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A NOTE ON STRONG GEOMETRIC ISOLATION
IN 3-ORBITFOLDS

DANNY CALEGARI

Neuman and Reid describe a 2-cusped hyperbolic 3-orbifold in which the cusps
are geometrically isolated. Based on numerical evidence provided by Jeff Weeks'
"SnapPea" program, they conjecture that the cusps are strongly geometrically
isolated, a fact which we establish here. We also give a parameterisation of the
Dehn Si&gery Space of this orbifold which has amusing properties.

1. GEOMETRIC ISOLATION

Following [3] we make the following definitions:

Given a hyperbolic 3-orbifold M with cusps c i , . . . c*, c^+i... cj, we say that cusps
l, . . . ,fc are geometrically isolated from cusps k + l,...,h if any deformation of the
hyperbolic structure on M induced by Dehn filling cusps k + 1 , . . . , h while keeping
cusps 1 , . . . , k complete does not change the Euclidean structure at cusps 1 , . . . , k.

We say that cusps 1 , . . . , k are first order isolated from cusps k -+- 1 , . . . , h if the
map from the space of deformations induced by Dehn filling cusps k + 1,... ,h while
keeping cusps 1 , . . . , Jfe complete to the space of Euclidean structures at cusps 1 , . . . , k
has zero derivative at the point corresponding to the complete structure.

We say that cusps 1 , . . . , k are strongly geometrically isolated from cusps Jb+1, . . . , h
if for any fixed Dehn filling on cusps l,...,k, the geometry of the (possibly filled)
cusps 1 , . . . , k is unchanged by any Dehn filling on cusps k + 1 , . . . , h. This can be
shown to be equivalent to the fact that Vi(t(i,U2,... UA) can be written as a function
Vi(ui,U2,- •• ,Uk) if and only if i ^ k or as a function Vi(uk+i,. • • ,Uh) if and only if
i ^ k -f 1. Here UJ and Vi are the logarithms of the holonomies of the meridian and
longitude respectively of cusp i .

It is immediate from these definitions that strong isolation implies geometric iso-
lation, which in turn implies first order isolation.

In [3] it is shown that first order isolation and strong isolation are symmetric
conditions in the sets 1 , . . . , k and k + 1,.. .,h, and that they can be given an analytic
definition in terms of the $ function denned in [4].
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272 D. Calegari [2]

2. THE ORBIFOLDS A* AND A

Neumann and Reid in [3] construct a 2-cusped hyperbolic orbifold A with geomet-
rically isolated cusps. Based on numerical evidence, they conjecture that the cusps are
strongly isolated. The orbifold A is particularly interesting for two reasons: firstly it is
arithmetic, and secondly, all other known examples of manifolds with strongly isolated
cusps contain a rigid totally geodesic separating surface which "forces" the isolation.
There is evidence that this example does not contain such a surface, based on the fact
that its volume is so small. In this paper we find explicit formulae describing how
the tetrahedra making up an ideal triangulation of A* are distorted as the hyperbolic
structure on A* is deformed which suggests that the existence of such a surface is
unlikely.

A* is a 4-cusp link complement in S3. A is obtained from A* by (2,0) Dehn
surgery on two of the links. It is a curious fact, which we shall exploit in our calculations,
that A* is a double cover of A, obtained by a twofold branching of S3 over the two
filled cusps.

Figure 1. The orbifolds A* and A

We can draw A* as a T2 x (0,1) complement. The two removed cusps are linked
as in Figure 2. The two cusps in the figure we label as X and Y. W is the cusp
T2 x {0}, and Z the cusp T2 x {1}. As in [3] we let u; and V{ denote the logarithm of
the holonomy of rtii and /,•, the meridian and longitude respectively of cusp i. Rotating
through an angle 7r/2 gives the same link complement after isotopy.

In fact, we can see that A* retains its 4-fold symmetry even after cusps X and Y
are (m,n)-nlled. Hence the cusp shapes at T2 x {0} and T2 x {1} are constant. By
taking the quotient we see that in A the two cusps are geometrically isolated. Note that
this technique can be generalised. Let M be any 4-fold symmetric T2 x (0,1) 2-link
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[3] Strong geometric isolation 273

complement for which there is an orientation-preserving isometry permuting each pair
of cusps. By taking the quotient whith respect to this isometry we obtain an orbifold
in which one cusp is geometrically isolated from the other. Alternatively, let M be any
4-fold symmetric T2 x (0,1) knot complement. Then the cusp corresponding to this
knot is geometrically isolated from the other two cusps. It is not difficult to construct
infinitely many examples this way.

Figure 2. A* as a T2 x [0,1] complement

3. STRONG ISOLATION OF CUSPS

A* has a hyperbolic structure with fundamental domain given by two regular
ideal hyperbolic octahedra identified along their boundaries. To see this, note that
A* consists of an alternating link complement in T2 x (0,1), and therefore by general
properties of alternating links, a fundamental domain for A* can be found by two-
colouring the surface on which the link projection lies (in this case a torus), and glueing
the regions above and below this surface with a twist of TT/2 or —ir/2 according to the
colouring (see [1]). The link in A* separates the dividing torus into two squares. The
suspension on each of these squares for which the suspension points are cusps W and
Z is an octahedron, from which the vertices are removed, since they lie on the cusps.
Glueing the top four faces of each octahedron in the obvious manner, the bottom four
faces of each are identified with a twist of TT, relative to the top identification. The
pattern of identifications is given in Figure 3.

To prove that A is strongly geometrically isolated, it suffices to show that vi (tti, uj)
and V3(ui,ug) are functions solely of U\ and of uj respectively; that is, that we can
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Figure 3. Identifications giving Fundamental Domain for A*

define V\{u\) and
We subdivide each octahedron into 4 ideal tetrahedra by cutting along the two

faces XZXW and YZYW, so that each tetrahedron has vertices X,Y,Z and W.
We denote the simplex parameters of the four tetrahedra from the first octahedron
by z\, Z2, zs, Z4 relative to the central edge, and for the tetrahedra from the second
octahedron by wi,W2,vi3,104.

The triangulated cusp shapes for the complete structure are given in Figure 4.
In the notation of [3] we have the consistency relations
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[5] Strong geometric isolation 275

Since we are hfting Dehn surgeries from A, we require that

uw —uz

uY =ux

from which, and from the Dehn surgery equations, it will follow that

vY =vx-

w3 > ^Y-
X

CuspW

NxY-x

\\/
X

Cusp Z

\

N
w3
z3

Y

zl

\

/

z2

\

/

z4

z4

X
\
z3

z2

X
\
w2

X
w4

\

X
zl

wl

\

CuspY CuspX

Figure 4. Triangulated Cusp shapes for the Complete Struc-
ture

As in [3] we denote z' = (z - l)/z and z" = 1/(1 - z).
Reparameterising, we find that we can write everything in terms of two complex

variables, a and 0. We can define the simplex parameters in terms of these two

https://doi.org/10.1017/S0004972700016993 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016993


276 D. Calegari [6]

variables as follows:

_ ai + a + 1 — i
ai — a + 1 — i'
ai + a — 1 —i
—. , 1 , •»

at — a + l+i
2i-0-/3i

(3-Pi '
-p~Pi

a •+

2 - a
ai +.

ai

1+i

- at
: + ai
a-2i
— a

W3~ p-pi-2' Zi~ p-Pi-i-V

With these definitions, it can easily be verified that lw = lz and mw = "^z are
functions only of P, and that /y = lx and my = mx are functions only of a; for
example, lw = zl2~1w\w'lz'1~

1 = zl2~1w[/2, which is a function only of P. Explicitly
we can calculate

P(P - i)

tt(q - 1)
r ( q t ) ( q ( l + i ) ) ' Y a(a-i)

We therefore have the following:

THEOREM 1. The orbifold A has strongly isolated cusps.

4. GEOMETRIC DESCRIPTION OF REPARAMETERISATION

There is a nice geometric definition of the pajameterisation in terms of the two
complex numbers a and /?, which we now describe.

Given a square ABCD in the complex plane of side length 1, with vertices at
0,1,1 + i,i, we choose a point O at the complex number a. We construct the points
R, S, T and U so that the triangles ASO, BTO, CUO and DRO are similar with
angles TT/4, TT/2 and TT/4, as illustrated in Figure 5. Then it is an easy calculation
to see that as complex numbers, T — R + 1 and 5 = U + i. Therefore the octagon
ASBTCUDR tiles the complex plane.

The four triangles DUO, CTO, BSO and ARO are precisely (up to similarity)
the horoball sections of the simplices zi, w$ , z± and w^ respectively after Dehn filling
cusps Z and W.

There is a similar, though "mirror reversed" picture describing how W2 , iv*, z\ and
Z3 are determined as a function of a. From the fact that this octagon tiles the plane,
the consistency relations W\Wz = z-},z± = —1 and w"w$z2'z'l — —1/4 are geometrically

https://doi.org/10.1017/S0004972700016993 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016993


[7] Strong geometric isolation 277

Figure 5. Geometric description of reparameterisation

obvious. From the mirror-reversed picture, the consistency relations 102104 =
and w^w^z'j^z^ = —4 can similarly be deduced.

A relation of the form w"z[~1 = 1/2 is equivalent to the geometric fact that the
orientation preserving similarity taking AO to OS takes R to the midpoint of OB.
From simple relations such as these, the independence of lw and mw from a and of
W and my from /? can be seen.

5. THE DEHN SURGERY PARAMETER SPACE

There is an interesting relationship between the parameterisation of Dehn Surgery
Parameter Space by real pairs pi,qi : i — 1,2, and by a,/?. In particular, we have the
following:

THEOREM 2 . Tie cirde

corresponds to the values of (p, q) lying on the square with vertices

Notice of course that a corresponding fact holds for pi, qi and a.
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278 D. Calegari [8]

PROOF: The circle |/3 — 1/2 — i/2| = l / \ /2 passes through the square in the com-
plex plane with vertices at 0, l , i , 1 + i. Therefore, by the description in Section 4, it
corresponds precisely to the values of /? for which four of the simplices are degenerate.
That is to say, the simplex parameters wi, W3, z2, 24 are real. By symmetry, we need
only consider the case that /? lies on a fixed "quadrant" of the circle, for the sake of
argument, the arc between D and C in Figure 5.

However we know that

vw = log( l -z2)+log(w1 - l ) - l o g ( i u i ) - log (2)

uw = log (z2 - l ) + log(l - t o 3 ) - l o g (22)-log (2)

and moreover, that
P2UW + q2"»W = 27TI.

But then, by inspecting Figure 5, it can be seen that for /3 taking values on this arc,
io! ^ —1, Z2 > 1 and 0 < W3 < 1, so that S(ajy),D(iny) must take the values of TT, 0
respectively. Hence, q2 = 2. It is a simple matter to check that |!R(t;w)| ^ |9£(ujy)|)
and therefore that \p2\ ^ 2.

By a continuity argument, it can be seen that vertices C and D correspond to the
points (—2,2) and (2,2) in P2,</2 space, and the proof follows. 0

COROLLARY 1 . Vol(A(P2tq7)) = Vol(A)/2 for (p2,qi) taking values on the
square with vertices as in Theorem 2.

By a similar argument we can show:

THEOREM 3 . Tie "circle"

I0l = oo

corresponds to the values of (p2>92) lying on the square with vertices

For the sake of argument, the infinite circle can be understood as a "limit" of larger
and larger circles, in the Hausdorff topology on the standard compactification C.

PROOF: It is easy to see that as f3 -» 00, the simplex parameters

z2,zi,w1,w3 —> -i

(that is to say, their orientation and volume is negative). This implies that each of
vw, v-w approaches the value of 0 or ±2m according to which branch of the logarithm
is taken. This depends on which homotopy path /? takes from 1/2 + i/2 to 00 in the
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[9] Strong geometric isolation 279

4-punctured sphere C — {0, l , t , l + *}• We restrict the values of /? for the moment to

the simply connected domain consisting of C minus the four infinite rays emanating

from the four corners of the square. The appropriate branch of the logarithm can then

be determined by observing how the simplex parameters deform as 0 —> oo and then

requiring that uw,vw be continuous. It remains to check that IP2UI92I ^ 1 in the

limit. Without loss of generality, we choose /3 with &(/?) > 3(/3) » 0. Then p 2 -> 1,

by the argument above. It suffices to check that |3?(UVP)| ^ |SR(UJV)| as /? —» 00. But

by the parameterisation in terms of /3, it is immediate that \lw\ > \mw\ > 1 • The case

for other large absolute values of /? follows by symmetry, and a continuity argument

for the cases that |3?(/3)| - \S(P)\. The proof follows. D

One must be wary about assuming that geometric structures corresponding to the

case that (p2,<?2) h'e in the interior of the square with vertices as in Theorem 2 exist.

For the case that (p2 , 92 ) h'e on this square, four of the tetrahedra are flat and

disjoint except at the vertices. The other four tetrahedra can be glued to the flat four,

to produce an incomplete hyperbolic manifold, by the consistency equations. The fact

that each flat tetrahedra has a (geometric) bicollared neighbourhood in the manifold so

obtained not intersecting any of the other four tetrahedra implies that one can 'pump

some air' into each of the four flat tetrahedra without changing the homeomorphism type

of the manifold. That is to say, the incomplete manifold so obtained is homeomorphic

to A*, and the complete manifold obtained by performing geometric Dehn surgery is

homeomorphic to a manifold obtained by topological Dehn surgery on A*. Note by

a theorem proved in [2] one can find geometric structures corresponding to (p2, 92) in

an open neighbourhood of this square — that is to say, including some cases in which

four of the tetrahedra are negatively oriented. Notice that as j3 approaches one of

0 , l , i , l + i that one of the ( l , l , \ / 2 ) triangles in a horoball section gets arbitrarily

small with respect to the other three. This is to say, the length of the filled geodesic

in a complete structure (if one were to exist) goes to infinity. This suggests that the

orbifolds J4(±2,±2) contain incompressible tori or annuli.
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