 1. To obtain Corollary 1 from
Theorem 1, let K be a characteristic subgroup of P that is maximal with respect
to property (Al); since 1 satisfies (Al), K must exist. If K satisfies (A2), we
are done. Assume that K violates (A2). Take any ¢ that satisfies (1.1). Then
¢(K) = K and K C Q*. Hence, ¢ induces an isomorphism ¢’ of R/K onto
Q/K. By the maximal choice of K, @ (Z(P/K)) # @ (Z(Q/K)). Similar
arguments show that ¢’ violates conditions (i), (ii), and (iii) of Theorem 1.
Therefore, (P/K)/N(¢’) is Abelian. Since N(¢') = Q*/K, P/Q* is Abelian.

TueorREM 3.3. Let p be a prime, P be a finite p-group, and Q be a subgroup of
index p in P. Let O =NacawrQ®. Then P satisfies at least one of the following
conditions:

1) U (Z(P)) = U (Z@Q));
(ii) @) p = 2 and P.B*(P) = Q03(Q), or
(b) p = 3 and Ps08%(P) = Qs02(Q), or
(¢) p = 5 and PBU(P) = Q0 (Q);
(iii) J(P) = J(Q);
@iv) Q 4 G, for every group G that satisfies (1.2).
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Note that in Theorem 3.3 and in the next theorem, { is a characteristic
subgroup of P and P/ is an elementary Abelian group. To obtain Theorem
2 from Theorem 3.3, let K be a characteristic subgroup of P that is maximal
with respect to the condition (a) of Theorem 2. By Theorem 3.3, we obtain
condition (b) of Theorem 2.

3.2) (a) P CG.

(b) QL6

(¢c) For some Sylow p-subgroup S of G, P is a weakly closed subgroup of S
with respect to G.

THEOREM 3.4. Let p be a prime, P be a finite p-group, and Q be a subgroup of
index p in P. Let Q = () acawrQ® Then P satisfies at least one of the following
conditions:

(i) ¢U(Z(P)) = U(Z(Q));
(i) (@) p = 2 and P0%*(P) = Q:0%(Q), or
(b) p = 3 and PO2(P) = Q40:(Q), or
(c) p = 5 and PB'(P) = Q:01(Q);
(it) (P) = J(Q); )
(iv) whenever G is a group that satisfies (3.2), then Z(P) < G or Q 4 G.

Assuming Theorem 3.4, we obtain the following result:

COROLLARY 3.5. Let p be a prime, P be a finite p-group, and Q be a subgroup
of index p in P. Then P satisfies at least one of the following conditions:

(a) whenever G is a group that satisfies (3.2), then there exists a non-identity
characteristic subgroup K of P such that K < G;

(b)p =2 and PB02(P) =1, or p =3 and PO*(P) =1, or p = 5 and
Pui(P) = 1.

Proof. Assume that P violates (b). Let L be a characteristic subgroup of P
that is maximal with respect to the property that L < G whenever G satisfies
(3.2). If L ¢ 1, we have (a). Assume that L = 1. By the maximal choice of L,
the groups P and Q must violate conditions (i), (ii), and (iii) of Theorem 3.4.
Therefore, for every G that satisfies (3.2), Z(P) or { is a normal subgroup of
G. Since P violates (b), Z(P) # 1 and Q # 1. Hence, we obtain (a).

4. Case (ii). We now treat case (ii) of Lemma 3.1 and obtain case (ii) of
Theorem 3.2.

THEOREM 4.1. Assume (1.1) and assume that Cp(Q) € Q*. Then:

(@) We have P = Cp(Q*)Q.

(b) Foralli =2 c+ 2, P; = Q; = Ry, and ¢ fixes P,.

() If [P, Z(Q)] £ Q* or [P, Z(R)] £ Q¥, then Py = Qcr1 = Ry, and ¢
fixes Poy.
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Proof. Suppose that C»(Q*) T Q. Since ¢ fixes Q¥*, ¢ 1(Cp(Q*)) C C»(Q*).
So Cp(Q*) € N(¢) = Q*. Then Cp(Q) C Q% contrary to hypothesis. This
proves (a).

Since ¢(R;) = Q; and R; € P, for all 4, it now suffices to prove that
P,=0Q, for all 1=c¢+ 2, and that P,1 = Q.1 in case (c). Take
X1, ...,%, € P/Q* as in Lemma 2.4. Let y; be an element of x;, and let
y: = ¢ (y1), forz = 2,3,...,¢t Take x € Cp(Q) — Q*.

Suppose that x ¢ Q. Then Cp(x) D (x,Q) = P. Thus, x € Z(P) and
P = (Q, x). In this case, P; = Q;, for all ¢ = 2, by induction. Therefore, for
the remainder of the proof, we assume that x € Q.

We have

*.1) 2QF = x40 g 4o,

for some d(r), ...d(s) € Z, and some 7, s such that d(r) and d(s) are nonzero
and2=r=<s=tLletm=s—7r-+4 landy = ¢ D (x). Since

xQ* € Z(Q/Q%),
Lemma 2.4 yields thatv + 1 <7 < s < u + 1. Hence,

4.2) m=t—landm = u — v+ 1.
As x centralizes Q, x centralizes v,, ..., ¥s So

(4.3) y centralizes y1, . . . y Y.
Moreover,

(4.4) yQ* = 2% . 2,9 amd (Y1, .o Ym OF) = (V2 o oy Yy OF).

Letd = {(y,0(y), ..., ™(»)). Since x € Cp(Q*) and ¢ fixes Q%, it follows
that y € Cp(Q*) and that

(4.5) A C Cp(Q").
Suppose that 0 = 7 £ ¢ — m. By (4.4),

&' (¥)Q* = x:1® L Xy O
and

(46) P=(16) .20 1) Yty - - - Yitm—1, 1), . . ., (), Q%)
= (4,05 Virty e ey Virmp Jori = 0,1, ..., ¢t — m.
By (4.3), ¢*(y) centralizes Y1, « « « y Vitm—1. S0
4.7 P =4, 0% Cp(d*(y))), fori =0,1,...,¢t — m.
By 4.2),v <t—mandv+m — 1 < u. Take7 = v in (4.6); we have
P = (AQ* Yor1, « + + s Vom—1) & (AQ* Yot1y « « oy Yu)e

By Lemma 2.4, Z(P/Q*) = (Xot1, ..., Xu). S0 P/Q* = (AQ*/Q*)Z(P/Q*).
Hence, AQ*/Q* < P/Q* and Q*4 = AQ* < P.
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Take any ¢ such that 0 £ 7 < ¢t — m. By (4.5) and (4.7),
P = Cp(¢'(3)0*4 = Crlp*(¥))A.
Consequently, for every g € P there exists a € 4 such that
(') = (¢*(¥))™

Since the elements ¢*(y) generate A4, it follows that 49 C 4 for every g € P.

Thus, 4 <1 P. Hence, A’ < P. The above argument also shows that, for each

1, the coset ¢?(y) A’ lies in the center of P/A4’. Therefore, [4, Q] C [4, P] C 4'.
Sincey € P — Q, P = AQ. By Lemma 2.3,

(4.8) P, = A,Q, foralli = 1.
Since P/(Q* has nilpotence class ¢, 4,41 C P11 C Q* Fori = ¢ + 2,
A C A SO 4] = 1.

By (4.8), this proves (b).

We now consider (c). Suppose that [P, Z(Q)] € Q* or [P, Z(R)] € Q*.
Replacing ¢ by ¢71, if necessary, we may assume that [P, Z(Q)] € Q*. Then
P/Q* is not Abelian. So ¢ =2 2, 4 =t — 1, and v = 1. We may assume that
[P, {x)] & Q* By (4.1) and Lemma 2.4, s = u# -+ 1. Thus,

49 s=u+lm=s—r+1l=u4+2—rt—m=9v+4+7r—2.

By Lemma 2.4, Z(P/Q*) = (Xp41, . . . , Xu). Since P, & Q%
(4.10) A S P S Yoty e ooy Yuy @)
Let 7 be an integer such that 0 = ¢ < v — 1. Then
(4.11) 2+i<v+lsusu+i=st
Since «x centralizes wvs, ..., V.1, 0%, it follows that ¢?(x) centralizes
Vord o+« Vurirt, @F. By (4.10) and (4.11),
(4.12) ¢(x) centralizes A, if 0 =i <o — 1.

Now choose an integer 7 such that 1 <7 =< r — 1. We obtain, similarly,
that 1 £7r—1=u+1— ¢ = ¢, and that

(4.13) ¢ 1(x) centralizes (y,_i, . . ., Vus1—1, O%).

Suppose thatl £ j<¢—1.Then2 —r =j— (r — 1) =j — 4= — 1. Since
Q centralizes x, ¢*~*(x) centralizes x. So ¢~*(x) centralizes ¢—7(x). Thus,

(4.14) ¢t (x) centralizes ¢~V (x), ..., ¢ 1(x).
By (4.9), s = u 4+ 1. Hence, by (4.13), (4.14), and (4.1),

Cr(@' (%)) 2 Yrts + + s Yut1—iy ¢~V (x), . . o, ¢71(x), Q%)
= <yf—ir R 1) Q*>

https://doi.org/10.4153/CJM-1971-107-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-107-9

FINITE p-GROUPS 1033

Therefore,
(4.15) ¢~ (x) centralizes A, if 1 £ 1 =<7 — 1.

By (41) and (4.9), x=¢"1(y) and t—m= (@ —1)+ @ — 1)-
Consequently, (4.12) and (4.15) yield that

Cp(d,) DV (x), ..., ¢ (x), %, (x),..., " (x))
=®e®),...,067"()) = 4.

Thus, 441 = [4,, 4] = 1. By (4.8), Py1 = Q.y1. This completes the proof
of (c) and of the theorem.

ProrosiTiON 4.2. Assume (1.1) and assume that Q1 (Z(P)) % Q(Z(Q)) and
that Cp(Q) & O*. Then:

(@) There exists x € Cp(Q) — Q* such that x* = 1.

(b) For1 =1 < p, POY(P) = PBI(Q) = POUR).

(c) If p = 2, then P3B2(P) = P302(Q) = P30%(R), and

P33 (P) = Po3(Q) = PO3*(R).
d) If p=3and 1 =1 =5, then PB*(P) = P;02(Q) = PB2(R).
Proof. Suppose that @;(Z(Q)) C Q*. By Theorem 4.1(a), P = QCpr(Q*).
Hence, 2:(Z(Q)) C Z(P), and the hypothesis yields that
20 (Z(Q)) C U(Z(P)).

Since @ (Z(P)) N Q C 2 (Z(Q)), there exists x € Q(Z(P)) — Q, which
proves (a) in this case. Since (a) is obvious when Q,(Z(Q)) € Q*, we obtain
(a) in all cases.

Take x as in (a) and take » = 0 maximal such that ¢—7(x) is defined. Then
¢~ "(x) has order p and P = (¢ "(x), Q). Similarly, P is generated by R and
¢°(x), for some s. Now (b), (c), and (d) follow from Lemma 2.13.

Since ¢ (RBI(R)) = Q:B7(Q), for all 7,7 = 1, Theorem 4.1 and Proposition
4.2 yield the following result:

THEOREM 4.3. Assume (1.1) and assume that Q,(Z (P)) = Q:(Z(Q)) and that

Cr(Q) L Q* Let d =c+ 1, if [P,Z(Q)] L Q* or [P,Z(R)] £ Q*, and let
d = ¢ + 2, otherwise. Suppose that d, m, and n satisfy (3.1). Then P,0"(P) =
0.0 (Q) = RO"(R), and ¢ fixes P, 0" (P).

5. Case (iv). In this section, we consider the following hypotheses:

(5.1) (@) (1.1) holds;
(b) Z(P) CZ(Q) < Q*.

(5.2) (@) (5.1) holds;
(b) J(P) = J(Q)-

https://doi.org/10.4153/CJM-1971-107-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-107-9

1034 GEORGE GLAUBERMAN

We first require a general lemma.

LeEmMA 5.1. Suppose that p is a prime and that T is a subgroup of index p in a
p-group S. Let A € X (S). Assume that Z(T) € Z(S) and that A & T. Then:

(@ ZSO NT=2Z(T)NA = Cun(4),

(b) (A NT)Z(T) € A(S), and

() 1Z(T)/(Z©S) N D) = p.

Proof. Since [S:T] = p, T << Sand S = AT. Therefore, |[A4/(A N T)| = p
andZ(S) N T = Z(T) N Cs(4) = Z(T') N A, by Lemma 2.1. Consequently,
Z(T) € A, because Z(T) & Z(S). Let A* = (A N T)Z(T). Then A* is
Abelian and

|4* z pla N T| = |4].
Since A € Z(S), A* € K (S). So
plA N T = |4] = [4* = |4 N T||Z2(1)/(Z(T) N 4)]
= |4 N T|Z(T)/(Z(S) N T)|.
Thus, |Z(T)/(Z(S) N T)| = p. This completes the proof of Lemma 5.1.
LeEMMA 5.2. Assume (5.2). Then there exists A € & (P) such that A & Q and
[4/(4 N Q*)| = |Z(Q*)/Cren(4)| = p.
Moreover, for every such A and every x € A — Q*, |Z(Q*)/Cu(on (x)| = p.

Proof. By Lemma 2.1, J(P) £ Q. So J(P) & Q*. Take A € & (P) such
that |4 N Q*| is maximal subject to the condition that 4 € Q*. Taker = 0
maximal such that every element of 4 lies in the image of ¢". Then ¢="(4) € Q,
by the maximal choice of 7. Since ¢ fixes Q%, [¢=7(4) N Q*| = |¢—7(4 N Q*)| =
|4 N Q*|. Therefore, we may assume that 4 Z Q.

Let 4* = (4 N Q)Z(Q). By Lemma 5.1, A* € &/ (P). Moreover,

[4* N Q¥ = |4 N O"Z(Q)] > |4 N Q¥
By the maximal choice of 4, 4* C Q*. Thus, 4 N Q = 4 N Q% and
[4 N Q* =14NQ|=I|4]/p.

Let X = Z(Q*) and S = AQ*. By (5.1), X D Z(Q) and X & A. Since
Z(S) S Cs(d) =4, X & Z(S). By Lemma 5.1,

|X/Cx(4)] = |X/(4 N X)| = p.
For every x € A — Q¥*, we have 4 = (4 N Q*, x) and, hence,
Cx(4) = Cx(x).
This completes the proof of Lemma 5.2,

LemMMA 5.3. Assume (5.1). Then Cp(Z(Q*)) = Q*.
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Proof. Let S = Cp(Z(Q*)). Then SC Cp(Z(Q)) = Q, by (5.1). So
|¢~1(S)| = |S|. Since ¢ fixes Q*, ¢~1(S) C S. Hence, ¢ fixes S, and S C Q*.
Obviously, 0* C S.

PROPOSITION 5.4. Assume (5.1). Suppose that there exists x € P such that

(5.3) 1Z(Q*)/ Caian (x)] = p.
Then P/Q* is Abelian.

Proof. Assume P/Q* is not Abelian. Let Z = Z(Q*). Take x to satisfy (5.3).
Then x € P — Q*. Let » be the maximum integer such that ¢—"(x) is defined.
Then ¢~ (x) does not belong to Q;letx’ = ¢—"(x). Then P = (Q, x’). By (5.1),

(5.4) x' does not centralize Z(Q).

Define ¢, u, and %1, ...,%x, € P/Q* as in Lemma 2.4. Let y be an element of
the coset x,+1. Define "/ = (x')Y = v’y and z = (') = [«',y]. By
Lemma 2.4, the coset 2Q* generates ([x1, x,+1]). Now, {x’, x"’) = (x’, 3) and

1Z/Ca(@)| = |1Z/Ca((x", &")| < |Z/Ca(x")| |1Z/Ca(x")] = p2.
By Lemma 5.3, |Z/Cz(z)| > 1. If |Z/C4(z)| = p?, then
Cz((x', %)) = Cz(2) 2 Z(Q),

contrary to (5.4). Hence, |Z/C5(2)| = #. Thus, we may assume that our
original element x satisfies

(5.5) xQ* € ([x1, Xup1]) S Z(P/Q¥).
Take r as above, and let w = ¢—"(x). Therefore w € P — Q. By (5.5),

xQ* € Z(P/Q*). Let s be the maximum integer such that ¢*(x)Q* € Z(P/Q*).
Then ¢**1(x) = ¢™*1(w) and, by Lemma 2.4,

() 0* = 2pg1CHD L L Ly SHD,

for some e( + 1),...,e(w + 1) € Z, such that e(x + 1) = 0. By (5.5) and
Lemma 2.4,

(5.6) 1 [w, o™ (w)]Q* € ([x1, %ua]) = (¢"(w)Q0*).
Let w;, = ¢+ (w), fori =1,2,...,7 + s + 1. Since
1Z/Cz(w)| = p,1Z/Cz(wi)| = p,

for each 7. Let
W) = {wy, ..., w),fori =1,2,.0.,7+ s+ 1.

Then |Z/Cz(W(2))| = p?, for each 1.

We claim that |Z/C, (W (i))| = p?, for each 4. This is true for ¢« = 1. Suppose
that 1 <7 < 7 4+ s and that the equality is true for <. Let W = W (z) and
W* = W (i + 1). Since

pt=12/C:W)| = |Z/C.(W*)| = p™,
we have the equality for 7 + 1, unless |Z/C;(W*)| = p*. Assume that the
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latter occurs. Then C,(W*) = Cz(W). Since W* = (W, ¢(W)) and
|C2 (e (W))| = |C2(W)],

we obtain

Cz(W) = Cz2(W*) = Cz(¢(W)) = ¢(Cz(W)).

In particular, Z(Q) C CL(¢(W)) = Cz(W) C Cz(w), which contradicts
(5.1) because P = {Q, w). This contradiction proves our claim.

In particular, |Z/C;(W(r 4+ s + 1))| = p™=tL. By (5.6),
Wer+s+1) = <w1, ceey ‘wr+s+1> C W1y o ey W Wrpny « v oy Wrpgy, Q*>

Hence, |Z/C,(W({r + s + 1))| £ ™%, which is a contradiction. This com-
pletes the proof of Proposition 5.4.

Lemmas 5.2 and 5.3 and Proposition 5.4 yield the main result of this section:
THEOREM 5.5. Assume (5.2). Then P/Q* 1s Abelian and Q* = Cp(Z(Q*)).

This yields case (iv) of Theorem 3.2 and thus completes the proof of
Theorem 3.2.

6. Proof of Theorem 3.3. In this section, we prove Theorem 3.3 and,
therefore, obtain Theorem 2. We will use the following sets of conditions.

(6.1) (a) p is a prime;
(b) P is a p-subgroup of a finite group G;
(c) Q is a subgroup of index p in P;
(d) Q 4G;
(e) Q = NacaurQ®;
(£) € is a subset of G that generates G; and
(g) for every h € H, P is conjugate to P* in (P, P").

(6.2) (a) (6.1) holds;
(b) h € H;
(c) H = (P, P");
(d) k € H and P* = P*,
Suppose that (6.2) is satisfied. We will use the following notation. For every

automorphism « of P, let ¢, be the isomorphism of Q*' onto Q given by
¢a(x) = (x*)*, for all x € Q7.

LemMA 6.1. Assume (6.2). Let @« € Aut P. Then N(¢.) < H, and a fixes
N (¢a).

Proof. Let Q* = N(¢) and H = (P, P"). Define y:P — P" by ¢ (x) = (x*)%,
for all x € P. Clearly, ¢ extends ¢. By Lemma 2.5, we obtain Q* < H. Thus,

(@)= = (((@)))*" = ($(Q*)* = (@) = 0%,

and « fixes Q*.
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LEmMA 6.2, Assume (6.2). Suppose that o € Aut P and that P/N(¢e) s
Abelian. Then

(2) [Q, F] € N(p) < H, and

(b) Q S N(¢a) C Q=

Proof. Let Q* = N(¢,). By Lemma 6.1, Q* < H. Let C = Cx(Q/Q*). Then
C < H and C 2 P. Hence, C D (P, P*) = H, which proves (a).

To obtain (b), let.S =NQ*, where 7 ranges over the integers. Then « fixes S.
Since Q* C Q and o fixes Q*, 0* CSC Q. By (a), S H. Thus, S =
(S*)" = ¢(S), and S C N(¢) = Q*. Therefore, S = Q*, which proves (b).

Lemma 6.3. Assume (6.2). Suppose that P/ N (¢o) is Abelian for all € Aut P.
Then

@) Q < H, i

(b) 0/0 S 2(H/Q), and

(¢) h normalizes Q.

Proof. By Lemma 6.2 (b), the intersection of all the groups N (¢,) is equal to
Q. Therefore, 0 < H and [Q, k] < Q. Since P/Q is Abelian,

Ca(Q/Q) 2 (P, k) = H.

As hk™' € Ny(P) and Q is a characteristic subgroup of P, khk~! and &
normalize Q.

We may now easily prove Theorem 3.3. Assume that p is a prime, that Pisa
p-group, and that Q is a subgroup of index p in P. Assume that p, P, and Q
violate conditions (i), (ii), and (iii) of Theorem 3.3. Suppose that 5# and G
satisfy (1.2) and, therefore, satisfy (6.1). By condition (iv) of Theorem 3.2
and by Lemma 6.3, every element of 2 normalizes (. Since J# generates G,
Q < G. This completes the proof of Theorem 3.3.

The following results can sometimes be used to improve upon the restrictions
on nilpotence class and exponent given in condition (ii) of Theorem 3.3.

LEMMA 6.4. Assume (6.2). Let @« € Aut P and let Q¥ = N(¢.). Suppose that
P/Q* is not Abelian, that Cp(Q) & Q%, and that [P, Z(Q)] € Q*. Then

(@) H = PCyxg(Z(Q)), and

(b) h, k€ Na(P)Ca(Z(Q)) & No(Z(P)).

Proof. By Lemma 6.1, Q* < H. Let C = Cx(Q*) and ¥ = Z(Q) N Q*.
Then C < H. By Theorem 4.1, P = (C N P)Q C CQ. Since CQ < H, and
H = (P, P*), it follows that H = CQ. Thus,

(6.3) Y=ZQ)NQ*<S ZH) N Q* S Z(P).
Since Z(Q) < H, the hypothesis yields that [P, Z(Q)] C Y. Hence,
(6.4) ZQ)/Y S ZH/Y).
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Suppose that Z(P) & Q. Then P = Z(P)Q.So P’ = Q'. Let R = Q«' and
¢ = ¢o. Since |R'| = |p(R)| =|Q|, R = P'. Hence, ¢ fixes P’ and
P’ C N(¢) = Q* contrary to the assumption that P/Q* is not Abelian.
Consequently, Z(P) C Q and

(6.5) Z(P) € Z(Q).

By (6.3), (6.4), and Lemma 2.6, H/Cx(Z(Q)) is an Abelian group. Since
H = (P, P"),

H = PH' = PCyx(Z(Q)).
This yields (a). Now (b) follows by (6.5) and the fact that kk~! € Ng(P).

THEOREM 6.5. Suppose that p is a prime, that P is a finite p-group, and that Q
1s @ subgroup of index p in P. Then P satisfies at least one of the following con-
ditions:

(i) U (ZP)) = U(Z(Q));

(i) (@) p = 2 and PB*(P) = Qs02(Q), or
(b) p = 3 and P.B*(P) = Q.0%(Q), or
(c) p = band POHP) = Q081(Q);

(i) J(P) = J(Q);

(iv) whenever G, 2, and Q satisfy (6.1), then G = C¢(Z(Q))Na(Q), and
every element of H normalizes Z (P) or Q.

Proof. Assume that (i), (ii), and (iii) are false. Assume (6.1). Let

G* = CG(Z<Q))NG(Q)-

Take h € . If h normalizes Q, then & € G*. Suppose that % does not
normalize . Take  and H as in (6.2). By Lemma 6.3, there exists a € Aut P
such that P/N(¢.) is not Abelian. Let Q* = N(¢.). By Theorem 3.2,
Cp(Q) & Q*. Since (ii) is false, Theorem 4.3 yields that [P, Z(Q)] C Q*. By
Lemma 6.4, 2 € Ng(P)Ce(Z(Q)) & G*, and % normalizes Z(P). Since % is an
arbitrary element of 5 and G = (), we obtain (iv).

Remark 6.6. Assume that (6.1) is satisfied. Suppose that Z(P) C Q, that
Q1(Z(P)) is not normal in G, and that J(P) #= J(Q). Let Z = Q,(Z(Q)). A
slight extension of a result mentioned in the introduction shows that SL (2, p)
is involved in G. Actually, a stronger result is true.

Lemma 5.1 shows that some element x of P acts as a {ransvection on Z; i.e.,
that |Z/C;(x)| = p and [Z, x] C Cz(x). Let N be the normal subgroup of G
generated by all the conjugates of P in G. Let L be the largest normal
p-subgroup of N/Cxy(Z) and let M = (N/Cxy(Z))/L. By two theorems of
McLaughlin [5; 6], M is a direct product of classical linear groups over Z,, if p
is odd, and is a direct product of known groups, if p = 2. Note that M =~ H/K
for some A, K < G such that K C H.
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7. Proof of Theorem 3.4. We may now derive Theorem 3.4. Suppose that
£, P, Q, and Q satisfy the hypothesis of Theorem 3.4 and violate conditions
(1), (ii), (iii) of Theorem 3.4. Let G be a group that satisfies (3.2). By Lemma
2.7, P is conjugate to P" in (P, P"), for every h € G. Thus, G satisfies (6.1)
with# = G.

Assume that Q is not normal in G. Let & € G — Ng(0). Take k and H as in
(6.2). By Lemma 6.3, there existsa € Aut P such that P/N(¢.) is not Abelian.
Let Q* = N(¢.). By Theorem 3.2, Cp(Q) & Q* and 2,(Z(P)) # (Z(Q)).
By Lemma 2.7, P/Q* is weakly closed in some Sylow p-subgroup of H/Q*
with respect to H/Q*. Therefore, by Theorem 7.11 of I, ¢ < 2, if p # 3. Since
condition (ii) of Theorem 3.4 is false, Theorem 4.2 yields that [P, Z(P)] C Q*.
By Lemma 6.4, %z normalizes Z (P).

Thus, N¢(Z(P)) contains G — Ng(Q). Take & € G — Ng(Q). For every
g € Ng(Q), gh belongs to G — N¢(Q), and, therefore, gh and g normalize
Z(P). Hence, N¢(Z(P)) = G. This completes the proof of Theorem 3.4.

Remark 7.1. Assume the situation of Remark 6.6, and suppose further that
P is weakly closed in some Sylow p-subgroup of G. By McLaughlin’s work and
some additional arguments, there exist W, ¥ < G such that W is an elemen-
tary Abelian group of order 2, Y C Z(N),Z = W X Y, and

N/Cy(W) =SL(2, p).
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