Nagoya Math. J. 217 (2015), 1-21
DOI 10.1215/00277630-2857430

DE RHAM COHOMOLOGY OF LOCAL COHOMOLOGY
MODULES: THE GRADED CASE

TONY J. PUTHENPURAKAL

Abstract. Let K be a field of characteristic zero, and let R = K[X1,...,X»].
Let An(K)=K(X1,...,Xn,01,...,0,) be the nth Weyl algebra over K. We
consider the case when R and A,(K) are graded by giving deg X; = w; and
deg0; = —w; for i =1,...,n (here w; are positive integers). Set w =>"7_, wk.
Let I be a graded ideal in R. By a result due to Lyubeznik the local coho-
mology modules Hi(R) are holonomic (A, (K))-modules for each i > 0. In this
article we prove that the de Rham cohomology modules H*(9; Hj (R)) are con-
centrated in degree —wj; that is, H*(9; H; (R)); =0 for j # —w. As an applica-
tion when A = R/(f) is an isolated singularity, we relate H" 1 (9; H(lf)(R))
to H" 1(8(f);A), the (n — 1)th Koszul cohomology of A with respect to
O1(f), -+ On(f).

Let K be a field of characteristic zero, and let R = K[X1,..., X,]. We con-
sider R graded with deg X; =w; for i =1,...,n; here w; are positive integers.
Set m = (X1,...,X,). Let I be a graded ideal in R. The local cohomology
modules H(R) are clearly graded R-modules. Let A, (K)=K(Xi,...,X,,
01,...,0,) be the nth Weyl algebra over K. By a result due to Lyubeznik
(see [3, Section 2.2.d]), the local cohomology modules H(R) are holonomic
(A, (K))-modules for each i > 0. We can consider A, (K) graded by giving
deg0; = —w; fori=1,...,n.

Let N be a graded left (A, (K))-module. Now 0 = 04,...,0, are pair-
wise commuting K-linear maps, so we can consider the de Rham com-
plex K(0; N). Notice that the de Rham cohomology modules H*(9; N) are
in general only graded K-vector spaces. They are finite-dimensional if N is
holonomic (see [1, Chapter 1, Theorem 6.1]). In particular, H*(9; Hy (R))
are finite-dimensional graded K-vector spaces.

Our first result is as follows.
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2 T. J. PUTHENPURAKAL

THEOREM 1. Let I be a graded ideal in R. Set w =", w;. Then the de
Rham cohomology modules H*(01, . ..,0n; Hf (R)) are concentrated in degree
—w, that is,

H*(on,... ,an;H;*(R))j =0, forj# —w.

We give an application of Theorem 1. Let f be a homogeneous polynomial
in R, with A= R/(f) an isolated singularity; that is, Ap is regular for
all homogeneous prime ideals P # m. Let H*(9(f); A) be the ith Koszul
cohomology of A with respect to d1(f),...,0,(f). We show the following.

THEOREM 2 (with hypotheses as above). There ezists a filtration F =
{F.}u>0 consisting of K -subspaces of H"1(9; H(lf)(R)) with F,, = H"~1(0;
H(lf)(R)) forv>0, F, 2 F,_1, and Fo =0 and injective K -linear maps

Jy
]:1/—1

. n—1 .
Ny —H (6(f),A)(V+1)degf_w.
The techniques used in this theorem are generalized in [6] to show that
H'(0;Hl;y(R)) =0 for 1 <i<n-—1and H'(9;Hl;(R)) = K. There is no
software to compute de Rham cohomology of an (A, (K))-module M. As an

application of Theorem 2, we prove the following.

EXAMPLE 0.1. Let R= K[X1,...,X,], and let f=X? + X2 + - +
X2 |+ X with m > 2. Then
(1) if m is odd, then H"~1(0; H(lf)(R)) =0;
(2) if m is even, then
(a) if n is odd, then H"_l(a;H(lf)(R)) =0, and

(b) if n is even, then dimg H"‘l(a;H(lf)(R)) <1.

We now describe in brief the contents of this article. In Section 1 we dis-
cuss a few preliminaries that we need. In Section 2 we introduce the concept
of generalized FKulerian modules. In Section 3 we give a proof of Theorem 1.
In Section 4 we give an outline of proof of Theorem 2. In Section 5 we prove
Theorem 2. In Section 6 we give a proof of Example 0.1.

81. Preliminaries
In this section we discuss a few preliminary results that we need.

REMARK 1.1. Although all the results are stated for de Rham cohomology
of an (A, (K))-module M, we will actually work with de Rham homology.
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Note that H;(0, M) = H""%(0, M) for any (A,(K))-module M. Let S =
K[01,...,0,]. Consider it as a subring of A, (K). Then note that H;(9, M)
is the ith Koszul homology module of M with respect to 0.

1.2. Let M be a holonomic (A, (K))-module. Then for the case where i =
0,1, the de Rham homology modules H;(0,,, M) are holonomic (Ay,_1(K))-
modules (see [1, Theorem 6.2]).

The following result is well known (see [2, Corollary 1.6.13]).

LEMMA 1.3. Let 9 =0,,0r41,...,0n, and let ' =0y 11,...,0,. Let M be
a left (An(K))-module. For each i >0 there exists an exact sequence

0— Ho(0r; Hi(8"; M) — H;(8; M) — Hy(0r; Hi—1(0'; M) — 0.

§2. Generalized Eulerian modules

Consider the Eulerian operator
En=w1 X101 + w2 X909 + -+ + wpn X, 0.

If r € R is homogeneous, then recall that &,r = (degr) - r. Note that degree
of &, is zero.

Let M be a graded (A4, (K))-module. If m is homogeneous, we set |m| =
degm. We say that M is FEulerian (A, (K))-module if &,m = |m|-m for
each homogeneous m € M. This notion was discovered by Ma and Zhang
(see their excellent paper [1]). They prove that local cohomology modules
Hj(R) are Eulerian (A, (K))-modules (see [4, Theorem 5.3]). In fact, they
prove this when R is standard graded. The same proof can be adapted to
prove the general case.

It can easily be seen that if M is an Eulerian (A, (K))-module, then so
are each graded submodule and graded quotient of M. However, extensions
of Eulerian modules need not be Eulerian (see [4, Remark 3.6]). To rectify
this, we introduce the following notion. A graded (A, (K))-module M is
said to be generalized Eulerian if for a homogeneous element m of M there
exists a positive integer a (here a may depend on m) such that

(&n — Im|)*m=0.

We now prove that the class of generalized Eulerian modules is closed under
extensions.
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4 T. J. PUTHENPURAKAL

PROPOSITION 2.1. Let 0 — M; 2% My 22 My — 0 be a short
exact sequence of graded (Ay(K))-modules. Then the following are equiv-
alent:

(1) My is generalized Eulerian,
(2) My and M3 are generalized Eulerian.

Proof. The assertion (1) = (2) is clear. We prove (2) = (1). Let
m € My be homogeneous. Because M3 is generalized Eulerian, we have

(8n — \m|)ba2(m) =0 for some b>1.

Set vy = (&, — |m|)®m € My. Because ao is (A,(K))-linear, we get
az(v2) =0. So vy = ai(v1) for some vy € M;. Note that degv; =
deg vy = |m|. Because M is generalized Eulerian, we have

(& —|m|)*v1 =0 for some a > 1.
Because «a; is (A, (K))-linear, we get (&, — |m|)®ve = 0. It follows that
(é'n— \m|)a+bm:0. 0

If M is a graded (A, (K))-module, then for [ € Z the module M (I) denotes
the shift of M by [; that is, M (1), = M,,4; for all n € Z. The following result
was proved for Eulerian (A, (K))-modules in [4, Remark 2.5].

PROPOSITION 2.2. Let M be a nonzero generalized Eulerian (A, (K))-
module. Then for | # 0, the module M(l) is not a generalized Eulerian
(A, (K))-module.

Proof. Suppose that M (1) is a generalized Eulerian (A,,(K))-module for
some [ #£ 0. Let m € M be homogeneous of degree r and nonzero. Because
M is generalized Eulerian (A,,(K))-module, we have

(En—1)*m =0 for some a > 1.

We may assume that (&, —7)*"'m # 0. Now m € M(l),_;. Because M(l) is
generalized Eulerian, we get

(& —r+1DPm=0 for some b>1.

Notice that

= (En—1+1) (zb+Z(>z“5 fr))m
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Multiply the term on the left by (&£, —r)*~!. We obtain

0.

lb(é’n —7)"Im
Because [ # 0, we get (€, —r)* 'm =0, a contradiction. [

§3. Proof of Theorem 1

In this section we prove Theorem 1. Notice that H:(R) are Eulerian
(A (K))-modules for all i > 0. Hence, Theorem 1 follows from the following
more general result.

THEOREM 3.1. Let M be a generalized Eulerian (A, (K))-module. Then
H;(0; M) is concentrated in degree —w =— ' Wg.

Before proving Theorem 3.1, we need to prove a few preliminary results.

PROPOSITION 3.2. Let M be a generalized Eulerian (A,(K))-module.
Then for i=0,1, the (Ap—1(K))-modules H;(On; M )(—wy,) are generalized
Eulerian.

Proof. Clearly, H;(0pn; M )(—wy,) are (A,—1(K))-modules for i =0,1. We
have an exact sequence of (A4,,_1(K))-modules

0 — Hy (93 M) — M(wn) 2 M — Ho(dp; M) — 0.

Note that Hy(0n; M)(—wy) C M. Let £ € H1(0n; M )(—wy,) be homogeneous.
As M is generalized Eulerian, we have

(& —[€))?¢=0 for some a > 1.

Notice that &, = &,—1 +wnXn0p. Also note that X,,0,, commutes with &,,_1.
Thus,

0=(En1 = €] + wnXn0n) €= ((En—1 — [€])" + (%) X500 €.

Because 0,£ =0, we get (E,—1 — [£])*¢ = 0. It follows that Hy(0n; M)(—wp)
is a generalized Eulerian (A,,_;(K))-module.

Let £ € Hy(Op; M )(—wy) be homogeneous of degree r. Then & = a+ 9, M,
where a € M,_,, . Because M is generalized Eulerian, we get

(En—r+wp)?a=0 for some a > 1.
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Notice that &, = En—1 + wnXn0n = En_1 + wn0n Xy — wn, 50 E, — 17 + Wy, =
En_1— 1+ wpdpX,. Notice that 9,X,, commutes with &, 1. Thus,
0=(En—1—r+wn0pXp)a=(Eno1 —1r)a+ 0y - *a.
Going mod 0, M, we get
(Ep—1—1)%=0.

It follows that Ho(Op; M )(—wy,) is a generalized Eulerian (A, _;(K))-module.
O

REMARK 3.3. If M is Eulerian, then the same proof shows that
H;(0n; M)(—wy,) is an Eulerian (A,_1(K))-module for ¢ =0, 1. However, as
the proof of the following theorem shows, we can prove only that
H1(0n—1,0n; M)(—wp—1 —wy) is a generalized Eulerian (A,_1(K))-module.

PROPOSITION 3.4. Let M be a generalized Eulerian (A (K))-module. Let
0=0;,0i41,...,0n; here i >2. Then for each j >0 the de Rham homology

module .
H;(0;M) (— Zwk>
k=t
is a generalized Eulerian (A;—1(K))-module.

Proof. We prove this result by descending induction on 4. For ¢ =n, the
result holds by Proposition 3.2. Set 8’ = 911, ...,0,. By induction hypoth-
esis H;(0'; M)(—>_;;1wk) is generalized Eulerian (A;(K))-module. By
Proposition 3.2 again, for I =0,1 and for each j >0,

Hl <6,-;Hj(8’;M) (— Z wk)) (—wi) = Hl (8i;Hj(6/;M)) (— Zwk>
k=i+1 k=i
is generalized Eulerian. By Lemma 1.3 we have the exact sequence
0— HO(Z?@,H](E)’,M)) — Hj(a; M) — H1 (c‘%;Hj,l(@’;M)) — 0.

The modules at the left and right end become generalized Eulerian after
shifting by — >"}_, wg. By Proposition 2.1 it follows that for each j >0 the
de Rham homology module

H;(0; M) (—Zn:wk>

k=i

is a generalized Eulerian (A;_;(K))-module. U
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We now consider the case when n=1.

PROPOSITION 3.5. Let M be a generalized Eulerian (Ai(K))-module.
Then for 1 =0,1 the modules H;(01; M) are concentrated in degree —ws .

Proof. We have an exact sequence of K-vector spaces
0 — H1(8y; M) — M(wi) 25 M — Ho(0r; M) — 0.

Let £ € Hy(01; M)(—w1) be homogeneous and nonzero. Because £ € M, we
have
(lel(?l — y,g\)“gzo for some a > 1.

Notice that (w1 X101 — |£])* = (%)01 + (—1)?|£|*. Because 0:& =0, we get
(—1)*[£|*€ = 0. Because £ # 0, we get |{] = 0. It follows that H;(01; M) is
concentrated in degree —ws.

Let £ € Hy(01, M) be nonzero and homogeneous of degree r. Let £ =
a+ 0 M, where o € M,.. Because M is generalized Eulerian, we get

(w1 X101 —7r)*a=0 for some a > 1.
Notice that w1 X101 = w101 X1 — w1, so we have
0= (w101X1 — (r+w1))a= (01 x+(—1)*(r + w1)*)cv.
In M/01M, we have (—1)%(r + w1)*¢ = 0. Because £ # 0, we get r = —wy.
It follows that Hy(01; M) is concentrated in degree —w; . [l

We now give the following.

Proof of Theorem 3.1. Set 0" = 0,,...,0,. By Proposition 3.4, N; =
H;(0"; M)(—>"j_swg) is a generalized Eulerian (A;(K))-module, for each
j > 0. We use exact sequence in Lemma 1.3 and shift it by —> ;o wi to
obtain an exact sequence

0— Ho(al,Nj) — Hj(a; M) (— Zwk) — Hl(al,Nj,l) —0
k=2
for each j > 0. By Proposition 3.5, the modules on the left and right of the

above exact sequence are concentrated in degree —wy. It follows that for
each j > 0 the K-vector space H;(0; M) is concentrated in degree —w =

- 22:1 Wk - U
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84. Outline of proof of Theorem 2

The proof of Theorem 2 is a bit long and has a lot of technical details.
For the convenience of the reader, we give an outline of the proof.

4.1. By [5, Lemma 2.7], we have H1(0,Ry) = Hl(a,H(lf)(R)). Thus, it is

sufficient to work with H1(9, Ry) in order to prove Theorem 2. We consider
elements of R}" as column vectors. For 2 € R, we write x = (z1,...,%m)";
here /7 indicates “transpose”.

4.2. Let { € R\ R™. The element (ar/fias/f,. .. am/fY), witha; € R
for all 7, is said to be a normal form of £ if

(1) gz(al/fi7a2/fi7'"7am/fi>/7
(2) f does not divide a; for some j, and
(3) i >1.

It can easily be shown that the normal form of £ exists and is unique (see
Proposition 5.1). Let (a1/f% a2/ f%, ..., am/f!)" be the normal form of ¢. Set
L(¢) =1i. Notice that L(&) > 1.

4.3. Construction of a function 0: Z,(0,Ry) \ R" — H1(0(f); A)
Let £ € Z1(0,Ry) \ R™. Let (a1/f* a2/ f",... ,an/f") be the normal form
of {. Thus, we have >°%_, 0/0X(aj/f) =0, so we have

1 (x~ Oa; i~ Of N
(o) g (X eag) =0
It follows that
. = Of
f divides Zaja—Xj.
7j=1
Thus, (a1,...,a,) € Z1(0(f); A). We set
0(6) = [(@i,...,an)"] € Hi(0(f); A).

REMARK 4.4. It can be shown that if £ € Z1(0, R¢)—., is nonzero, then
& ¢ R™ (see Section 5.2). If L(£) =1, then by Section 5.3 we have

0€) € Hi (91 A) (1) 0g o
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The next result uses the fact that A is an isolated singularity.
PROPOSITION 4.5. If £ € B1(0, Rf)—., is nonzero, then §(§) =0.

4.6. Let { € RT'. We define L(f) as follows.

Case 1: £ € R\ R™. Let (a1/f% az2/ft, ... am/f)" be the normal form
of £. Set L(&) =1i. Notice that L(£) > 1 in this case.

Case 2: £ € R™\ {0}. Set L(§) =0.

Case 3: £ =0. Set L(§) = —o0.

The following properties of the function L can be easily verified.

PROPOSITION 4.7 (with hypotheses as above). Let £,&1,&2 € R, and let
a,a1,a9 € K. Then we have the following:

(1) if L(&) < L(&2), then L(& + &) = L(&2);

(2) if L(&) = L(&2), then L(& + &) < L(&2);

(3) L(& + &) <max{L(&), L(&2)};

(4) if a € K*, then L(a&) = L(&);

(5) L(a&) < L(&) for all a € K;

(6) L(a1&1 + agbs) <max{L(&), L(&2)};

(7) let &1,...,& € RY, and let on,...,ar € K. Then

L(D- i) < max{L(&), L(&).- - L&)}

j=1

4.8. We now use the fact that H(0, Ry) is concentrated in degree —w =
— >y wg. Thus,

H\(9, Ry) = H1 (9, Ry) - =

Let € Hi(0, Ry¢) be nonzero. Define
L(z) =min{L(§) | z = [¢], where £ € Z1(d, Ry)—u}-
It can be shown that L(z) > 1. If z =0, then set

L(0) = —o0.
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We now define a function
0: H\(d,Ry) — H1(3(f); A)
{e@) if 2 0,2 =[¢], and L(z) = L(€),
€T —

0 if z=0.

It can be shown that #(x) is independent of choice of £ (see Proposition 5.6).

Also note that if L(z) =1, then 0(x) € H1(9(f); A)(i+1)deg f—w-
4.9. We now construct a filtration F = {F, },>0 of H1(0, Ry). Set

Fo={ze€ H(0,Ry) | L(z) <v}.

In Section 5, we prove the following.

ProrosiTiON 4.10. We have the following:
(1) F, is a K subspace of H1(0,Ry),
(2) FL 2 Fy—1 forallv>1,
(3) F,=H1(0,Ry) for all v>0,
(4) Fo=0.

Let G =@D,>; Fv/Fv—1. For v > 1, we define

Fu
Uz Fo — H; (a(f)v A) (v+1)deg f—w’
0 if&=0
oL [0 ite=o
O(x) if &€ =x+ F,_1 is nonzero.

It can be shown that 7,(£) is independent of choice of x (see Proposi-
tion 5.10). Finally we prove the following result.

THEOREM 4.11 (with notation as above). For all v > 1,
(1) ny, is K-linear, and
(2) n, is injective.

85. Proof of Theorem 2

In this section we give a proof of Theorem 2 with all details. The reader
is advised to read the preceding section before reading this section.
We first prove the following.
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PROPOSITION 5.1. Let & € Ry \ R™. Then a normal form of £ exists and
18 unique.

Proof. Euzistence: Let § € R \ R™. Let &€ = (b1/f,ba/f2,... by /fim)
with f1b; if b; #0. Note that i; <0 is possible. Let

ir = max{ij | ij > 1 and bj 7& 0}

Notice that 4, > 1. Then

o (M

Note that f1b,. Thus, the expression above is a normal form of &.
Uniqueness: Let (a1/f%, ... am/f})" and (b1/f",...,bm/f")" be two nor-
mal forms of £. We first assert that ¢ < r is not possible, for if this holds, then
because a;/f! =b;/f", we get b; = a; f*%, so f | b; for all j, a contradiction.
A similar argument shows that ¢ > r is not possible, so ¢ = r. Thus, a; = b,
for all 5. Thus, the normal form of £ is unique. U

5.2. Let { € Z1(0, Ry)—w be nonzero. Let £ = (1,...,&,) . Note that

e (Rf(wl) D Rf(wg) DD Rf(wn))_ .

w

It follows that
& eBy)os,, wn
It follows that £ € R} \ R".

5.3. Let (a1/f%,...,an/f") be the normal form of £&. Then

dega; =ideg f — Zwk.
ki

In particular, going mod f, we get

aj € A(—deg f +wj)(i+1)deg f—w-

Notice that degdf/0X; =deg f — wj. It follows that
@1, @) € Z1(0(F): A) (11 1) deg 7o

Thus, 6(£) € H1(0(f); A) (i+1) deg f -
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5.4. Let K=K(9; R¢) be the de Rham complex on R; written homolog-
ically, so
K=K 2 Ko 2Ky 25 Ko — 0.

Here Ko = Ry, Ki = @) Ry(wk),

Ky = @ R (w;i + wj), and Kz = @ R¢(wi +wj+ wy).

1<i<j<n 1<i<g<i<n

Let K' =K(9(f); A) be the Koszul complex on A with respect to 9f/0X1,

.,0f]0X,,. Thus,

K = — K 25 Ky 25 K, 25 K, — 0.
Here K{ = A, K| =@)_, A(—deg f +wg),
@ A(—2deg f + w; + wj), and
1<i<j<n

K§ = EB A(—3deg f +w; + wj + wp).

1<i<j<l<n
We now prove Proposition 4.5.

Proof of Proposition 4.5. Let u € B(0; Rf)—,, be mnonzero. Let ¢ €
(K2)—., be homogeneous, with ¢2(&) =u. Let £ = (&;; | 1 <i < j <n)’. Notice
that

§ij € Rp(wi +wj)w=(Rf)-x, . wp-

It follows that ¢ € R\ \ R(). Set
c=min{j | j = L(§) where ¢2(£) =u and £ € (K3)_,, is homogeneous}.

Notice that ¢ > 1. Let £ € (Ka)_,, be such that L(£§) =c and ¢2(§) = u. Let
(bij/f¢|1<i<j<n) be the normal form of £&. Let u= (uy,...,uy)". Then

forl=1,...,n )
> ox (1) - X, ()

So

e (S ) (s )

i<l gl J i<l
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Set 8f
Z bi
( i<l >
Therefore,
B f * 4+
U= fc+1 :

CLAIM. ftuv; for some l. First assume the claim. Then ((f * +v1)/fet!,
S (f % o)/ fETYY ds the normal form of w. Thus,

0(u) = [(T1,...,70)] = [ta(—cb)] =0.

We now prove our claim. Suppose, if possible, that f | v; for all I. Then

o (—cb) = (v1,...,17) =0,

so —cb € Z3(0(f); A). Because Ha(9(f); A) =0, we get —cb € B2(9(f); A).
Thus, —cb = ¥3(7). Here

Thus,

(54 1 —Csz = Z "}/km Z ’}’zkja + Z /Yz]kaa)!(f +azjf

k<i<j i<k<j 1<j<k

We need to compute the degree of v;;;. Note that & € (Ka)_,,, so

bi
f—i € (Ry(wi +wy))_-
It follows that
(5.4.2) degb;j = cdeg f — w + w; + w;.

It can be easily checked that

be (Ké)(c—l-Z) deg f—w>

SO

S (KZIS)(CJrQ) deg f—w-
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It follows that
(5.4.3) degvyi = (c— 1) deg f —w +w; +wj +w;.

We first consider the case when ¢ =1. Then by (5.4.1), we have a;; = 0.
Also,

degviji=—w+wi+wj+w <0 ifn>3,
so if n >3, we get v;;; = 0. Thus, b=0, so { =0, a contradiction.

We now consider the case when n = 3. Note that v = 71923 is a constant.
Thus,

b= (2 oy
Toxs Toxy, Toxs)

A direct computation yields u = 0, a contradiction.
We now consider the case when ¢ > 2. Notice that by (5.4.1), we have

—cbij _ 1 of 1 %
fc - fc erykzg 6Xk fc 'Z]’sz] 8X Z 72]19 f _

Notice that

Vi O /0Xe 0 (%z‘j/(l —C)) %
fe - 0X, fcfl fcfl'

Put

Thus, we obtain

e T o) g () X e ()« i

k

k<i<j 1<k<j 1<j<k
Set
5= (;‘” ‘1<z<]<l<n) and  £— (ﬁijl ‘1§i<j§n>.
Then
€=03(0) +&,
so we have u = ¢ (&) = ¢o(€). This contradicts choice of c. 0
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5.5. By Theorem 3.1 we have

Zl(a;Rf)—w

Hi0: ) = (0 By) - = 5 5 R

Let € Hi(0; R¢) be nonzero. Define
L(z) =min{L(§) | z = [¢], where € Z1(d, Rf)—u}-

Let £ = (&1,...,&)" € Z1(0, Rf)—w be such that x = [¢], so £ € (K)_,. Thus,
§i € Ry(+wi)—w, soif £ #0, then € € R} \ R". It follows that L({) > 1. Thus,
L(z)>1.

We now define a function

0: H1(9, Ry) — Hi((f); A),

IH{G(@ if 40,2 =[¢], and L(z) = L(&),
0 if z=0.

PROPOSITION 5.6 (with hypotheses as above). The element 0(x) is inde-
pendent of the choice of £.

Proof. Suppose that x = [{1] = [€2] is nonzero and that L(z) = L(&) =
L(&) =i. Let (a1/f%,...,an/f")" be the normal form of &, and let (b1/f?,
.oybn/fY) be the normal form of &. It follows that & = & + §, where
§ € B1(0; Rf)_,,. By Proposition 4.7(1), we get j = L(6) <i. Let (c1/f7,...,
cn/f7)" be the normal form of §. We consider two cases.

Case 1: j <i. Then note that a, = by + [ I¢;, for k=1,...,n. It follows
that

0(61) = [(a1,...,an)] = [(b1,...,bn)] = 0(&2).

Case 2: j =1. Then note that a = br + ¢ for k=1,...,n. It follows that

0(&1) = 0(&2) +0(6).

However, by Proposition 4.5, () =0, so 8(&1) = 0(&2). Thus, 6(x) is inde-
pendent of choice of &. H
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5.7. We now construct a filtration F = {F, },>0 of H1(9, R¢). Set
Fy={x € H1(8,Ry)| L(z) <v}.
We prove the following proposition.

PrOPOSITION 5.8. We have the following:
(1) F, is a K subspace of Hi(0; Ry),

(2) FuL 2 Fy—1 forallv>1,

(3) Fo= Hl(a Ry¢) for all v>>0,

(4)

4) Fo=0

Proof. (1) Let z € F,,, and let o € K. Then by Proposition 4.7,
L(az) < L(x) <v

so ax € F,.
Let z,2" € F,, be nonzero. Let &,£' € Z1(0; Ry) be such that x = [¢],2' =
[€'] and L(z) = L(§), L(z') = L(£'). Then z + 2’ = [ + &']. Tt follows that

L(z+1) < L(E+€) < max{L(€), L()} <v.

Note that the second inequality follows from Proposition 4.7. Thus,
z+a' eF,.

(2) This is clear.

(3) Let B={x1,...,2m} be a K-basis of Hi(0; Ry) = H1(0; Ry)—_.. Let

c=max{L(z;) } i=1,...,m}.

We claim that
F,=H(0;Ry) forallv>c.
Fix v >c. Let & € Z1(0; Rf)—. be such that x; = [&] and L(x;) = L(&;) for
1=1,....m
Let u € H1(0; Ry). Say that u = ;" | oyjz; for some v, ..., o, € K. Then
uw=[>", &]. It follows that

u) < L(i%%) §max{L(§i) ! 1= 1,...,m} =c<vw.
i=1

Here the second inequality follows from Proposition 4.7, so v € F,,. Thus,
F, = Hi(0; Ry).
(4) If x € H1(0; Ry) is nonzero, then L(x) > 1. It follows that Fo=0. []
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5.9. Let G = @VZIF,,/F,,,L For v > 1 we define

Fu
-7:1/71

0  ifu=0,
U ~
0(z) if u=ax+ F,_1 is nonzero.

Ty — H, (8(f);A)(u+1)degf*w7

PROPOSITION 5.10 (with hypotheses as above). The element n,(u) is
independent of choice of x.

Proof. Suppose that u =z + F,_1 = '+ F,_1 is nonzero. Then x = 2’ +,
where y € F,,_1. Because u # 0, we have z,2' € F,\ F,—1, so L(z) = L(2') =
v. Say that = [¢], 2’ = [¢/] and that y = [d], where £,&',0 € Z1(0; Ry) with
L) =L(¢)=v and L(0) = L(y) =k <v—1. Thus, we have { =&+ + a,
where o € B1(0; Rf)—w. Let L(a) =7. Note that r <wv.

Let (a1/f",...,an/f"), (a/f",....a\/f"), (b1/f*,....b,/f%), and
(er/f",...,cn/fT) be normal forms of &, &, §, and «, respectively. Thus,
we have

a; = a;- + f”_kbj +f""e; forj=1,...,n.

Case 1: v <v. In this case we have a_j:a_; in A for each j=1,...,n, so

(&) =6(¢'). Thus, 0(z) = 0("). B
Case 2: r =v. In this case notice that a; = a; +7¢; in A for each j =
1,...,n,s0 0(§) =6(¢) + 6(a). However, 6(o) =0 as o € B1(9; Rf) -, (see

Proposition 4.5). Thus, 6(z) = 6(z'). 0
Note that neither 6 nor @ is linear. However, we prove the following.

PROPOSITION 5.11 (with notation as above). For all v > 1, n, is
K -linear.

Proof. Let u,u' € F,/F,—1. We first show that n,(au) = an,(u) for all
«a € K. We have nothing to show if @ =0 or if uw =0, so assume that a # 0
and that u # 0. Say that w =z + F,_1. Then au = azx + F,—_1. Because
6(az) = af(x), we get the result.

Next we show that 7, (u+ ') =n,(u) + n,(u'). We have nothing to show

if u or ' is zero. Next we consider the case when v +u' = 0. Then u = —/,
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so 1y (u) = —n,(v'). Thus, in this case

My (u + Ul) =0=ny,(u) + 771/(“,)~

Now consider the case when u, v’ are nonzero and v+’ is nonzero. Say that
u=x+ F,_1 and that v/ = 2’ + F,_1. Note that because u + 1’ is nonzero,
z+a' € F,\ Fuo1. Let o =[¢], and let 2/ = [¢'], where £,&' € Z1(0; Rf)—u
and L(§) = L(¢') =v. Then z + 2’ = [ + £']. Note that L({ +¢&') <v by
Proposition 4.7. But L(z+2a') =v, so L(§+¢&') =v. Let (a1/fY,...,an/f"),
(ay/f¥,...,al,/f") be normal forms of { and &', respectively. Note that
((a1+ay)/f"s....(an+ay)/f¥)" is the normal form of § +¢'. It follows that

0(54—5’)20(&)—1—9(5) Thus, 6(z + 2') = 6(x) + 6(z'). Therefore,

M (w4 ') =y (u) + 1 (u). i
Finally we have the main result of this section.

Proof of Theorem 2. Let v > 1. By Proposition 5.11, we know that n, is
a linear map of K-vector spaces. We now prove that 7, is injective.

Suppose, if possible, that 7, is not injective. Then there exists nonzero
u € F,/Fy—1 with n,(u) = 0. Say that u =z + F,_;. Also, let = [£], where
£€ Z1(0;Rf)—w and L(§) = L(z) =v. Let (a1/f",...,an/f")" be the normal
form of £. Thus, we have

0=, (u)=0(x)=0(&) = [(a1,...,an)"].

It follows that (ar,...,a,)" = 12(b), where b = (b;; | 1 <i < j <n)’. It follows
that, for [=1,...,n,

8f —af
szl Z l]aX]

i<l
Then it follows that for [ =1,...,n we have the following equation in R:
af
(5.11.1) 1= bigse szj i,
i<l

for some d; € R. Note that (5.11.1) is of homogeneous elements in R. Thus,
we have the following:

) of
a; Zi<l bila—)é B Zl>j blja—Xj + d;

(5.11.2) F = Iz Iz o1
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We consider two cases.
Case 1: v>2. Set bj; = —b;;/(c — 1). Then note that

bdf% - J (f?l) - fu*—l‘

By (5.11.2) we have, for [=1,...,n,

Zax( >Zax<flil]1>+ffl—1'

i<l
Put & = (c1/f* . en/f*Y, and put 6 = (by/f* [ 1< i< j<n).
Then we have

5 = ¢2(6) + 5,7

so we have z = [§] = [¢/]. This yields L(z) < L(¢') <v — 1. This is a contra-
diction.
Case 2: v=1. Note that £ € (K;)_. Thus, for [=1,...,n we have

% € (Rf(wl)),w-

It follows that

dega; =deg f — Zwk.
kAL

Also note that deg 0f /0X; = deg f —w;. By comparing degrees in (5.11.1) we
get a; =0 for all [. Thus, £ =0, so x =0. Therefore, u =0, a contradiction.

O

§6. Example 0.1

Let R=K[X1,...,X,], and let f=X?+---+ X2 | + X™, with m > 2.
Set A= R/(f). In this section we compute H1(8;H(1f)(R)).

6.1. We give w; =degX; =m for i=1,...,n— 1, and we give w, =
deg X,, = 2. Note that f is a homogeneous polynomial in R of degree 2m.
Also note that w=>"p_;wi = (n—1)m+2.
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6.2. First note that the Jacobian ideal J of f is primary to the unique
graded maximal ideal of R. It follows that A is an isolated singularity. Note
that J = (X1,..., Xn_1, X7 1). Let H;(J; A) be the ith Koszul homology
of A with respect to J.

PROPOSITION 6.3. The Hilbert series, P(t), of Hi(J;A) is

m—2

P(t) — Z t2m+2k'

k=0

Proof. 1t is easily verified that X1, ..., X,,_1 is an A-regular sequence. Set
KX,

B:A/(Xla"'aanl)A: (X:ln)

=KoKX,0X20- -0 KX

Note that we have an exact sequence

0— Hy(J; A) = B(—2(m — 1)) 22— B.

It follows that H;(J; A) = X, B(—2(m — 1)). The result follows. U

6.4. By Theorem 2 there exists a filtration F = {F, },>0 consisting of
K-subspaces of H1(0; H(lf)(R)) with F, = H"~1(9; H(lf)(R)) forv>0,F, D
F,_1, and Fy =0 and injective K-linear maps

Fu
Fu-1

My : — H1(0(£)54) ()41 deg o
Notice that
(v+1Ddegf—w=w+1)2m—-—(n—1)m—-2=2v—n+3)m— 2.
If 0, # 0, then by Proposition 6.3 it follows that
2v—n+3)m—2=2m+2j for some j=0,...,m— 2.
Thus, we obtain

(6.4.1) 2vm=(n—-1)m+2(j+1).

It follows that m divides 2(j 4 1). Because 2(j+ 1) < 2m — 2, it follows that
2(j 4+ 1) =m. Thus, m is even.
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6.5. Say that m = 2r. Then by (6.4.1) we have
2ur=(n—1)r+r,

so v =n/2. It follows that n is even. Furthermore, note that 1, =0 for
v #n/2 and that if v =n/2 then by (6.3) dim F,, )5/ F, /21 < 1. It follows

that in this case dimHl(a;H(lf)(R)) <1.

6.6. In conclusion we have the following:

(1) if m is odd, then H"~1(9; H(lf)(R)) =0;
(2) if m is even, then

(a) if n is odd then H"~1(9; H}, (R)) =0,

(f)
(b) if n is even then dimg H"1(0; H(lf) (R)) <1.
This proves Example 0.1.
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