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A step towards a general density Corrádi–
Hajnal Theorem∗

Jianfeng Hou, Heng Li, Xizhi Liu, Long-Tu Yuan and Yixiao Zhang

Abstract. For a nondegenerate 𝑟-graph 𝐹 , large 𝑛, and 𝑡 in the regime [0, 𝑐𝐹𝑛], where 𝑐𝐹 > 0 is a
constant depending only on 𝐹 , we present a general approach for determining the maximum num-
ber of edges in an 𝑛-vertex 𝑟-graph that does not contain 𝑡 + 1 vertex-disjoint copies of 𝐹 . In fact,
our method results in a rainbow version of the above result and includes a characterization of the
extremal constructions.
Our approach applies to many well-studied hypergraphs (including graphs) such as the edge-critical
graphs, the Fano plane, the generalized triangles, hypergraph expansions, the expanded triangles,
and hypergraph books. Our results extend old results of Erdős [12], Simonovits [76], and Moon [58]
on complete graphs, and can be viewed as a step towards a general density version of the classical
Corrádi–Hajnal [10] and Hajnal–Szemerédi [32] Theorems.
Our method relies on a novel understanding of the general properties of nondegenerate Turán prob-
lems, which we refer to as smoothness and boundedness. These properties are satisfied by a broad
class of nondegenerate hypergraphs and appear to be worthy of future exploration.

1 Introduction

1.1 Motivation

Fix an integer 𝑟 ≥ 2, an 𝑟-graphH is a collection of 𝑟-subsets of some finite set 𝑉 . We
identify a hypergraph H with its edge set and use 𝑉 (H) to denote its vertex set. The
size of𝑉 (H) is denoted by 𝑣(H).

Given two 𝑟-graphs 𝐹 andH we use 𝜈(𝐹,H) to denote themaximumof 𝑘 ∈ N such
that there exist 𝑘 vertex-disjoint copies of 𝐹 in H . We call 𝜈(𝐹,H) the 𝐹-matching
number of H . If 𝐹 = 𝐾𝑟𝑟 (i.e. an edge), then we use 𝜈(H) to represent 𝜈(𝐹,H) for
simplicity. The number 𝜈(H) is also known as thematching number ofH .

The study of the following problem encompasses several central topics in Extremal
Combinatorics. Given an 𝑟-graph 𝐹 and integers 𝑛, 𝑡 ∈ N:

What constraints on an 𝑛-vertex 𝑟-graphH force it to satisfy 𝜈(𝐹,H) ≥ 𝑡 + 1?
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For 𝑟 = 2 and 𝐹 = 𝐾2, the celebrated Erdős–Gallai Theorem [14] states that for all
integers 𝑛, ℓ ∈ N with 𝑡 + 1 ≤ 𝑛/2 and for every 𝑛-vertex graph𝐺 ,

|𝐺 | > max
{(
2𝑡 + 1
2

)
,

(
𝑛

2

)
−

(
𝑛 − 𝑡
2

)}
⇒ 𝜈(𝐺) ≥ 𝑡 + 1.

Here we use the symbol ⇒ to indicate that the constraint on the left side forces the
conclusion on the right side.

Extending the Erdős–Gallai Theorem to 𝑟-graphs for 𝑟 ≥ 3 is amajor open problem,
and the following conjecture of Erdős is still open in general (see e.g. [21, 22, 23, 38] for
some recent progress on this topic).

Conjecture Suppose that 𝑛, 𝑡, 𝑟 ∈ N satisfy 𝑟 ≥ 3 and 𝑡 + 1 ≤ 𝑛/𝑟 . Then for every
𝑛-vertex 𝑟-graphH ,

|H | > max
{(
𝑟 (𝑡 + 1) − 1

𝑟

)
,

(
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

)}
⇒ 𝜈(H) ≥ 𝑡 + 1.

■

For general 𝑟-graphs 𝐹 , determining the minimum number of edges in an 𝑛-vertex
𝑟-graph H that guarantees 𝜈(𝐹,H) ≥ 1 is closely related to the Turán problem. For
our purpose in this work, let us introduce the following notions.

Fix an 𝑟-graph 𝐹 , we say another 𝑟-graph H is 𝐹-free if 𝜈(𝐹,H) = 0. In other
words, H does not contains 𝐹 as a subgraph. The Turán number ex(𝑛, 𝐹) of 𝐹 is
the maximum number of edges in an 𝐹-free 𝑟-graph on 𝑛 vertices. The Turán den-
sity of 𝐹 is defined as 𝜋(𝐹) := lim𝑛→∞ ex(𝑛, 𝐹)/

(𝑛
𝑟

)
, the existence of the limit

follows from a simple averaging argument of Katona, Nemetz, and Simonovits [41] (see
Proposition 3.2).

An 𝑟-graph 𝐹 is called nondegenerate if 𝜋(𝐹) > 0. We use EX(𝑛, 𝐹) to denote the
collection of all 𝑛-vertex 𝐹-free 𝑟-graphs with exactly ex(𝑛, 𝐹) edges, and call members
in EX(𝑛, 𝐹) the extremal constructions of 𝐹 . The study of ex(𝑛, 𝐹) and EX(𝑛, 𝐹) is
a central topic in Extremal Combinatorics.

Much is known when 𝑟 = 2, and one of the earliest results in this regard is Mantel’s
theorem [57], which states that ex(𝑛, 𝐾3) = ⌊𝑛2/4⌋. For every integer ℓ ≥ 2 let 𝑇 (𝑛, ℓ)
denote the balanced complete ℓ-partite graph on 𝑛 vertices. Here, balanced means that
the sizes of any two parts differ by at most one. We call 𝑇 (𝑛, ℓ) the Turán graph, and
use 𝑡 (𝑛, ℓ) to denote the number of edges in𝑇 (𝑛, ℓ). The seminal Turán Theorem states
that EX(𝑛, 𝐾ℓ+1) = {𝑇 (𝑛, ℓ)} for all integers 𝑛 ≥ ℓ ≥ 2. Later, Turán’s theorem was
extended to general graphs 𝐹 in the celebrated Erdős–Stone–Simonovits Theorem [15,
18], which says that 𝜋(𝐹) = (𝜒(𝐹) − 2) /(𝜒(𝐹) − 1). Here 𝜒(𝐹) is the chromatic
number of 𝐹 .

For 𝑟 ≥ 3, determining ex(𝑛, 𝐹) or even 𝜋(𝐹) for an 𝑟-graph 𝐹 is known to be
notoriously hard in general. The problem of determining 𝜋(𝐾𝑟

ℓ
) raised by Turán [78],

where 𝐾𝑟
ℓ
is the complete 𝑟-graph on ℓ vertices, is still wide open for all ℓ > 𝑟 ≥ 3.

Erdős offered $500 for the determination of any 𝜋(𝐾𝑟
ℓ
) with ℓ > 𝑟 ≥ 3 and $1000 for

all 𝜋(𝐾𝑟
ℓ
) with ℓ > 𝑟 ≥ 3. We refer the reader to an excellent survey [42] by Keevash for

related results before 2011.
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A step towards a general density Corrádi–Hajnal Theorem 3

Another related central topic in Extremal Combinatorics is the Factor Problem. We
say an 𝑟-graph H has an 𝐹-factor if it contains a collection of vertex-disjoint copies
of 𝐹 that covers all vertices in 𝑉 (H). In other words, 𝜈(𝐹,H) =

𝑣 (H)
𝑣 (𝐹 ) (in particular,

𝑣(𝐹) | 𝑣(H)).
For an 𝑟-graphH and a vertex 𝑣 ∈ 𝑉 (H) the degree 𝑑H (𝑣) of 𝑣 inH is the number

of edges inH containing 𝑣. We use 𝛿(H), Δ(H), and 𝑑 (H) to denote theminimum
degree, themaximumdegree, and the average degree ofH , respectively.Wewill omit
the subscriptH if it is clear from the context.

A classical theorem of Corrádi and Hajnal [10] implies the following result for 𝐾3.

Theorem 1.2 (Corrádi–Hajnal [10]) Suppose that 𝑛, 𝑡 ∈ N are integers with 𝑡 ≤ 𝑛/3. Then
for every 𝑛-vertex graph 𝐺 ,

𝛿(𝐺) ≥ 𝑡 +
⌊𝑛 − 𝑡

2

⌋
⇒ 𝜈(𝐾3, 𝐺) ≥ 𝑡.

In particular, if 3 | 𝑛, then every 𝑛-vertex graph 𝐺 with 𝛿(𝐺) ≥ 2𝑛/3 contains a 𝐾3-factor.

Later, Theorem 1.2 was extended to all complete graphs in the classical Hajnal–
Szemerédi Theorem [32], which implies that for all integers 𝑛 ≥ ℓ ≥ 2, 𝑡 ≤ ⌊𝑛/(ℓ + 1)⌋ ,
and for every 𝑛-vertex graph𝐺 ,

𝛿(𝐺) ≥ 𝑡 +
⌊
ℓ − 1
ℓ

(𝑛 − 𝑡)
⌋

⇒ 𝜈(𝐾ℓ+1, 𝐺) ≥ 𝑡.

For further related results, we refer the reader to a survey [48] by Kühn and Osthus.
In this work, we are interested in density constraints that force an 𝑟-graph to have

large 𝐹-matching number, where 𝐹 is a nondegenerate 𝑟-graph. Since our results are
closely related to the Turán problem of 𝐹 , we abuse the use of notation by letting
ex (𝑛, (𝑡 + 1)𝐹) denote the maximum number of edges in an 𝑛-vertex 𝑟-graphH with
𝜈(𝐹,H) < 𝑡 + 1.

Given two 𝑟-graphsG andH whose vertex sets are disjoint, we define the joinG 1H
of G andH to be the 𝑟-graph obtained from G⊔H (the vertex-disjoint union of G and
H ) by adding all 𝑟-sets that have nonempty intersectionwith both𝑉 (G) and𝑉 (H). For
simplicity, we define the join of an 𝑟-graphH and a family F of 𝑟-graphs asH 1 F :=
{H 1 G : G ∈ F }.

Erdős [12] considered the density problem for 𝐾3 and proved the following result.

Theorem 1.3 (Erdős [12]) Suppose that 𝑛, 𝑡 ∈ N and 𝑡 ≤
√︁
𝑛/400. Then

EX (𝑛, (𝑡 + 1)𝐾3) = {𝐾𝑡 1 𝑇 (𝑛 − 𝑡, 2)}.

Later, Moon [58] extended it to all complete graphs.

Theorem 1.4 (Moon [58]) Suppose that integers 𝑛, 𝑡, ℓ ∈ N satisfy ℓ ≥ 2, 𝑡 ≤ 2𝑛−3ℓ2+2ℓ
ℓ3+2ℓ2+ℓ+1 ,

and ℓ | (𝑛 − 𝑡). Then

EX (𝑛, (𝑡 + 1)𝐾ℓ+1) = {𝐾𝑡 1 𝑇 (𝑛 − 𝑡, ℓ)} . (1.1)
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It isworthmentioning that, in fact, for ℓ = 2,Moonproved that the constraint ℓ | (𝑛−
𝑡) can be removed, andmoreover, (1.1) holds for all 𝑡 ≤ 2𝑛−8

9 . For ℓ ≥ 3,Moon remarked
in [58] that there are some difficulties to remove the constraint ℓ | (𝑛− 𝑡). Nevertheless,
the divisibility constraint is not required in our results. Meanwhile, Simonovits [76] also
considered this problem and proved that if 𝑡 ≥ 1 and ℓ ≥ 2 are fixed integers, then (1.1)
holds for all sufficiently large 𝑛.

It becomesmuchmore complicated when extending Theorem 1.4 to larger 𝑡. Indeed,
a full density version of theCorrádi–Hajnal Theoremwas obtained only very recently by
Allen, Böttcher, Hladký, and Piguet [2] for large 𝑛. Their results show that, interestingly,
there are four different extremal constructions for four different regimes of 𝑡, and the
construction𝐾𝑡 1𝑇 (𝑛− 𝑡, 2) is extremal only for 𝑡 ≤ 2𝑛−6

9 . For the other three extremal
constructions, we refer the reader to their paper for details. For larger complete graphs,
it seems that there are even no conjectures for the extremal constructions in general (see
remarks in the last section of [2]).

The objective of this work is to provide a general approach to determine ex(𝑛, (𝑡 +
1)𝐹) for nondegenerate hypergraphs (including graphs) 𝐹 when 𝑛 is sufficiently large
and 𝑡 is within the range of [0, 𝑐𝐹𝑛] , where 𝑐𝐹 > 0 is a small constant depending only
on 𝐹 . It is worthmentioning that general methods of this nature are rare for hypergraph
Turán-type problems, with only a few notable recent instances, as exemplified by [65,
9, 51]. Our main results are stated in the next section after the introduction of some
necessary definitions.We hope our results could shed some light on a full generalization
of the density version of the Corrádi–Hajnal and Hajnal–Szemerédi Theorems.

1.2 Main results

Given an 𝑟-graph 𝐹 and an integer 𝑛 ∈ N define

𝛿(𝑛, 𝐹) := ex(𝑛, 𝐹) − ex(𝑛 − 1, 𝐹) and 𝑑 (𝑛, 𝐹) := 𝑟 · ex(𝑛, 𝐹)
𝑛

.

Observe that 𝑑 (𝑛, 𝐹) is the average degree of hypergraphs in EX(𝑛, 𝐹), and 𝛿(𝑛, 𝐹) is
a lower bound for the minimum degree of hypergraphs in EX(𝑛, 𝐹) (see Fact 4.1).

The following two definitions are crucial for our main results. The first definition
concerns the maximum degree of a near-extremal 𝐹-free 𝑟-graph.

Definition 1.1 (Boundedness) Let 𝑓1, 𝑓2 : N → R be two nonnegative functions. An
𝑟-graph 𝐹 is ( 𝑓1, 𝑓2)-bounded if every 𝐹-free 𝑟-graph H on 𝑛 vertices with average
degree at least 𝑑 (𝑛, 𝐹) − 𝑓1 (𝑛) satisfies Δ(H) ≤ 𝑑 (𝑛, 𝐹) + 𝑓2 (𝑛), i.e.

𝑑 (H) ≥ 𝑑 (𝑛, 𝐹) − 𝑓1 (𝑛) ⇒ Δ(H) ≤ 𝑑 (𝑛, 𝐹) + 𝑓2 (𝑛).

Remark. For our purposes, it suffices to take 𝑓1 (𝑛) = 𝜀𝑛𝑟−1 and 𝑓2 (𝑛) = 𝛿𝑛𝑟−1 for
some small constants 𝜀, 𝛿 > 0.

Later we will prove that families with certain stability properties also have good
boundedness (see Theorem 1.9).

The next definition concerns the smoothness of the Turán function ex(𝑛, 𝐹).
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Definition 1.2 (Smoothness) Let 𝑔 : N → R be a nonnegative function. The Turán
function ex(𝑛, 𝐹) of an 𝑟-graph 𝐹 is 𝑔-smooth if

|𝛿(𝑛, 𝐹) − 𝑑 (𝑛 − 1, 𝐹) | ≤ 𝑔(𝑛) holds for all 𝑛 ∈ N.

Remark. Similarly, for our results, it suffices to take 𝑔(𝑛) = 𝛾𝑛𝑟−1 for some small
constant 𝛾 > 0.

Assumptions on the smoothness of ex(𝑛, 𝐹) were used by several researchers before.
See e.g. [3, 39] for degenerate graphs and see e.g. [43, Theorem 1.4] for nondegenerate
hypergraphs.

Now we are ready to state our main result.

Theorem 1.5 Fix integers𝑚 ≥ 𝑟 ≥ 2 and a nondegenerate 𝑟-graph 𝐹 on𝑚 vertices. Suppose
that there exists a constant 𝑐 > 0 such that for all sufficiently large 𝑛 ∈ N :

(a) 𝐹 is
(
𝑐
( 𝑛
𝑟−1

)
,
1−𝜋 (𝐹 )

4𝑚
( 𝑛
𝑟−1

) )
-bounded, and

(b) ex(𝑛, 𝐹) is 1−𝜋 (𝐹 )
8𝑚

( 𝑛
𝑟−1

)
-smooth.

Then there exists 𝑁0 such that for all integers 𝑛 ≥ 𝑁0 and 𝑡 ≤ min
{

𝑐
4𝑒𝑟𝑚𝑛,

1−𝜋 (𝐹 )
64𝑟𝑚2 𝑛

}
, we

have

EX (𝑛, (𝑡 + 1)𝐹) = 𝐾𝑟𝑡 1 EX(𝑛 − 𝑡, 𝐹), (1.2)

and, in particular,

ex (𝑛, (𝑡 + 1)𝐹) =
(
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

)
+ ex(𝑛 − 𝑡, 𝐹). (1.3)

Remarks.

• Assumption (a) cannot be removed, as demonstrated by the following example :
let 𝐹 = 2𝐾3 and let 𝑡 ≥ 2, then

ex(𝑛, (𝑡 + 1)𝐹) = ex(𝑛, (2𝑡 + 2)𝐾3) ≥
(
𝑛

2

)
−

(
𝑛 − 2𝑡 − 1

2

)
+

⌊
(𝑛 − 2𝑡 − 1)2

4

⌋
>

(
𝑛

2

)
−

(
𝑛 − 𝑡
2

)
+

⌊
(𝑛 − 1)2

4

⌋
+ 𝑛 − 1

=

(
𝑛

2

)
−

(
𝑛 − 𝑡
2

)
+ ex(𝑛 − 𝑡, 𝐹).

A less obvious example is the triangle-blowup of cycles, which can be deduced
similarly from the results in recent work [54, Theorem 1.9].

• Assumption (b) can probably be omitted, as it was conjectured1 that every 𝐹 is
𝑜(𝑛𝑟−1)-smooth and this is true for 𝑟 = 2 by a classic result of Simonovits (see [76,
p.317]).

1This conjecture arose in a previous project of Dhruv Mubayi, Christian Reiher, and the third author,
although it did not appear in the literature.
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Fix an 𝑟-graph 𝐹 on 𝑚 vertices. We say a collection {H1, . . . ,H𝑡+1} of 𝑟-graphs
on the same vertex set 𝑉 has a rainbow 𝐹-matching if there exists a collection
{𝑆𝑖 : 𝑖 ∈ [𝑡 + 1]} of pairwise disjoint 𝑚-subsets of 𝑉 such that 𝐹 ⊂ H𝑖 [𝑆𝑖] for all
𝑖 ∈ [𝑡 + 1].

Recently, there has been considerable interest in extending some classical results to
a rainbow version. See e.g. [1, 31, 38, 47, 55, 56] for some recent progress on the rain-
bow version of the ErdősMatching Conjecture. Here we include the following rainbow
version of Theorem 1.5.

Theorem 1.6 The following holds under the assumption of Theorem 1.5. If a collection
{H1, . . . ,H𝑡+1} of 𝑛-vertex 𝑟-graphs on the same vertex set satisfies

|H𝑖 | >
(
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

)
+ ex(𝑛 − 𝑡, 𝐹) for all 𝑖 ∈ [𝑡 + 1],

then {H1, . . . ,H𝑡+1} contains a rainbow 𝐹-matching.

Observe that (1.3) follows immediately by lettingH1 = · · · = H𝑡+1 in Theorem 1.6.
In fact, we will prove Theorem 1.6 first (which yields (1.3)), and then we prove (1.2) by
adding some further argument.

1.3 Boundedness and smoothness

In this subsection, we present some simple sufficient conditions for an 𝑟-graph to have
good boundedness and smoothness. Before stating our results, let us introduce some
necessary definitions.

For most nondegenerate Turán problems where the exact value of the Turán num-
ber is known, the extremal constructions have simple structures. We use the following
notions to encode the structural information of a hypergraph.

Let an 𝑟-multiset mean an unordered collection of 𝑟 elements with repetitions
allowed. Let 𝐸 be a collection of 𝑟-multisets on [𝑘]. Let𝑉1, . . . , 𝑉𝑘 be disjoint sets and
let 𝑉 := 𝑉1 ∪ · · · ∪ 𝑉𝑘 . The profile of an 𝑟-set 𝑋 ⊆ 𝑉 (with respect to 𝑉1, . . . , 𝑉𝑘 ) is
the 𝑟-multiset on [𝑘] that contains 𝑖 ∈ [𝑘] with multiplicity |𝑋 ∩𝑉𝑖 |. For an 𝑟-multiset
𝑌 ⊆ [𝑘] , let𝑌 ((𝑉1, . . . , 𝑉𝑘)) consist of all 𝑟-subsets of𝑉 whose profile is𝑌 . The 𝑟-graph
𝑌 ((𝑉1, . . . , 𝑉𝑘)) is called the blowup of𝑌 (with respect to𝑉1, . . . , 𝑉𝑘 ) and the 𝑟-graph

𝐸 ((𝑉1, . . . , 𝑉𝑘)) :=
⋃
𝑌 ∈𝐸

𝑌 ((𝑉1, . . . , 𝑉𝑘))

is called the blowup of 𝐸 (with respect to𝑉1, . . . , 𝑉𝑘 ).
An (𝑟-uniform) pattern is a pair 𝑃 = (𝑘, 𝐸) where 𝑘 is a positive integer and 𝐸 is

a collection of 𝑟-multisets on [𝑘]. It is clear that pattern is a generalization of 𝑟-graphs,
since an 𝑟-graph is a pattern in which 𝐸 consists of only simple 𝑟-sets. If it is clear from
the context, we will use 𝐸 to represent the pattern 𝑃 for simplicity (like what we did for
hypergraphs). Moreover, if 𝐸 consists of a single element, we will use this element to
represent 𝐸 .

We say an 𝑟-graph G is a 𝑃-construction on a set 𝑉 if there exists a partition 𝑉 =

𝑉1 ∪ · · · ∪ 𝑉𝑘 such that G = 𝐸 ((𝑉1, . . . , 𝑉𝑘)). An 𝑟-graphH is a 𝑃-subconstruction
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if it is a subgraph of some 𝑃-construction. For example, the Turán graph 𝑇 (𝑛, ℓ) is a
𝐾ℓ-construction on [𝑛] , and an ℓ-partite graph is a 𝐾ℓ-subconstruction.

Let Λ(𝑃, 𝑛) denote the maximum number of edges in a 𝑃-construction with 𝑛
vertices and define the Lagrangian of 𝑃 as the limit

𝜆(𝑃) := lim
𝑛→∞

Λ(𝑃, 𝑛)(𝑛
𝑟

) .

Using a simple averaging argument, one can show that Λ(𝑃, 𝑛)/
(𝑛
𝑟

)
is nonincreasing,

and hence, the limit exists (see [69, Lemma 10]). We say a pattern 𝑃 = (𝑘, 𝐸) ismini-
mum if 𝜆(𝑃 − 𝑖) < 𝜆(𝑃) for all 𝑖 ∈ [𝑘] , where 𝑃 − 𝑖 denotes the new pattern obtained
from 𝑃 by removing 𝑖 from [𝑘] and removing all 𝑟-multisets containing 𝑖 from 𝐸 . Note
that the Lagrangian of a pattern is a generalization of the well-known hypergraph
Lagrangian (see e.g. [5, 26]) that has been successfully applied to Turán-type problems,
with the basic idea going back to Motzkin and Straus [59].

Remark.The notion of pattern was introduced by Pikhurko in [69] to study the gen-
eral properties of nondegenerate hypergraph Turán problems, and it was also used very
recently in [52, 53]. Note that the definition of pattern in [69] is more general by allow-
ing recursive parts. Our results about patterns in this work can be easily extended to this
more general setting.

Let 𝐹 be an 𝑟-graph and 𝑃 be a pattern. We say (𝐹, 𝑃) is a Turán pair if every 𝑃-
construction is 𝐹-free and everymaximum 𝐹-free construction is a 𝑃-construction. For
example, it follows from the TuránTheorem that (𝐾ℓ+1, 𝐾ℓ) is a Turán pair for all ℓ ≥ 2.
It is easy to observe that for a Turán pair (𝐹, 𝑃), we have

𝜋(𝐹) = 𝜆(𝑃). (1.4)

For hypergraphs in Turán pairs, we have the following result concerning the smooth-
ness of their Turán functions.

Theorem 1.7 Suppose that 𝐹 is an 𝑟-graph and 𝑃 is a minimal pattern such that (𝐹, 𝑃) is
a Turán pair. Then ex(𝑛, 𝐹) is 4

(𝑛−1
𝑟−2

)
-smooth.

The boundedness of 𝐹 is closely related to the stability of 𝐹 . So we introduce some
definitions related to stability. Suppose that (𝐹, 𝑃) is a Turán pair.

• We say 𝐹 is edge-stable with respect to 𝑃 if for every 𝛿 > 0 there exist con-
stants 𝑁0 and 𝜁 > 0 such that for every 𝐹-free 𝑟-graph H on 𝑛 ≥ 𝑁0 vertices
with at least (𝜋(𝐹) − 𝜁)

(𝑛
𝑟

)
edges, there exists a subgraphH ′ ⊂ H with at least

(𝜋(𝐹) − 𝛿)
(𝑛
𝑟

)
edges such thatH ′ is a 𝑃-subconstruction.

• We say 𝐹 is vertex-extendable with respect to 𝑃 if there exist constants 𝑁0 and
𝜁 > 0 such that for every 𝐹-free 𝑟-graphH on 𝑛 ≥ 𝑁0 vertices satisfing 𝛿(H) ≥
(𝜋(𝐹) − 𝜁)

(𝑛−1
𝑟−1

)
the following holds: if H − 𝑣 is a 𝑃-subconstruction for some

vertex 𝑣 ∈ 𝑉 (H), thenH is also a 𝑃-subconstruction.
• We say 𝐹 isweakly vertex-extendablewith respect to 𝑃 if for every 𝛿 > 0 there
exist constants 𝑁0 and 𝜁 > 0 such that for every 𝐹-free 𝑟-graph H on 𝑛 ≥ 𝑁0
vertices satisfying 𝛿(H) ≥ (𝜋(𝐹) − 𝜁)

(𝑛−1
𝑟−1

)
the following holds: if H − 𝑣 is a

𝑃-subconstruction for some vertex 𝑣 ∈ 𝑉 (H), then 𝑑H (𝑣) ≤ (𝜋(𝐹) + 𝛿)
(𝑛−1
𝑟−1

)
.
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For simplicity, if 𝑃 is clear from the context, we will simply say that 𝐹 is edge-stable,
vertex-extendable, and weakly vertex-extendable, respectively.

The first stability theorem which states that 𝐾ℓ+1 is edge-stable with respect to
𝐾ℓ was proved independently by Erdős and Simonovits [76], and it was used first by
Simonovits [76] to determine the exact Turán number ex(𝑛, 𝐹) of an edge-critical graph
𝐹 for large 𝑛. Later, Simonovits’ method (also known as the Stability Method) was
used by many researchers to determine the Turán numbers of a large collection of
hypergraphs (see Section 2 for more details).

The definition of vertex-extendability was introduced by Mubayi, Reiher, and the
third author in [51] for a unified framework for proving the stability of a large class of
hypergraphs.

The definition of weak vertex-extendability seems to be new, and it is clear from (1.4)
and the following lemma that for a Turán pair (𝐹, 𝑃) the vertex-extendability implies
theweakvertex-extendability. There are several examples showing that the inverse is not
true in general (see e.g Section 2.6). It seems interesting to explore the relations between
the weak vertex-extendability and other types of stability (see [51] for more details).

Lemma 1.8 ([52, Lemma 21]) Suppose that 𝑃 is a minimal pattern. Then for every 𝛿 > 0
there exist 𝑁0 and 𝜀 > 0 such that every 𝑃-subconstruction H on 𝑛 ≥ 𝑁0 vertices with
𝛿(H) ≥ (𝜆(𝑃) − 𝜀)

(𝑛−1
𝑟−1

)
satisfies Δ(H) ≤ (𝜆(𝑃) + 𝛿)

(𝑛−1
𝑟−1

)
.

Let us add another remark about the weak vertex-extendability that might be useful
for readers who are familiar with the stability method. In a standard stability argument
in determining the exact value of ex(𝑛, 𝐹), one usually defines a set B of bad edges and
a setM of missing edges, and then tries to prove that |M| > |B|. One key step in this
argument is to prove that the maximum degree of B is small (more specifically, Δ(𝐵) =
𝑜(𝑛𝑟−1)), which, informally speaking, usually implies the weak vertex-extendability of
𝐹 .

For a Turán pair (𝐹, 𝑃) with the weak vertex-extendability, we have the following
result concerning the boundedness of 𝐹 .

Theorem 1.9 Suppose that 𝐹 is an 𝑟-graph and 𝑃 is a minimal pattern such that 𝐹 is edge-
stable and weakly vertex-extendable (or vertex-extendable) with respect to 𝑃. Then there exists
a constant 𝑐 > 0 such that 𝐹 is

(
𝑐
(𝑛−1
𝑟−1

)
,
1−𝜋 (𝐹 )

8𝑚
(𝑛−1
𝑟−1

) )
-bounded for large 𝑛.

Remark. It seems possible to extend Theorems 1.7 and 1.9 to nonminimal patterns,
but we do not aware of any 𝑟-graph 𝐹 whose extremal construction is a 𝑃-construction
for some nonminimal pattern 𝑃. However, there does exist a finite family F of 𝑟-
graphs whose extremal construction is a 𝑃-construction for some nonminimal pattern
𝑃 (see [37] for more details).

Inmany cases, (weak) vertex-extendability of𝐹 follows froma stronger type of stabil-
ity that was studied bymany researchers before. Suppose that (𝐹, 𝑃) is a Turán pair. We
say 𝐹 is degree-stablewith respect to 𝑃 if there exists 𝜁 > 0 such that for large 𝑛 every
𝑛-vertex 𝐹-free 𝑟-graphH with 𝛿(H) ≥ (𝜋(𝐹) − 𝜁)

(𝑛−1
𝑟−1

)
is a 𝑃-subconstruction. It is

easy to observe from the definition that if 𝐹 is degree-stable with respect to 𝑃, then 𝐹 is
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edge-stable and vertex-extendable with respect to 𝑃. Therefore, we have the following
corollary of Theorems 1.7 and 1.9.

Corollary 1.10 Suppose that 𝐹 is an 𝑟-graph and 𝑃 is a minimal pattern such that 𝐹 is
degree-stable with respect to 𝑃. Then there exists a constant 𝑐 > 0 such that

(a) ex(𝑛, 𝐹) is 4
(𝑛−1
𝑟−2

)
-smooth, and

(b) 𝐹 is
(
𝑐
(𝑛−1
𝑟−1

)
,
1−𝜋 (𝐹 )

8𝑚
(𝑛−1
𝑟−1

) )
-bounded.

In the next section, we show some applications of Theorems 1.5, 1.7 and 1.9, and
Corollary 1.10. We omit the applications of Theorem 1.6 since they are quite straight-
forward to obtain once we present the corresponding applications of Theorem 1.5. The
proofs for Theorems 1.5 and 1.6 are included in Section 3. The proofs for Theorems 1.7
and 1.9 are included in Section 4.

2 Applications

Combining some known stability results with Theorems 1.5, 1.7, and 1.9 (or Corol-
lary 1.10) we can immediately obtain results in this section. To demonstrate a way to
apply Theorems 1.5, 1.7, and 1.9 in general, we include the short proof for the weak
vertex-extendability of F3,2 as defined in Section 2.7 (even though it can be deduced
from results in [28]).

2.1 Edge-critical graphs

Recall that for a graph 𝐹 its chromatic number is denoted by 𝜒(𝐹). We say a graph
𝐹 is edge-critical if there exists an edge 𝑒 ∈ 𝐹 such that 𝜒(𝐹 − 𝑒) < 𝜒(𝐹). Using
the stability method, Simonovits proved in [76] that if a graph 𝐹 is edge-critical and
𝜒(𝐹) ≥ 3, then EX(𝑛, 𝐹) = {𝑇 (𝑛, 𝜒(𝐹) − 1)} for all sufficiently large 𝑛.

Extending the classical Andrásfai–Erdős–Sós Theorem [4], Erdős and
Simonovits [17] proved that every edge-critical graph with chromatic number at
least 3 is degree-stable. Theorefore, combined with Theorem 1.5 and Corollary 1.10,
we obtain the following result.

Theorem 2.1 Suppose that 𝐹 is an edge-critical graph with 𝜒(𝐹) ≥ 3. Then there exist
constants 𝑁0 and 𝑐𝐹 > 0 such that for all integers 𝑛 ≥ 𝑁0 and 𝑡 ∈ [0, 𝑐𝐹𝑛] we have

EX(𝑛, (𝑡 + 1)𝐹) = {𝐾𝑡 1 𝑇 (𝑛 − 𝑡, 𝜒(𝐹) − 1)} .

Remarks.

• For Theorem 2.1 and all other theorems in this section, we did not try to optimize
the constant 𝑐𝐹 , but it seems possible to obtain a reasonable bound2 for 𝑐𝐹 by a
more careful analysis of the proof for Theorem 1.9 (and the proof for the (weak)
vertex-extendability of 𝐹 in some cases).

2It seems possible to get a polynomial dependency between 𝑐𝐹 and 1
𝑟𝑚

.
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• The case when 𝐹 is an odd cycle was also considered in a recent paper [19,
Theorem 1.1].

• It might be true that Theorem 2.1 holds for a broader class of graphs, and it would
be interesting to characterize the class of graphs for which Theorem 2.1 holds.

2.2 The Fano plane

The Fano plane F is a 3-graph with vertex set {1, 2, 3, 4, 5, 6, 7} and edge set

{123, 345, 561, 174, 275, 376, 246}.

Let [𝑛] = 𝑉1 ∪ 𝑉2 be a partition with |𝑉1 | = ⌊𝑛/2⌋ and |𝑉2 | = ⌈𝑛/2⌉. Let 𝐵3 (𝑛)
denote the 3-graph on [𝑛] whose edge set consists of all triples that have a nonempty
intersection with both𝑉1 and𝑉2. Note that |𝐵3 (𝑛) | ∼ 3

4
(𝑛
3
)
.

𝑉1 𝑉2

1

2

345

6

7

Figure 1: The Fano plane and the complete bipartite 3-graph 𝐵3 (𝑛)..

It was conjectured by Sós [77] and famously proved by De Caen and Füredi [11] that
𝜋(F) = 3/4. Later, using a stability argument, Keevash and Sudakov [46], and indepen-
dently, Füredi and Simonovits [30] proved that EX(𝑛, F) = {𝐵3 (𝑛)} for all sufficienly
large 𝑛. Recently, Bellmann and Reiher [6] proved that ex(𝑛, F) = |𝐵3 (𝑛) | = 𝑛−2

2 ⌊ 𝑛24 ⌋
for all 𝑛 ≥ 7, andmoreover, they proved that 𝐵3 (𝑛) is the unique extremal construction
for all 𝑛 ≥ 8.

It follows from the result of Keevash and Sudakov [46], and independently, Füredi
and Simonovits [30] that F is degree-stable. Therefore, we obtain the following result.

Theorem 2.2 There exist constants 𝑁0 and 𝑐F > 0 such that for all integers 𝑛 ≥ 𝑁0 and
𝑡 ∈ [0, 𝑐F𝑛] we have

EX(𝑛, (𝑡 + 1)F) =
{
𝐾3
𝑡 1 𝐵3 (𝑛 − 𝑡)

}
.
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2.3 Generalized triangles

The (𝑟-uniform) generalized triangle T𝑟 is the 𝑟-graph with vertex set [2𝑟 − 1] and
edge set

{{1, . . . , 𝑟 − 1, 𝑟}, {1, . . . , 𝑟 − 1, 𝑟 + 1}, {𝑟, 𝑟 + 1, . . . , 2𝑟 − 1}} .

Note thatT2 is simply a triangle.
Fix 𝑛 ≥ 𝑟 ≥ 2 and ℓ ≥ 𝑟 . Let [𝑛] = 𝑉1 ∪ · · · ∪ 𝑉ℓ be a partition such that |𝑉𝑖 | ∈{

⌊ 𝑛
ℓ
⌋, ⌈ 𝑛

ℓ
⌉
}
for all 𝑖 ∈ [ℓ]. The generalized Turán 𝑟-graph 𝑇𝑟 (𝑛, ℓ) is the 𝑟-graph on

[𝑛] whose edge set consists of all 𝑟-sets that contain at most one vertex from each 𝑉𝑖 .
Note that 𝑇2 (𝑛, ℓ) is the Turán graph 𝑇 (𝑛, ℓ). Let 𝑡𝑟 (𝑛, ℓ) denote the number of edges
in 𝑇𝑟 (𝑛, ℓ).

1

2

3

4

5

𝑉1

𝑉2𝑉3

Figure 2: The generealized triangleT3 and the Turán 3-graph 𝑇3 (𝑛, 3)..

Katona conjectured and Bollobás [8] proved that EX(𝑛, {T3, 𝐾
3−
4 }) = {𝑇3 (𝑛, 3)} for

all 𝑛 ∈ N, where𝐾3−
4 is the unique 3-graphwith 4 vertices and 3 edges. Later, Frankl and

Füredi [24] sharpened the result of Bollobás by showing that EX(𝑛,T3) = {𝑇3 (𝑛, 3)} for
all 𝑛 ≥ 3000. In [44], Keevash andMubayi proved the edge-stability ofT3 and improved
the lower bound of 𝑛 from 3000 to 33. A short proof for the edge-stability with a linear
dependency between the error parameters can be found in [49].

The vertex-extendability of T3 can be easily obtained from the proof of Lemma 4.4
in [51] (also see the Concluding Remarks in [51]). Therefore, we obtain the following
result.

Theorem 2.3 There exist constants 𝑁0 and 𝑐T3 such that for all integers 𝑛 ≥ 𝑁0 and 𝑡 ∈
[0, 𝑐T3𝑛] we have

EX(𝑛, (𝑡 + 1)T3) =
{
𝐾3
𝑡 1 𝑇3 (𝑛 − 𝑡, 3)

}
.
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For 𝑟 = 4, improving a result of Sidorenko in [74], Pikhurko proved in [67] that
EX(𝑛,T4) = {𝑇4 (𝑛, 4)} for all sufficiently large 𝑛.

Similarly, the vertex-extendability of T4 can be obtained from the proof of
Lemma 4.4 in [51] (also see the Concluding Remarks in [51]). Therefore, we obtain the
following result.

Theorem 2.4 There exist constants 𝑁0 and 𝑐T4 such that for all integers 𝑛 ≥ 𝑁0 and 𝑡 ∈
[0, 𝑐T4𝑛] we have

EX(𝑛, (𝑡 + 1)T4) =
{
𝐾4
𝑡 1 𝑇4 (𝑛 − 𝑡, 4)

}
.

The situation becomes complicated when 𝑟 ≥ 5. Let W5 denote the unique 5-
graph with 11 vertices such that every 4-set of vertices is contained in exactly one edge.
LetW6 denote the unique 6-graph with 12 vertices such that every 5-set of vertices
is contained in exactly one edge. LetW5 (𝑛) andW6 (𝑛) denote the maximumW5-
construction andW6-construction on 𝑛 vertices, respectively. Some calculations show
thatW5 (𝑛) ∼ 6

114 𝑛
5 andW6 (𝑛) ∼ 11

125 𝑛
6.

In [25], Frankl and Füredi proved that ex(𝑛,T𝑟 ) ≤ |W𝑟 (𝑛) | + 𝑜(𝑛𝑟 ) for 𝑟 = 5, 6.
Much later, using a sophisticated stability argument, Norin and Yepremyan [65] proved
thatT5 andT6 are edge-stable with respect toW5 andW6 respectively, and moreover,
EX(𝑛,T𝑟 ) = {W𝑟 (𝑛)} for 𝑟 = 5, 6 and large 𝑛.

It was observed by Pikhurko [67] that both T5 and T6 fail to be degree-stable (or
vertex-extendable). However, from Lemmas 7.2 and 7.4 in [65] one can easily observe
that T5 and T6 are weakly vertex-extendable. Therefore, we obtain the following
theorem.

Theorem 2.5 For 𝑟 ∈ {5, 6} there exist constants 𝑁0 and 𝑐T𝑟
> 0 such that for all integers

𝑛 ≥ 𝑁0 and 𝑡 ∈ [0, 𝑐T𝑟
𝑛] we have

EX(𝑛, (𝑡 + 1)T𝑟 ) =
{
𝐾𝑟𝑡 1W𝑟 (𝑛 − 𝑡)

}
.

It seems that there are even no conjectures for the extremal constructions ofT𝑟 when
𝑟 ≥ 7.We refer the reader to [25] for some lower and upper bounds for 𝜋(T𝑟 ) in general.

2.4 The expansion of complete graphs

Fix integers ℓ ≥ 𝑟 ≥ 2. The expansion 𝐻𝑟
ℓ+1 of the complete graph 𝐾ℓ+1 is the 𝑟-graph

obtained from 𝐾ℓ+1 by adding a set of 𝑟 − 2 new vertices into each edge of 𝐾ℓ+1, and
moreover, these new (𝑟−2)-sets are pairwise disjoint. It is clear from the definition that
𝐻𝑟
ℓ+1 has ℓ + 1 + (𝑟 − 2)

(ℓ+1
2

)
vertices and

(ℓ+1
2

)
edges.

The 𝑟-graph 𝐻𝑟
ℓ+1 was introduced by Mubayi [60] as a way to generalize Turán’s

theorem to hypergraphs. These hypergraphs provide the first explicitly defined exam-
ples which yield an infinite family of numbers realizable as Turán densities for hyper-
graphs. In [60], Mubayi determined the Turán density of𝐻𝑟

ℓ+1 for all integers ℓ ≥ 𝑟 ≥ 3,
andproved that𝐻𝑟

ℓ+1 is edge-stable. In [68], Pikhurko refinedMubayi’s result andproved
that EX(𝑛, 𝐻𝑟

ℓ+1) = {𝑇𝑟 (𝑛, ℓ)} for all integers ℓ ≥ 𝑟 ≥ 3 when 𝑛 is sufficiently large.
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𝑉1

𝑉2𝑉3

1

23

4

Figure 3: The expansion 𝐻3
4 of 𝐾4 and the Turán 3-graph 𝑇3 (𝑛, 3)..

The vertex-extendability of 𝐻𝑟
ℓ+1 can be easily obtained by a small modification of

the proof of Lemma 4.8 in [51] (also see the Concluding Remarks in [51]). Therefore, we
obtain the following result.

Theorem 2.6 Fix integers ℓ ≥ 𝑟 ≥ 2. There exist constants 𝑁0 and 𝑐 = 𝑐(ℓ, 𝑟) > 0 such
that for all integers 𝑛 ≥ 𝑁0 and 𝑡 ∈ [0, 𝑐𝑛] we have

EX(𝑛, (𝑡 + 1)𝐻𝑟ℓ+1) =
{
𝐾𝑟𝑡 1 𝑇𝑟 (𝑛 − 𝑡, ℓ)

}
.

Remarks. The definition of expansion can be extended to all graphs as follows. Fix
a graph 𝐹 , let the 𝑟-graph 𝐻𝑟

𝐹
be obtained from 𝐹 by adding a set of 𝑟 − 2 new vertices

into each edge of 𝐹 , and moreover, these new (𝑟 − 2)-sets are pairwise disjoint. Similar
to Theorem 2.1, one could obtain a corresponding result for the expansion of all edge-
critical graphs. We omit its statement and proof here.

2.5 The expansion of hypergraphs

Given an 𝑟-graph 𝐹 with ℓ+1 vertices, the expansion𝐻𝐹
ℓ+1 of 𝐹 is the 𝑟-graph obtained

from 𝐹 by adding, for every pair {𝑢, 𝑣} ⊂ 𝑉 (𝐹) that is not contained in any edge of 𝐹 ,
an (𝑟 − 2)-set of new vertices, and moreover, these (𝑟 − 2)-sets are pairwise disjoint.
It is easy to see that the expansion of the empty 𝑟-graph on ℓ + 1 vertices (here empty
means that the edge set is empty) is the same as the expansion of the complete graph
𝐾ℓ+1 defined in the previous subsection. However, in general, these two definitions are
different.

Our first result in this subsection is about the expansion of the expanded trees. Given
a tree 𝑇 on 𝑘 vertices, define the (𝑟 − 2)-expansion Exp(𝑇) of 𝑇 as

Exp(𝑇) := {𝑒 ∪ 𝐴 : 𝑒 ∈ 𝑇} ,

where 𝐴 is a set of 𝑟 − 2 new vertices that is disjoint from𝑉 (𝑇).
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Given a tree 𝑇 on 𝑘 vertices, we say 𝑇 is an Erdős–Sós tree if it satisfies the famous
Erdős–Sós conjecture on trees. In other words,𝑇 is contained in every graph with aver-
age degreemore than 𝑘−2. In [75], Sidorenkoproved that for large 𝑘 , if𝑇 is anErdős–Sós
tree on 𝑘 vertices, then ex(𝑛, 𝐻Exp(𝑇 )

𝑘+𝑟−2 ) ≤ 𝑡𝑟 (𝑛, 𝑘 +𝑟−3) +𝑜(𝑛
𝑟 ). Much later, Norin and

Yepremyan [66], and independently, Brandt, Irwin, and Jiang [9], improved Sidorenko’s
result by showing that, under the same setting, 𝐻Exp(𝑇 )

𝑘+𝑟−2 is edge-stable with respect to
𝐾𝑟
𝑘+𝑟−3 and EX(𝑛, 𝐻Exp(𝑇 )

𝑘+𝑟−2 ) = {𝑇𝑟 (𝑛, 𝑘 + 𝑟 − 3)} for large 𝑛. In fact, it follows easily
from Lemmas 3.5 and 4.1 in [66] that 𝐻Exp(𝑇 )

𝑘+𝑟−2 is weakly vertex-extendable with respect
to 𝐾𝑟

𝑘+𝑟−3. Hence, we obtain the following result.

Theorem 2.7 For every integer 𝑟 ≥ 3 there exists 𝑀𝑟 such that if 𝑇 is an Erdős–Sós tree
on 𝑘 ≥ 𝑀𝑟 vertices, then there exist 𝑁0 and 𝑐𝑇 > 0 such that for all integers 𝑛 ≥ 𝑁0 and
𝑡 ≤ 𝑐𝑇𝑛, we have

EX
(
𝑛, (𝑡 + 1)𝐻Exp(𝑇 )

𝑘+𝑟−2

)
= 𝐾𝑟𝑡 1 𝑇𝑟 (𝑛 − 𝑡, 𝑘 + 𝑟 − 3).

Next, we consider the expansion of a different class of hypergraphs. Let 𝐵(𝑟, ℓ + 1)
be the 𝑟-graph with vertex set [ℓ + 1] and edge set

{[𝑟]} ∪ {𝑒 ⊂ [2, ℓ + 1] : |𝑒 | = 𝑟 and |𝑒 ∩ [2, 𝑟] | ≤ 1} .

Recall that the Lagrangian of an 𝑟-graphH (by viewingH as a pattern) is denoted by
𝜆(H). For integers ℓ ≥ 𝑟 ≥ 2 let the family F 𝑟

ℓ+1 be the collection of 𝑟-graphs 𝐹 with
the following properties:

(a) sup
{
𝜆(H) : H is 𝐹-free and not a 𝐾𝑟

ℓ
-subconstruction

}
<
ℓ · · · (ℓ−𝑟+1)

ℓ𝑟
, and

(b) either 𝐹 has an isolated vertex or 𝐹 ⊂ 𝐵(𝑟, ℓ + 1).

For every 𝐹 ∈ F 𝑟
ℓ+1 the vertex-extendability3 of the expansion 𝐻𝐹

ℓ+1 can be eas-
ily obtained by a small modification of the proof of Lemma 4.8 in [51] (also see the
Concluding Remarks in [51]). Hence, we obtain the following result.

Theorem 2.8 Suppose that ℓ ≥ 𝑟 ≥ 2 are integers and 𝐹 ∈ F 𝑟
ℓ+1. Then there exist constants

𝑁0 and 𝑐𝐹 > 0 such that for all integers 𝑛 ≥ 𝑁0 and 𝑡 ∈ [0, 𝑐𝐹𝑛] , we have

EX
(
𝑛, (𝑡 + 1)𝐻𝐹ℓ+1

)
=

{
𝐾𝑟𝑡 1 𝑇𝑟 (𝑛 − 𝑡, ℓ)

}
.

Remarks.

• In [63], Mubayi and Pikhurko considered the Turán problem for the 𝑟-graph Fan𝑟
(the generalized Fan), which is the expansion of the 𝑟-graph on 𝑟 + 1 vertices with
only one edge. It is easy to see that Fan𝑟 is a member in F 𝑟

𝑟+1.
• TheTurán problem for the expansion of certain class of 𝑟-graphs (which is a proper
subfamily of F 𝑟

ℓ+1) were studied previously in [9] and [66].

3The weak vertex-extendability of 𝐹 ∈ F𝑟
ℓ+1 with an isolated vertex also follows from Lemma 3.4 in [66].
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• Let𝑀𝑟
𝑘
denote the 𝑟-graph consisting of 𝑘 vertex-disjoint edges (i.e. a matching of

size 𝑘 ) and let 𝐿𝑟
𝑘
denote the 𝑟-graph consisting of 𝑘 edges having one vertex, say

𝑣, in common, and every pair of edges interest only at 𝑣 (i.e. a 𝑘-edge sunflower
with the center 𝑣). By results in [33, 40], if 𝐹 is isomorphic to𝑀3

𝑘
(see [33] for 𝑘 = 2

and [40] for 𝑘 ≥ 3), 𝐿3
𝑘
(see [40]), or 𝐿4

𝑘
(see [40]), where 𝑘 ≥ 2 is an integer, then

𝐹 is contained in F 𝑟
ℓ+1.

Now we focus on the expansion of 𝑟-uniform matching of size two with 𝑟 ≥ 4. We
say an 𝑟-graph is semibipartite if its vertex set can be partitioned into two parts𝑉1 and
𝑉2 such that every edge contains exactly one vertex in𝑉1. Let 𝑆𝑟 (𝑛) denote the semibi-
partite 𝑟-graph on 𝑛 vertices with the maximum number of edges. Simple calculations
show that |𝑆𝑟 (𝑛) | ∼

(
𝑟−1
𝑟

)𝑟−1 (𝑛
𝑟

)
.

Confirming a conjecture of Hefetz and Keevash [33], Bene Watts, Norin, and Yepre-
myan [7] showed that for 𝑟 ≥ 4, EX

(
𝑛, 𝐻

𝑀𝑟
2

2𝑟

)
= {𝑆𝑟 (𝑛)} for all sufficiently large

𝑛.
The vertex-extendability4 of 𝐻𝑀

𝑟
2

2𝑟 can be easily obtained by a small modification of
the proof of Lemma 4.12 in [51] (also see the Concluding Remarks in [51]). Hence we
have the following result.

Theorem 2.9 For every integer 𝑟 ≥ 4, there exist constants 𝑁0 and 𝑐 = 𝑐(𝑟) > 0 such that
for all integers 𝑛 ≥ 𝑁0 and 𝑡 ∈ [0, 𝑐𝑛] , we have

EX
(
𝑛, (𝑡 + 1)𝐻𝑀

𝑟
2

2𝑟

)
=

{
𝐾𝑟𝑡 1 𝑆𝑟 (𝑛 − 𝑡)

}
.

Remark. It is quite possible that Theorem 1.5 applies to the expansion of other
hypergraphs, for example, the 3-graph defined in [79] which provides the first example
of a single hypergraph whose Turán density is an irrational number.

2.6 Expanded triangles

Let C2𝑟
3 denote the 2𝑟-graph with vertex set [3𝑟] and edge set

{{1, . . . , 𝑟, 𝑟 + 1, . . . , 2𝑟}, {𝑟 + 1, . . . , 2𝑟, 2𝑟 + 1, . . . , 3𝑟}, {1, . . . , 𝑟, 2𝑟 + 1, . . . , 3𝑟}} .

Let [𝑛] = 𝑉1 ∪𝑉2 be a partition such that |𝑉1 | = ⌊𝑛/2⌋ + 𝑚. Let 𝐵odd
2𝑟 (𝑛, 𝑚) denote the

2𝑟-graph on [𝑛] whose edge set consists of all 2𝑟-sets that interest𝑉1 in odd number of
vertices. Some calculations show that max𝑚 |𝐵odd

2𝑟 (𝑛, 𝑚) | ∼ 1
2
( 𝑛
2𝑟
)
. Let 𝐵odd

2𝑟 = (2, 𝐸)
denote the pattern such that 𝐸 consists of all 2𝑟-multisets that contain exactly odd
number of 1s. Note that 𝐵odd

2𝑟 (𝑛, 𝑚) is a 𝐵odd
2𝑟 -construction.

The Turán problem for C2𝑟
3 was first considered by Frankl [20], who proved that

𝜋(C2𝑟
3 ) = 1/2. Later, Keevash and Sudakov [45] proved that C2𝑟

3 is edge-stable with
respect to 𝐵odd

2𝑟 , and moreover, EX(𝑛, C2𝑟
3 ) ⊂

{
𝐵odd
2𝑟 (𝑛, 𝑚) : 𝑚 ∈ [0, 𝑛/2]

}
. Simple

constructions5 show that C2𝑟
3 is not degree-stable (or vertex-extendable) with respect

4The weak vertex-extendability of 𝐻
𝑀𝑟

2
2𝑟 also follows from Theorem 3.2 in [7]

5For example, choose a set 𝑆 of 2𝑟 vertices from 𝑉1 in 𝐵odd
2𝑟 (𝑛, 0) , then remove all edges in 𝐵odd

2𝑟 (𝑛, 0)
that contain at least two vertices in 𝑆 and add 𝑆 to the edge set.
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𝑉1 𝑉2

1 2

6

5 4
3

Figure 4: The 4-graph C4
3 (expanded triangle) and the 4-graph 𝐵odd4 (𝑛)..

to 𝐵odd
2𝑟 . However, using Claim 3.5 in [45], one can easily show that C2𝑟

3 is weakly
vertex-extendable with respect to 𝐵odd

2𝑟 . Hence, we have the following theorem.

Theorem 2.10 For every integer 𝑟 ≥ 2 there exist constants 𝑁0 and 𝑐 > 0 such that for all
integers 𝑛 ≥ 𝑁0 and 𝑡 ∈ [0, 𝑐𝑛] , we have

EX
(
𝑛, (𝑡 + 1)C2𝑟

3
)
⊂ 𝐾2𝑟

𝑡 1

{
𝐵odd
2𝑟 (𝑛 − 𝑡, 𝑚) : 𝑚 ∈

[
0,

√︁
2𝑟 (𝑛 − 𝑡)

]}
.

Remarks.

• Calculations in [45] show that if 𝐵odd
2𝑟 (𝑛, 𝑚) is an optimal 𝐵odd

2𝑟 -construction,
then 𝑚 <

√
2𝑟𝑛. So it suffices to consider 𝑚 in the range

[
0,

√︁
2𝑟 (𝑛 − 𝑡)

]
for

Theorem 2.10.
• In general, one could consider the expanded𝐾ℓ+1 for ℓ ≥ 3. It seems that the above
theorem can be extended to these hypergraphs in some cases. We refer the reader
to [73] and [45] for more details.

2.7 Hypergraph books

Let 𝐹7 (4-book with 3-pages) denote the 3-graph with vertex set {1, 2, 3, 4, 5, 6, 7} and
edge set

{1234, 1235, 1236, 1237, 4567} .

Let 𝐵even
4 (𝑛) denote the maximum 𝐵even

4 := (2, {1, 1, 2, 2})-construction on 𝑛 vertices.
Simply calculations show that |𝐵4 (𝑛) | ∼ 3

8
(𝑛
4
)
.

Füredi, Pikhurko, and Simonovits [29] proved that EX(𝑛, 𝐹7) = {𝐵4 (𝑛)} for all suf-
ficiently large 𝑛. Moreover, they proved that 𝐹7 is degree-stable. Hence, we obtain the
following result.
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𝑉1 𝑉2

1

2

3

4

5

6

7

Figure 5: The 4-graph 𝐹7 (4-book with 3 pages) and the 4-graph 𝐵even4 (𝑛)..

Theorem 2.11 There exist constants 𝑁0 and 𝑐 > 0 such that for all integers 𝑛 ≥ 𝑁0 and
𝑡 ∈ [0, 𝑐𝑛] , we have

EX (𝑛, (𝑡 + 1)𝐹7) =
{
𝐾4
𝑡 1 𝐵even

4 (𝑛 − 𝑡)
}
.

Let F4,3 denote the 4-graph with vertex set {1, 2, 3, 4, 5, 6, 7} and edge set

{1234, 1235, 1236, 1237, 4567} .

Let 𝐵odd
4 (𝑛, 𝑚) denote the 𝐵odd

4 := (2, {{1, 2, 2, 2}, {1, 1, 1, 2}})-construction on 𝑛
vertices with one part of size ⌊𝑛/2⌋ + 𝑚. Recall from the previous subsection that
max𝑚 |𝐵odd

4 (𝑛, 𝑚) | ∼ 1
2
(𝑛
4
)
.

𝑉1 𝑉2

1

2

3

4

5

6

7

Figure 6: The 4-graph F4,3 and the 4-graph 𝐵odd4 (𝑛)..

Füredi, Mubayi, and Pikhurko [27] proved that EX(𝑛, F4,3) ⊂ {𝐵odd
4 (𝑛, 𝑚) : 𝑚 ∈

[0, 𝑛/2]} for large 𝑛, and moreover, F4,3 is edge-stable with respect to 𝐵odd
4 . They also
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showed that edge-stable cannot be replaced by degree-stable (or vertex-extendable).
However, from Lemma 3.1 in [27] one can easily obtain that F4,3 is weakly edge-stable
with respect to 𝐵odd

4 . Hence, we obtain the following theorem.

Theorem 2.12 There exist constants 𝑁0 and 𝑐 > 0 such that for all integers 𝑛 ≥ 𝑁0 and
𝑡 ∈ [0, 𝑐𝑛] , we have

EX
(
𝑛, (𝑡 + 1)F4,3

)
⊂ 𝐾4

𝑡 1

{
𝐵odd
4 (𝑛 − 𝑡, 𝑚) : 𝑚 ∈ [0,

√︁
4(𝑛 − 𝑡)]

}
.

Let F3,2 denote the 3-graph with vertex set {1, 2, 3, 4, 5} and edge set

{123, 124, 125, 345}.

Recall that 𝑆3 (𝑛) is the semibipartite 3-graph on 𝑛 vertices with the maximum number
of edges, i.e. the maximum 𝑆3 := (2, {1, 2, 2})-construction on 𝑛 vertices.

𝑉1

𝑉2

1

2

3

4

5

Figure 7: The 3-graph F3,2 and the semibipartite 3-graph 𝑆3 (𝑛)..

Füredi, Pikhurko, and Simonovits [28] proved that EX(𝑛, F3,2) = {𝑆3 (𝑛)} for all
sufficiently large 𝑛. A construction in their paper ([28, Construction 1.2]) shows thatF3,2
is not vertex-extendable with respect 𝑆3. But we will present a short proof in Section 5
which shows that F3,2 is weakly vertex-extendable with respect to 𝑆3. Hence, we obtain
the following result.

Theorem 2.13 There exist constants 𝑁0 and 𝑐 > 0 such that for all integers 𝑛 ≥ 𝑁0 and
𝑡 ∈ [0, 𝑐𝑛] , we have

EX
(
𝑛, (𝑡 + 1)F3,2

)
=

{
𝐾𝑟𝑡 1 𝑆3 (𝑛 − 𝑡)

}
.

3 Proofs of Theorems 1.5 and 1.6

In this section, we prove Theorems 1.5 and 1.6. In fact, we will prove the followingmore
general (but also more technical) version.
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Theorem 3.1 Let 𝑚 ≥ 𝑟 ≥ 2 be integers and 𝐹 be a nondegenerate 𝑟-graph on 𝑚 vertices.
Let 𝑓 : N→ R be a nondecreasing function. Suppose that for all sufficiently large 𝑛 ∈ N :

(a) ex(𝑛, 𝐹) is 1−𝜋 (𝐹 )
8𝑚

( 𝑛
𝑟−1

)
-smooth, and

(b) 𝐹 is
(
𝑓 (𝑛), 1−𝜋 (𝐹 )4𝑚

( 𝑛
𝑟−1

) )
-bounded.

Then there exists 𝑁0 such that the following statements hold for all integers 𝑛, 𝑡 ∈ N with

𝑛 ≥ 𝑁0, 𝑡 ≤ 1 − 𝜋(𝐹)
64𝑟𝑚2 𝑛, and 2𝑒𝑚𝑡

(
𝑛 − 2𝑚𝑡
𝑟 − 2

)
≤ 𝑓 (𝑛 − 2𝑚𝑡).

(i) If a collection {H1, . . . ,H𝑡+1} of 𝑛-vertex 𝑟-graphs on the same vertex set satisfies

|H𝑖 | >
(
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

)
+ ex(𝑛 − 𝑡, 𝐹) for all 𝑖 ∈ [𝑡 + 1],

then {H1, . . . ,H𝑡+1} contains a rainbow 𝐹-matching.
(ii) We have EX(𝑛, (𝑡 + 1)𝐹) = 𝐾𝑟𝑡 1 EX(𝑛 − 𝑡, 𝐹).

3.1 Preparations

First, recall the following result due to Katona, Nemetz, and Simonovits [41]

Proposition Fix an 𝑟-graph 𝐹 . The ratio ex(𝑛,𝐹 )
(𝑛𝑟)

is nonincreasing in 𝑛. In particular,

ex(𝑛, 𝐹) ≥ 𝜋(𝐹)
(𝑛
𝑟

)
for all 𝑛 ∈ N, and

𝜋(𝐹) ≤ ex(𝑣(𝐹), 𝐹)(𝑣 (𝐹 )
𝑟

) ≤
(𝑣 (𝐹 )
𝑟

)
− 1(𝑣 (𝐹 )

𝑟

) < 1.

■

Next, we prove two simple inequalities concerning binomials.

Lemma 3.3 Suppose that 𝑚 ≤ 𝑛/𝑟 − 1. Then(
𝑛

𝑟

)
−

(
𝑛 − 𝑚
𝑟

)
=

𝑟∑︁
𝑖=1

(
𝑚

𝑖

) (
𝑛 − 𝑚
𝑟 − 𝑖

)
≤ 2𝑚

(
𝑛 − 𝑚
𝑟 − 1

)
. (3.1)

Proof For every 𝑖 ∈ [2, 𝑟] we have(𝑚
𝑖

) (𝑛−𝑚
𝑟−𝑖

)( 𝑚
𝑖−1

) ( 𝑛−𝑚
𝑟−𝑖+1

) =
𝑚 − 𝑖 + 1

𝑖

𝑟 − 𝑖 + 1
𝑛 − 𝑚 − 𝑟 + 𝑖 ≤

(𝑟 − 1)𝑚
2(𝑛 − 𝑚 − 𝑟) ≤ 1

2
,

where the last inequality follows from the assumption that 𝑚 ≤ 𝑛/𝑟 − 1. Therefore,
𝑟∑︁
𝑖=1

(
𝑚

𝑖

) (
𝑛 − 𝑚
𝑟 − 𝑖

)
≤

𝑟∑︁
𝑖=1

(
1
2

) 𝑖−1
𝑚

(
𝑛 − 𝑚
𝑟 − 1

)
≤ 2𝑚

(
𝑛 − 𝑚
𝑟 − 1

)
,

proving Lemma 3.3. ■
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Lemma 3.4 Suppose that integers 𝑛, 𝑏, 𝑟 ≥ 1 satisfy 𝑏 ≤ 𝑛−𝑟
𝑟+1 . Then(

𝑛

𝑟

)
≤ 𝑒

(
𝑛 − 𝑏
𝑟

)
.

Proof For every 𝑖 ∈ [𝑏] it follows from 𝑏 ≤ 𝑛−𝑟
𝑟+1 that 𝑛−𝑖

𝑛−𝑖−𝑟 = 1 + 𝑟
𝑛−𝑖−𝑟 ≤ 1 +

𝑟
𝑛−𝑏−𝑟 ≤ 1 + 1

𝑏
. Therefore,(

𝑛

𝑟

)
=

𝑏−1∏
𝑖=0

𝑛 − 𝑖
𝑛 − 𝑖 − 𝑟

(
𝑛 − 𝑏
𝑟

)
≤

(
1 + 1

𝑏

)𝑏 (
𝑛 − 𝑏
𝑟

)
≤ 𝑒

(
𝑛 − 𝑏
𝑟

)
,

proving Lemma 3.4. ■

The following lemma says that 𝑑 (𝑛, 𝐹) is well-behaved for every 𝐹 .

Lemma 3.5 Let 𝐹 be an 𝑟-graph. For every 𝑛 and 𝑚 ≤ 𝑛/𝑟 − 1 we have

|𝑑 (𝑛, 𝐹) − 𝑑 (𝑛 − 𝑚, 𝐹) | ≤ 4𝑚
(
𝑛 − 𝑚
𝑟 − 2

)
.

Proof It follows from Proposition 3.2 that ex(𝑛, 𝐹)/
(𝑛
𝑟

)
≤ ex(𝑛 − 𝑚, 𝐹)/

(𝑛−𝑚
𝑟

)
.

Therefore,

ex(𝑛, 𝐹) − ex(𝑛 − 𝑚, 𝐹) ≤
(𝑛
𝑟

)(𝑛−𝑚
𝑟

) ex(𝑛 − 𝑚, 𝐹) − ex(𝑛 − 𝑚, 𝐹)

=

(𝑛
𝑟

)
−

(𝑛−𝑚
𝑟

)(𝑛−𝑚
𝑟

) ex(𝑛 − 𝑚, 𝐹)

Lemma 3.3
≤

2𝑚
(𝑛−𝑚
𝑟−1

)(𝑛−𝑚
𝑟

) ex(𝑛 − 𝑚, 𝐹) = 2𝑚𝑟
𝑛 − 𝑚 − 𝑟 + 1

ex(𝑛 − 𝑚, 𝐹).

Consequently,

|𝑑 (𝑛, 𝐹) − 𝑑 (𝑛 − 𝑚, 𝐹) | =
����𝑟 · ex(𝑛, 𝐹)𝑛

− 𝑟 · ex(𝑛 − 𝑚, 𝐹)
𝑛 − 𝑚

����
=

���� 𝑟𝑛 (ex(𝑛, 𝐹) − ex(𝑛 − 𝑚, 𝐹)) − 𝑟𝑚

𝑛(𝑛 − 𝑚) ex(𝑛 − 𝑚, 𝐹)
����

≤ max
{

2𝑚𝑟2

𝑛(𝑛 − 𝑚 − 𝑟 + 1) ,
𝑟𝑚

𝑛(𝑛 − 𝑚)

}
· ex(𝑛 − 𝑚, 𝐹)

≤ 2𝑚𝑟2

𝑛(𝑛 − 𝑚 − 𝑟 + 1)

(
𝑛 − 𝑚
𝑟

)
≤ 4𝑚

(
𝑛 − 𝑚
𝑟 − 2

)
.

This completes the proof of Lemma 3.5. ■

The following lemma deals with a simple case of Theorem3.1 inwhich themaximum
degree of every 𝑟-graphH𝑖 is bounded away from

(𝑛−1
𝑟−1

)
.
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Lemma 3.6 Let 𝐹 be a nondegenerate 𝑟-graph with 𝑚 vertices. Suppose that ex(𝑛, 𝐹) is 𝑔-
smooth with 𝑔(𝑛) ≤ 1−𝜋 (𝐹 )

8𝑚
( 𝑛
𝑟−1

)
for all sufficiently large 𝑛. Then there exists 𝑁1 such that

the following holds for all integers 𝑛, 𝑡 ∈ N with 𝑛 ≥ 𝑁1 and 𝑡 ≤ 1−𝜋 (𝐹 )
64𝑟𝑚2 𝑛.

Suppose that {H1, . . . ,H𝑡+1} is a collection of 𝑛-vertex 𝑟-graphs on the same vertex set𝑉
such that

|H𝑖 | ≥ ex(𝑛 − 𝑡, 𝐹) + 𝑡
(
𝑛 − 𝑡
𝑟 − 1

)
and Δ(H𝑖) ≤ 𝑑 (𝑛 − 𝑡, 𝐹) + 1 − 𝜋(𝐹)

2𝑚

(
𝑛 − 𝑡
𝑟 − 1

)
hold for all 𝑖 ∈ [𝑡 + 1]. Then {H1, . . . ,H𝑡+1} contains a rainbow 𝐹-matching.

Proof Given an integer 𝑘 ≤ 𝑡 + 1, we say a collection C = {𝑆1, . . . , 𝑆𝑘} of pairwise
disjoint𝑚-subsets of𝑉 is 𝐹-rainbow if there exists an injection 𝑓 : [𝑘] → [𝑡 + 1] such
that 𝐹 ⊂ H 𝑓 (𝑖) [𝑆𝑖] for all 𝑖 ∈ [𝑘].

Fix a maximal collection C = {𝑆1, . . . , 𝑆𝑘} of pairwise disjoint 𝑚-subsets of 𝑉 that
is 𝐹-rainbow. If 𝑘 = 𝑡 + 1, then we are done. So we may assume that 𝑘 ≤ 𝑡. Without loss
of generality, we may assume that 𝐹 ⊂ H𝑖 [𝑆𝑖] for all 𝑖 ∈ [𝑘] (i.e. 𝑓 is the identity map).
Let 𝐵 =

⋃𝑘
𝑖=1 𝑆𝑖 and let 𝑏 = |𝐵 | = 𝑚𝑘 .

Let us count the number of edges in H𝑘+1. Observe that every copy of 𝐹 in H𝑘+1
must contain a vertex from 𝐵, since otherwise, it would contradict the maximality of
C. Therefore, the induced subgraph of H𝑘+1 on 𝑉0 := 𝑉 \ 𝐵 is 𝐹-free. Hence, by the
maximum degree assumption, we obtain

|H𝑘+1 | ≤ |H𝑘+1 [𝑉0] | + 𝑏
(
𝑑 (𝑛 − 𝑡, 𝐹) + 1 − 𝜋(𝐹)

2𝑚

(
𝑛 − 𝑡
𝑟 − 1

))
≤ ex(𝑛 − 𝑏, 𝐹) + 𝑏

(
𝑑 (𝑛 − 𝑡, 𝐹) + 1 − 𝜋(𝐹)

2𝑚

(
𝑛 − 𝑡
𝑟 − 1

))
= ex(𝑛 − 𝑡, 𝐹) + 𝑡

(
𝑛 − 𝑡
𝑟 − 1

)
− (Δ1 + Δ2) ,

where

Δ1 := ex(𝑛 − 𝑡, 𝐹) − ex(𝑛 − 𝑏, 𝐹) − (𝑏 − 𝑡)𝑑 (𝑛 − 𝑡, 𝐹),

Δ2 := 𝑡
((
𝑛 − 𝑡
𝑟 − 1

)
− 𝑑 (𝑛 − 𝑡, 𝐹)

)
− 𝑏 1 − 𝜋(𝐹)

2𝑚

(
𝑛 − 𝑡
𝑟 − 1

)
.

Next, we will prove thatΔ1 +Δ2 > 0, which implies that |H𝑘+1 | < ex(𝑛− 𝑡, 𝐹) + 𝑡
(𝑛−𝑡
𝑟−1

)
contradicting our assumption.

Since 𝑛 − 𝑡 ≥ 𝑁1/2 is sufficiently large and lim𝑛→∞ ex(𝑛 − 𝑡, 𝐹)/
(𝑛−𝑡
𝑟

)
= 𝜋(𝐹), we

have ex(𝑛 − 𝑡, 𝐹) ≤
(
𝜋(𝐹) + 1−𝜋 (𝐹 )

5

) (𝑛−𝑡
𝑟

)
, and hence,

𝑑 (𝑛 − 𝑡, 𝐹) = 𝑟 · ex(𝑛 − 𝑡, 𝐹)
𝑛 − 𝑡 ≤

(
𝜋(𝐹) + 1 − 𝜋(𝐹)

5

) (
𝑛 − 𝑡
𝑟 − 1

)
.
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Therefore,

Δ2 ≥ 𝑡
(
1 −

(
𝜋(𝐹) + 1 − 𝜋(𝐹)

5

)) (
𝑛 − 𝑡
𝑟 − 1

)
− 𝑚𝑡 1 − 𝜋(𝐹)

2𝑚

(
𝑛 − 𝑡
𝑟 − 1

)
≥ 1 − 𝜋(𝐹)

4

(
𝑛 − 𝑡
𝑟 − 1

)
𝑡.

On the other hand, by Lemma 3.5, we have

𝑑 (𝑛 − 𝑡, 𝐹) ≤ 𝑑 (𝑛 − 𝑏, 𝐹) + 4(𝑏 − 𝑡)
(
𝑛 − 𝑏
𝑟 − 2

)
≤ 𝑑 (𝑛 − 𝑏, 𝐹) + 4𝑚𝑡

(
𝑛 − 𝑡
𝑟 − 2

)
.

Therefore, it follows from the Smoothness assumption and 𝑔 is nondecreasing that

Δ1 =

𝑏−𝑡∑︁
𝑖=1

(ex(𝑛 − 𝑏 + 𝑖, 𝐹) − ex(𝑛 − 𝑏 + 𝑖 − 1, 𝐹)) − (𝑏 − 𝑡)𝑑 (𝑛 − 𝑡, 𝐹)

Smoothness
≥

𝑏−𝑡−1∑︁
𝑖=0

(𝑑 (𝑛 − 𝑏 + 𝑖, 𝐹) − 𝑔(𝑛 − 𝑏 + 𝑖 + 1)) − (𝑏 − 𝑡)𝑑 (𝑛 − 𝑡, 𝐹)

Nondecreasing
≥

𝑏−𝑡−1∑︁
𝑖=0

(𝑑 (𝑛 − 𝑏 + 𝑖, 𝐹) − 𝑑 (𝑛 − 𝑡, 𝐹)) − (𝑏 − 𝑡)𝑔(𝑛 − 𝑡)

Lemma 3.5
≥ −

𝑏−𝑡−1∑︁
𝑖=0

4(𝑏 − 𝑡 − 𝑖)
(
𝑛 − 𝑏 + 𝑖
𝑟 − 2

)
− (𝑏 − 𝑡)𝑔(𝑛 − 𝑡)

≥ −4𝑚2𝑡2
(
𝑛 − 𝑡 − 1
𝑟 − 2

)
− 𝑚𝑡 · 𝑔(𝑛 − 𝑡) = −4(𝑟 − 1)𝑚2𝑡2

𝑛 − 𝑡

(
𝑛 − 𝑡
𝑟 − 1

)
− 𝑚𝑡 · 𝑔(𝑛 − 𝑡).

Since 𝑡 ≤ 1−𝜋 (𝐹 )
64𝑟𝑚2 𝑛, we obtain 4(𝑟−1)𝑚2𝑡2

𝑛−𝑡 <
1−𝜋 (𝐹 )

8 𝑡. Together with 𝑔(𝑛 − 𝑡) ≤
1−𝜋 (𝐹 )

8𝑚
(𝑛−𝑡
𝑟−1

)
, we obatin

Δ1 > −
(
1 − 𝜋(𝐹)

8
𝑡 + 𝑚𝑡 1 − 𝜋(𝐹)

8𝑚

) (
𝑛 − 𝑡
𝑡 − 1

)
= −1 − 𝜋(𝐹)

4
𝑡

(
𝑛 − 𝑡
𝑟 − 1

)
.

Therefore, Δ1 + Δ2 > 0. This finishes the proof of Lemma 3.6. ■

3.2 Proof of Theorem 3.1

We prove Theorem 3.1 in this section. Let us prove Part (i) first.

Proof Fix a sufficiently large constant 𝑁0 and suppose that 𝑛 ≥ 𝑁0. Let 𝑘 ≤ 𝑡 + 1. We
say a collection 𝐿 := {𝑣1, . . . , 𝑣𝑘} of vertices in 𝑉 is heavy-rainbow if there exists an
injection 𝑓 : [𝑘] → [𝑡 + 1] such that

𝑑H 𝑓 (𝑖) (𝑣𝑖) ≥ 𝑑 (𝑛 − 𝑡, 𝐹) + 1 − 𝜋(𝐹)
2𝑚

(
𝑛 − 𝑡
𝑟 − 1

)
for all 𝑖 ∈ [𝑘] .

Fix a maximal collection 𝐿 := {𝑣1, . . . , 𝑣𝑘} of vertices that is heavy-rainbow. Without
loss of generality, we may assume that 𝑓 (defined above) is the identity map.
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Let𝑉0 = 𝑉 \𝐿 andH ′
𝑗
= H 𝑗 [𝑉0] for all 𝑗 ∈ [𝑘 +1, 𝑡 +1]. For every 𝑗 ∈ [𝑘 +1, 𝑡 +1]

observe that there are at most
(𝑛
𝑟

)
−

(𝑛−𝑘
𝑟

)
edges inH 𝑗 that have nonempty intersection

with 𝐿. Hence,

|H ′
𝑗 | ≥ |H 𝑗 | −

((
𝑛

𝑟

)
−

(
𝑛 − 𝑘
𝑟

))
≥ ex(𝑛 − 𝑡, 𝐹) +

(
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

)
−

((
𝑛

𝑟

)
−

(
𝑛 − 𝑘
𝑟

))
= ex((𝑛 − 𝑘) − (𝑡 − 𝑘), 𝐹) +

(
𝑛 − 𝑘
𝑟

)
−

(
(𝑛 − 𝑘) − (𝑡 − 𝑘)

𝑟

)
.

On the other hand, it follows from the maximality of 𝐿 that

Δ(H ′
𝑗 ) ≤ Δ(H 𝑗 ) ≤ 𝑑 (𝑛 − 𝑡, 𝐹) + 1 − 𝜋(𝐹)

2𝑚

(
𝑛 − 𝑡
𝑟 − 1

)
= 𝑑 ((𝑛 − 𝑘) − (𝑡 − 𝑘), 𝐹) + 1 − 𝜋(𝐹)

2𝑚

(
(𝑛 − 𝑘) − (𝑡 − 𝑘)

𝑟 − 1

)
holds for all 𝑗 ∈ [𝑘 + 1, 𝑡 + 1]. By assumption, 𝑡−𝑘

𝑛−𝑘 ≤ 𝑡
𝑛
≤ 1−𝜋 (𝐹 )

64𝑟𝑚2 and 𝑛 − 𝑘 ≥ 𝑛/2
is sufficiently large, so it follows from Lemma 3.6 that there exists a collection C =

{𝑆𝑘+1, . . . , 𝑆𝑡+1} of pairwise disjoint 𝑚-subsets of 𝑉0 such that 𝐹 ⊂ H ′
𝑗
[𝑆 𝑗 ] for all

𝑗 ∈ [𝑘 + 1, 𝑡 + 1].
Next we will find a collection of rainbow copies of 𝐹 from {H1, . . . ,H𝑘}.

Claim For every 𝑖 ∈ [𝑘] and for every set 𝐵𝑖 ⊂ 𝑉 \ {𝑣𝑖} of size at most 2𝑚𝑡 there
exists a copy of 𝐹 inH𝑖 [𝑉 \ 𝐵𝑖]. ■

Proof Fix 𝑖 ∈ [𝑘] and fix a set 𝐵𝑖 ⊂ 𝑉 \ {𝑣𝑖} of size at most 2𝑚𝑡. We may assume
that |𝐵𝑖 | = 2𝑚𝑡. Let 𝑉𝑖 = 𝑉 \ 𝐵𝑖 and 𝑛𝑖 = |𝑉𝑖 | = 𝑛 − 2𝑚𝑡. Let H ′

𝑖
= H𝑖 [𝑉𝑖]. Since

the number of edges inH𝑖 containing 𝑣𝑖 that have nonempty intersection with 𝐵𝑖 is at
most 2𝑚𝑡

(𝑛−1
𝑟−2

)
, we have

𝑑H′
𝑖
(𝑣𝑖) ≥ 𝑑 (𝑛 − 𝑡, 𝐹) + 1 − 𝜋(𝐹)

2𝑚

(
𝑛 − 𝑡
𝑟 − 1

)
− 2𝑚𝑡

(
𝑛 − 1
𝑟 − 2

)
Lemma 3.5

≥ 𝑑 (𝑛 − 2𝑚𝑡, 𝐹) − 2𝑚𝑡
(
𝑛 − 2𝑚𝑡
𝑟 − 2

)
+ 1 − 𝜋(𝐹)

2𝑚

(
𝑛 − 𝑡
𝑟 − 1

)
− 2𝑚𝑡

(
𝑛 − 1
𝑟 − 2

)
> 𝑑 (𝑛 − 2𝑚𝑡, 𝐹) + 1 − 𝜋(𝐹)

4𝑚

(
𝑛 − 2𝑚𝑡
𝑟 − 1

)
, (3.2)

where the last inequality holds because 𝑡 ≤ 1−𝜋 (𝐹 )
64𝑟𝑚2 𝑛 and 𝑛 is sufficiently large.

Similarly, we have

|H ′
𝑖 | ≥ |H𝑖 | − 2𝑚𝑡

(
𝑛 − 1
𝑟 − 1

)
> ex(𝑛 − 𝑡, 𝐹) +

(
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

)
− 2𝑚𝑡

(
𝑛 − 1
𝑟 − 1

)
Lemma 3.4

≥ ex(𝑛 − 2𝑚𝑡, 𝐹) − 2𝑒𝑚𝑡
(
𝑛 − 2𝑚𝑡
𝑟 − 1

)
.
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which, by the assumption 𝑓 (𝑛 − 2𝑚𝑡) ≥ 2𝑒𝑚𝑡
(𝑛−2𝑚𝑡
𝑟−2

)
, implies that

𝑑 (H𝑖′ ) =
𝑟 · |H ′

𝑖
|

𝑛 − 2𝑚𝑡
≥ 𝑑 (𝑛 − 2𝑚𝑡, 𝐹) − 2𝑒𝑚𝑡

(
𝑛 − 2𝑚𝑡 − 1

𝑟 − 2

)
> 𝑑 (𝑛 − 2𝑚𝑡, 𝐹) − 𝑓 (𝑛 − 2𝑚𝑡). (3.3)

It follows from (3.2), (3.3), and the Boundedness assumption that 𝐹 ⊂ H ′
𝑖
. ■

Let 𝐵 = 𝐿 ∪ 𝑆𝑘+1 ∪ · · · ∪ 𝑆𝑡+1. Now we can repeatedly apply Claim 3.7 to find a
collection of rainbow copies of 𝐹 as follows. First, we let 𝐵1 = 𝐵 \ {𝑣1}. Since |𝐵1 | =
𝑘−1+𝑚(𝑡+1−𝑘) ≤ 2𝑚𝑡, Claim3.7 applied to 𝑣1, 𝐵1, andH1 yields an𝑚-set 𝑆1 ⊂ 𝑉\𝐵1
such that 𝐹 ⊂ H1 [𝑆1]. Suppose that we have define 𝑆1, . . . , 𝑆𝑖 for some 𝑖 ∈ [𝑘 − 1]
such that 𝐹 ⊂ H 𝑗 [𝑆 𝑗 ] holds for all 𝑗 ≤ 𝑖. Then let 𝐵𝑖+1 = (𝐵 ∪ 𝑆1 ∪ · · · ∪ 𝑆𝑖) \ {𝑣𝑖+1}.
Since |𝐵𝑖+1 | = 𝑘−1+𝑚(𝑡+1− 𝑘) + 𝑖𝑚 ≤ 2𝑚𝑡, Claim 3.7 applied to 𝑣𝑖+1, 𝐵𝑖+1, andH𝑖+1
yields an𝑚-set 𝑆𝑖+1 ⊂ 𝑉 \𝐵𝑖+1 such that 𝐹 ⊂ H𝑖+1 [𝑆𝑖+1]. At the end of this process, we
obtain a collection {𝑆1, . . . , 𝑆𝑘} of pairwise disjoint sets such that 𝐹 ⊂ H𝑖 [𝑆𝑖] holds for
all 𝑖 ∈ [𝑘]. Since 𝑆𝑖 ∩ 𝑆 𝑗 = ∅ for all 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑘 + 1, 𝑡 + 1] , the set {𝑆1, . . . , 𝑆𝑡+1}
yields a rainbow 𝐹-matching.

Before proving Part (ii) of Theorem 3.1, we need the simple corollary of Lemma 3.6.

Lemma 3.8 Let 𝐹 be a nondegenerate 𝑟-graph with 𝑚 vertices. Suppose that ex(𝑛, 𝐹) is 𝑔-
smooth with 𝑔(𝑛) ≤ 1−𝜋 (𝐹 )

8𝑚
( 𝑛
𝑟−1

)
for all sufficiently large 𝑛. Then there exists 𝑁1 such that

the following holds for all integers 𝑛, 𝑡 ∈ N with 𝑛 ≥ 𝑁1 and 𝑡 ≤ 1−𝜋 (𝐹 )
64𝑟𝑚2 𝑛.

Suppose thatH is an 𝑛-vertex 𝑟-graph with

Δ(H) ≤ 𝑑 (𝑛 − 𝑡, 𝐹) + 1 − 𝜋(𝐹)
2𝑚

(
𝑛 − 𝑡
𝑟 − 1

)
and 𝜈(𝐹,H) < 𝑡 + 1.

Then

|H | < ex(𝑛 − 𝑡, 𝐹) + 𝑡
(
𝑛 − 𝑡
𝑟 − 1

)
.

Now we are ready to prove Part (ii).

Proof LetH be an 𝑛-vertex 𝑟-graph with ex(𝑛, (𝑡 + 1)𝐹) edges and 𝜈(𝐹,H) < 𝑡 + 1.
Note that Theorem3.1 (i) already implies that ex(𝑛, (𝑡+1)𝐹) ≤

(𝑛
𝑟

)
−
(𝑛−𝑡
𝑟

)
+ex(𝑛−𝑡, 𝐹).

So, it suffices to show thatH is isomorphic to 𝐾𝑟𝑡 1 G for some G ∈ EX(𝑛 − 𝑡, 𝐹).
Let𝑉 = 𝑉 (H) and define

𝐿 :=
{
𝑣 ∈ 𝑉 : 𝑑H (𝑣) ≥ 𝑑 (𝑛 − 𝑡, 𝐹) + 1 − 𝜋(𝐹)

2𝑚

(
𝑛 − 𝑡
𝑟 − 1

)}
.

A similar argument as in the proof of Claim 3.7 yields the following claim.

Claim For every 𝑣 ∈ 𝐿 and for every set 𝐵 ⊂ 𝑉 \ {𝑣} of size at most 2𝑚𝑡 there exists
a copy of 𝐹 inH[𝑉 \ 𝐵]. ■
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Let ℓ = |𝐿 |. We have the following claim for ℓ.

Claim We have ℓ ≤ 𝑡. ■

Proof Suppose to the contrary that ℓ ≥ 𝑡 + 1. By taking a subset of 𝐿 if necessary, we
may assume that ℓ = 𝑡 + 1. Let us assume that 𝐿 = {𝑣1, . . . , 𝑣𝑡+1}. We will repeatedly
apply Claim 3.9 to find a collection {𝑆1, . . . , 𝑆𝑡+1} of pairwise disjoint𝑚-sets such that
𝐹 ⊂ H [𝑆𝑖] for all 𝑖 ∈ [𝑡 + 1] as follows.

Let 𝐵1 = 𝐿 \ {𝑣1}. Since |𝐵1 | ≤ 2𝑚𝑡, it follows from Claim 3.9 that there exists a set
𝑆1 ⊂ 𝑉 \ 𝐵 such that 𝐹 ⊂ H [𝑆1]. Now suppose that we have found pairwise disjoint
𝑚-sets 𝑆1, . . . , 𝑆𝑖 for some 𝑖 ≤ 𝑡. Let 𝐵𝑖+1 = (𝐿 ∪ 𝑆1 ∪ · · · ∪ 𝑆𝑖) \ {𝑣𝑖}. It is clear that
|𝐵𝑖+1 | ≤ 2𝑚𝑡. So it follows from Claim 3.9 that there exists a set 𝑆𝑖+1 ⊂ 𝑉 \ 𝐵 such that
𝐹 ⊂ H [𝑆𝑖+1]. Repeat this process for 𝑡 + 1 times, we find the collection {𝑆1, . . . , 𝑆𝑡+1}
that satisfies the assertion. However, this contradicts the assumption that 𝜈(𝐹,H) <
𝑡 + 1. ■

Let 𝑉0 = 𝑉 \ 𝐿 and H0 = H[𝑉0]. The following claim follows from a similar
argument as in the last paragraph of the proof of Theorem 3.1.

Claim We have 𝜈(𝐹,H0) < 𝑡 − ℓ + 1. ■

If ℓ = 𝑡, then Claim 3.11 implies thatH0 is 𝐹-free. Therefore, it follows from

|H0 | ≥ |H | −
((
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

))
= ex(𝑛 − 𝑡, 𝐹)

thatH0 ∈ EX(𝑛− 𝑡, 𝐹) and 𝑑 (𝑣) =
(𝑛−1
𝑟−1

)
for all 𝑣 ∈ 𝐿, which implies thatH = 𝐾𝑟𝑡 1G

for some G ∈ EX(𝑛 − 𝑡, 𝐹).
If ℓ ≤ 𝑡 − 1, then it follows from Δ(H0) ≤ 𝑑 (𝑛 − 𝑡, 𝐹) + 1−𝜋 (𝐹 )

2𝑚
(𝑛−𝑡
𝑟−1

)
, 𝜈(𝐹,H0) <

𝑡 − ℓ + 1, and Lemma 3.8 that

|H0 | < ex(𝑛 − 𝑡, 𝐹) + (𝑡 − ℓ)
(
𝑛 − 𝑡
𝑟 − 1

)
.

Consequently,

|H | ≤ |H0 | +
(
𝑛

𝑟

)
−

(
𝑛 − ℓ
𝑟

)
< ex(𝑛 − 𝑡, 𝐹) + (𝑡 − ℓ)

(
𝑛 − 𝑡
𝑟 − 1

)
+

(
𝑛

𝑟

)
−

(
𝑛 − ℓ
𝑟

)
≤ ex(𝑛 − 𝑡, 𝐹) +

(
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

)
,

a contradiction.

4 Proofs of Theorems 1.7 and 1.9

In this section, we prove Theorems 1.7 and 1.9. Before that, let us introduce some
definitions and prove some preliminary results.
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4.1 Preliminaries

The following fact concerning 𝛿(𝑛, 𝐹) for all hypergraphs 𝐹 .

Fact Let 𝐹 be an 𝑟-graph and 𝑛 ≥ 1 be an integer. Then every maximum 𝑛-vertex
𝐹-free 𝑟-graphH satisfies 𝛿(H) ≥ 𝛿(𝑛, 𝐹). In particular, 𝑑 (𝑛, 𝐹) ≥ 𝛿(𝑛, 𝐹). ■

Proof Let 𝑣 ∈ 𝑉 (H) be a vertex with minimum degree and let H ′ be the induced
subgraph ofH on𝑉 (H) \ {𝑣}. SinceH ′ is an (𝑛 − 1)-vertex 𝐹-free 𝑟-graph, we have
|H ′ | ≤ ex(𝑛−1, 𝐹). On the other hand, sinceH is amaximum 𝑛-vertex 𝐹-free 𝑟-graph,
we have ex(𝑛, 𝐹) = |H |. Therefore,

𝛿(𝑛, 𝐹) = ex(𝑛, 𝐹) − ex(𝑛 − 1, 𝐹) ≤ |H | − |H ′ | = 𝑑H (𝑣) = 𝛿(H),

which proves Fact 4.1. ■

For Turán pairs (𝐹, 𝑃) we have the following fact which provides a lower bound for
𝛿(𝑛, 𝐹).

Fact Suppose that (𝐹, 𝑃) is a Turán pair andH is a maximum 𝐹-free 𝑟-graph on 𝑛−1
vertices. Then 𝛿(𝑛, 𝐹) ≥ Δ(H). In particular, 𝛿(𝑛, 𝐹) ≥ 𝑑 (𝑛 − 1, 𝐹). ■

Proof First, notice that |H | = ex(𝑛 − 1, 𝐹). On the other hand, it follows from the
definition ofTurán pair thatH is an (𝑛−1)-vertex𝑃-construction. Let H̃ be an 𝑛-vertex
𝑃-construction obtained from H by duplicating a vertex 𝑣 ∈ 𝑉 (H) with maximum
degree. In other words, H̃ is obtained fromH by adding a new vertex 𝑢 and adding all
edges in {{𝑢} ∪ 𝑆 : 𝑆 ∈ 𝐿H (𝑣)}. It is clear that H̃ is an 𝑛-vertex 𝑃-construction, and
hence, H̃ is 𝐹-free. So |H̃ | ≤ ex(𝑛, 𝐹). It follows that

𝛿(𝑛, 𝐹) = ex(𝑛, 𝐹) − ex(𝑛 − 1, 𝐹) ≥ |H̃ | − |H | = 𝑑H (𝑣) = Δ(H) ≥ 𝑑 (H) ≥ 𝑑 (𝑛 − 1, 𝐹),

which proves Fact 4.2. ■

The following result can be derived with a minor modification to the proof of [50,
Lemma 4.2] (see Section A for details).

Fact Let 𝐹 be an 𝑟-graph and letH be an 𝑛-vertex 𝐹-free 𝑟-graph. If 𝑛 is large, 𝜀 > 0
is small, and |H | ≥ (𝜋(𝐹) − 𝜀)

(𝑛
𝑟

)
, then

(a) the set

𝑍𝜀 (H) :=
{
𝑣 ∈ 𝑉 (H) : 𝑑H (𝑣) ≤

(
𝜋(𝐹) − 𝑟𝜀1/2

) (
𝑛 − 1
𝑟 − 1

)}
has size at most 𝜀1/2𝑛, and

(b) the induced subgraph H ′ of H on 𝑉 (H) \ 𝑍𝜀 (H) satisfies 𝛿(H ′) ≥(
𝜋(𝐹) − 2𝑟𝜀1/2

) (𝑛−1
𝑟−1

)
.

■
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4.2 Proofs of Theorems 1.7 and 1.9

We prove Theorem 1.7 first.

Proof Fix an integer 𝑛 ≥ 1. Then

|𝛿(𝑛, 𝐹) − 𝑑 (𝑛 − 1, 𝐹) | Fact 4.2= 𝛿(𝑛, 𝐹) − 𝑑 (𝑛 − 1, 𝐹)
Fact 4.1
≤ 𝑑 (𝑛, 𝐹) − 𝑑 (𝑛 − 1, 𝐹)

Lemma 3.5
≤ 4

(
𝑛 − 1
𝑟 − 2

)
,

which proves Theorem 1.7. ■

Next we prove Theorem 1.9.

Proof Fix constants 0 < 𝜀 ≪ 𝜀1 ≪ 1 and let 𝑛 ∈ N be sufficiently large. Suppose
to the contrary that there exists an 𝑛-vertex 𝐹-free 𝑟-graphH with 𝑑 (H) ≥ 𝑑 (𝑛, 𝐹) −
𝜀
(𝑛−1
𝑟−1

)
and Δ(H) ≥ 𝑑 (𝑛, 𝐹) + 1−𝜋 (𝐹 )

8𝑚
(𝑛−1
𝑟−1

)
. Let 𝑉 = 𝑉 (H). Fix a vertex 𝑣 ∈ 𝑉 with

𝑑H (𝑣) = Δ(H). Let𝑉0 = 𝑉 \ {𝑣} andH0 = H[𝑉0]. Since

|H0 | ≥ |H | −
(
𝑛 − 1
𝑟 − 1

)
≥ ex(𝑛, 𝐹) − 2𝜀

(
𝑛

𝑟

)
,

it follows from the edge-stability of 𝐹 that H0 contains a subgraph H1 with at least
ex(𝑛, 𝐹) − 𝜀1

(𝑛
𝑟

)
≥ (𝜋(𝐹) − 𝜀1)

(𝑛
𝑟

)
edges, and moreover,H1 is a 𝑃-subconstruction.

It follows from Fact 4.3 that the set

𝑍 :=
{
𝑣 ∈ 𝑉 : 𝑑H1 (𝑣) ≤

(
𝜋(𝐹) − 𝑟𝜀1/21

) (
𝑛 − 1
𝑟 − 1

)}
has size at most 𝜀1/21 𝑛, and moreover, the 𝑟-graphH2 := H1 [𝑉0 \ 𝑍] satisfies 𝛿(H2) ≥(
𝜋(𝐹) − 2𝑟𝜀1/21

) (𝑛−1
𝑟−1

)
. Note thatH2 ⊂ H1 is also a 𝑃-subconstruction.

DefineH3 := H2∪{𝑒 ∈ H [𝑉 \ 𝑍] : 𝑣 ∈ 𝑒}. Since |𝑍 | ≤ 𝜀1/21 𝑛 ≤ 1−𝜋 (𝐹 )
72𝑚

𝑛
𝑟
, we have

𝑑H3 (𝑣) ≥ 𝑑H (𝑣) − |𝑍 |
(
𝑛 − 2
𝑟 − 2

)
≥ 𝑑 (𝑛, 𝐹) + 1 − 𝜋(𝐹)

8𝑚

(
𝑛 − 1
𝑟 − 1

)
− 1 − 𝜋(𝐹)

72𝑚
𝑛

𝑟

(
𝑛 − 2
𝑟 − 2

)
≥ 𝑑 (𝑛, 𝐹) + 1 − 𝜋(𝐹)

8𝑚

(
𝑛 − 1
𝑟 − 1

)
− 1 − 𝜋(𝐹)

72𝑚

(
𝑛 − 1
𝑟 − 1

)
≥

(
𝜋(𝐹) + 1 − 𝜋(𝐹)

9𝑚

) (
𝑛 − 1
𝑟 − 1

)
.

Let 𝑛′ = |𝑉 \ 𝑍 |. Note that H3 is an 𝐹-free 𝑟-graph on 𝑛′ vertices with 𝛿(H3) ≥
𝛿(H2) ≥

(
𝜋(𝐹) − 2𝑟𝜀1/21

) (𝑛−1
𝑟−1

)
, and 𝑣 ∈ 𝑉 (H3) is a vertex such thatH3 − 𝑣 = H2 is a

𝑃-subconstruction. However, this contradicts the weak vertex-extendability of 𝐹 since
𝜀1 is sufficiently small and 𝑑H3 (𝑣) ≥

(
𝜋(𝐹) + 1−𝜋 (𝐹 )

9𝑚

) (𝑛−1
𝑟−1

)
. ■
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5 Proof of Theorem 2.13

The edge-stability of F3,2 was already proved in [28, Theorem 2.2], so by Theo-
rems 1.5, 1.7, and 1.9, to prove Theorem 2.13 it suffices to prove the following result.

Theorem 5.1 The 3-graph F3,2 is weakly vertex-extendable with respect to the pattern 𝑆3 :=
(2, {1, 2, 2}).

Proof Fix 𝛿 > 0. Let 𝑛 be sufficiently large and 𝜁 > 0 be sufficiently small. Let H
be an 𝑛-vertex F3,2-free 3-graph with 𝛿(H) ≥

( 4
9 − 𝜁

) (𝑛−1
2

)
. Suppose that 𝑣 ∈ 𝑉 is a

vertex such thatH0 := H − 𝑣 is an 𝑆3-subconstruction (i.e. semibipartite). It suffices to
show that 𝑑H (𝑣) ≤

( 4
9 + 𝛿

) (𝑛−1
2

)
.

Suppose to the contrary that 𝑑H (𝑣) >
( 4
9 + 𝛿

) (𝑛−1
2

)
. Let𝑉1 ∪ 𝑉2 be a bipartition of

𝑉0 := 𝑉 \ {𝑣} such that every edge in H0 contains exactly one vertex from 𝑉1. Since
|H0 | ≥ 3

𝑛
𝛿(H) ≥

( 4
9 − 𝜁

) (𝑛
3
)
, it follows from some simple calculations (see e.g. [28,

Theorem 2.2 (ii)]) that

max
{���|𝑉1 | − 𝑛

3

��� , ����|𝑉2 | − 2𝑛
3

����} ≤ 𝜁1/2𝑛. (5.1)

Recall that the link of a vertex 𝑢 ∈ 𝑉 (H) is defined as

𝐿H (𝑢) :=
{
𝐴 ∈

(
𝑉 (H)
𝑟 − 1

)
: 𝐴 ∪ {𝑢} ∈ H

}
.

Let 𝐿 = 𝐿H (𝑣) for simplicity and let

𝐿1 := 𝐿 ∩
(
𝑉1

2

)
, 𝐿2 := 𝐿 ∩

(
𝑉2

2

)
, and 𝐿1,2 := 𝐿 ∩ (𝑉1 ×𝑉2).

Here we abuse the use of notation by letting𝑉1 ×𝑉2 denote the edge set of the complete
bipartite graph with parts𝑉1 and𝑉2.

𝑣

𝑢

𝑤

𝑎

𝑏

𝑣

𝑢

𝑤

𝑎

𝑏

Figure 8: Finding F3,2 in Claim 5.2 (left) and Claim 5.3 (right)..
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Claim We have |𝐿2 | ≥ 𝛿
8 𝑛

2. ■

Proof Suppose to the contrary that |𝐿2 | ≤ 𝛿𝑛2/8. Then it follows from the inequality∑︁
𝑣′∈𝑉1

𝑑𝐿 (𝑣′) = 2|𝐿1 | + |𝐿1,2 | ≥ |𝐿 | − |𝐿2 | ≥
(
4
9
+ 𝛿

) (
𝑛 − 1
2

)
− 𝛿

8
𝑛2 ≥

(
2
9
+ 𝛿
4

)
𝑛2

that there exists a vertex 𝑤 ∈ 𝑉1 with

𝑑𝐿 (𝑤) ≥
( 2
9 +

𝛿
4
)
𝑛2( 1

3 + 𝜁1/2
)
𝑛
≥

(
2
3
+ 𝛿
8

)
𝑛.

Therefore, by (5.1), we have

min {|𝑁𝐿 (𝑤) ∩𝑉1 |, |𝑁𝐿 (𝑤) ∩𝑉2 |} ≥
𝛿

16
𝑛.

Fix a vertex 𝑢 ∈ 𝑁𝐿 (𝑤) ∩𝑉1 and let𝑉 ′
2 = 𝑁𝐿 (𝑤) ∩𝑉2. Since(

|𝑉2 |
2

)
− 𝑑H0 (𝑢) ≤

( ( 2
3 + 𝜁

1/2) 𝑛
2

)
−

(
4
9
− 2𝜁

) (
𝑛 − 1
2

)
<

(
𝛿𝑛/16
2

)
, (5.2)

there exists an edge 𝑎𝑏 ∈ 𝐿H (𝑢) ∩
(𝑉 ′

2
2
)
. However, this implies that F3,2 ⊂

H [{𝑣, 𝑢, 𝑤, 𝑎, 𝑏}] (see Figure 8), a contradiction. ■

Claim We have 𝐿1 = ∅. ■

Proof Suppose to the contrary that there exists an edge 𝑢𝑤 ∈ 𝐿1. Note that |𝐿2 | ≥
𝛿𝑛2/8 fromClaim 5.2. Choosing uniformly at random a pair {𝑎, 𝑏} from

(𝑉2
2
)
, we obtain

min {P [𝑎𝑏 ∈ 𝐿H (𝑢)] , P [𝑎𝑏 ∈ 𝐿H (𝑤)]} ≥ 𝛿(H0)( |𝑉2 |
2

) >

( 4
9 − 2𝜁

) (𝑛−1
2

)(( 2
3+𝜁 1/2)𝑛

2
) > 1 − 10𝜁1/2,

and

P [𝑎𝑏 ∈ 𝐿2] =
|𝐿2 |( |𝑉2 |
2

) > 𝛿𝑛2/8(( 2
3+𝜁 1/2)𝑛

2
) > 𝛿

8
.

So it follows from the Union Bound that

P [𝑎𝑏 ∈ 𝐿2 ∩ 𝐿H (𝑢) ∩ 𝐿H (𝑤)] > 1 −
(
10𝜁1/2 + 10𝜁1/2 + 1 − 𝛿

8

)
> 0.

Hence, there exists an edge 𝑎𝑏 ∈ 𝐿2 ∩ 𝐿H (𝑢) ∩ 𝐿H (𝑤). However, this implies that
F3,2 ⊂ H [{𝑣, 𝑢, 𝑤, 𝑎, 𝑏}] (see Figure 8), a contradiction. ■

Let us define

𝑈1 :=
{
𝑣′ ∈ 𝑉2 : |𝑁𝐿 (𝑣′) ∩𝑉1 | ≥

𝛿

16
𝑛

}
and 𝑈2 :=

{
𝑣′ ∈ 𝑉2 : |𝑁𝐿 (𝑣′) ∩𝑉2 | ≥

𝛿

16
𝑛

}
.
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𝑣

𝑢

𝑤

𝑎

𝑏

Figure 9: Finding F3,2 when 𝐿1 = ∅..

It follows from(
1
3
+ 𝜁1/2

)
𝑛|𝑈1 | ≥

∑︁
𝑣′∈𝑈1

|𝑁𝐿 (𝑣′) ∩𝑉1 | ≥ |𝐿1,2 | −
𝛿

16
𝑛|𝑉2 \𝑈1 | ≥ |𝐿1,2 | −

𝛿

16
𝑛2

and(
2
3
+ 𝜁1/2

)
𝑛|𝑈2 | ≥

∑︁
𝑣′∈𝑈2

|𝑁𝐿 (𝑣′) ∩𝑉2 | ≥ 2|𝐿2 | −
𝛿

16
𝑛|𝑉2 \𝑈2 | ≥ 2|𝐿2 | −

𝛿

16
𝑛2

that

|𝑈1 | + |𝑈2 | ≥
|𝐿1,2 | − 𝛿

16𝑛
2( 1

3 + 𝜁1/2
)
𝑛

+
2|𝐿2 | − 𝛿

16𝑛
2( 2

3 + 𝜁1/2
)
𝑛

≥
|𝐿1,2 | − 𝛿

16𝑛
2 + |𝐿2 | − 𝛿

16𝑛
2( 1

3 + 𝜁1/2
)
𝑛

=
|𝐿 | − 𝛿

8 𝑛
2( 1

3 + 𝜁1/2
)
𝑛
≥

( 2
9 +

𝛿
4
)
𝑛2 − 𝛿

8 𝑛
2( 1

3 + 𝜁1/2
)
𝑛

≥
(
2
3
+ 𝛿
8

)
𝑛.

So it follows from (5.1) that |𝑈1 ∩𝑈2 | ≥ |𝑈1 | + |𝑈2 | − |𝑉2 | ≥ 𝛿
16𝑛.

Fix a vertex 𝑤 ∈ 𝑈1 ∩𝑈2 and a vertex 𝑢 ∈ 𝑁𝐿 (𝑤) ∩𝑉1. Let𝑉 ′
2 = 𝑁𝐿 (𝑤) ∩𝑉2. Since

|𝑉 ′
2 | ≥

𝛿
16𝑛, similar to (5.2), there exists an edge 𝑎𝑏 ∈ 𝐿H (𝑢) ∩

(𝑉 ′
2
2
)
. However, this

implies that F3,2 ⊂ H [{𝑣, 𝑢, 𝑤, 𝑎, 𝑏}] (see Figure 9), a contradiction. This completes
the proof of Theorem 5.1.
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6 Concluding remarks

By a small modification of the proof, one can easily extend Theorems 1.5 and 1.6 to
vertex-disjoint union of different hypergraphs as follows (here we omit the statement
for the rainbow version).

Theorem 6.1 Let 𝑚 ≥ 𝑟 ≥ 2, 𝑘 ≥ 1 be integers and let 𝐹1, . . . , 𝐹𝑘 be nondegenerate
𝑟-graphs on at most 𝑚 vertices. Suppose that there exists a constant 𝑐 > 0 such that for all
𝑖 ∈ [𝑘] and large 𝑛 :

(a) 𝐹𝑖 is
(
𝑐
( 𝑛
𝑟−1

)
,
1−𝜋 (𝐹 )

4𝑚
( 𝑛
𝑟−1

) )
-bounded, and

(b) ex(𝑛, 𝐹𝑖) is 1−𝜋 (𝐹 )
8𝑚

( 𝑛
𝑟−1

)
-smooth.

Then there exist constant 𝑁0 such that for all integers 𝑛 ≥ 𝑁0 and 𝑡1, . . . , 𝑡𝑘 ∈ N with
𝑡 + 1 :=

∑𝑘
𝑖=1 𝑡𝑖 ∈ [0, 𝜀𝑛] , where 𝜀 = min

{
𝑐

4𝑒𝑟𝑚 ,
1−𝜋 (𝐹1 )
64𝑟𝑚2 , . . . ,

1−𝜋 (𝐹𝑘 )
64𝑟𝑚2

}
, we have

ex

(
𝑛,

𝑘⊔
𝑖=1

𝑡𝑖𝐹𝑖

)
≤

(
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

)
+ max
𝑖∈[𝑘 ]

{ex(𝑛 − 𝑡, 𝐹𝑖)} .

Moreover, if max𝑖∈[𝑘 ] ex(𝑛 − 𝑡, 𝐹𝑖) = ex(𝑛, {𝐹1, . . . , 𝐹𝑘}), then the inequality above can
be replace by equality.

Recall from Theorem 1.7 that for every 𝑟-uniform Turán pair (𝐹, 𝑃), the function
ex(𝑛, 𝐹) is smooth. This result can be extended in the following ways with a slight
modification to the proof (the proof of Theorem 6.2 below is included in the Appendix).

Let (𝑛𝑖)∞𝑖=1 be an ascending sequence of integers, 𝐹 be an 𝑟-graph, and 𝑃 be a pattern.
We say (𝐹, 𝑃) is a (𝑛𝑖)∞𝑖=1-Turán pair if there exists 𝑁0 such that

• every 𝑃-construction is 𝐹-free, and
• for every 𝑛𝑖 ≥ 𝑁0, there exists an 𝑛𝑖-vertex 𝐹-free extremal construction that is a
𝑃-construction.

Let 𝑘 ≥ 1 be an integer. We say an ascending sequence of integers (𝑛𝑖)∞𝑖=1 is
1
𝑘
-dense if

for every integer 𝑚 ≥ 𝑁0, we have

{𝑚 + 1, . . . , 𝑚 + 𝑘} ∩ {𝑛𝑖 : 𝑖 ≥ 1} ≠ ∅.

Theorem 6.2 Let 𝑘 ≥ 1 be an integer, 𝐹 be an 𝑟-graph, and 𝑃 be a pattern. Suppose that
(𝐹, 𝑃) is an (𝑛𝑖)∞𝑖=1-Turán pair for some

1
𝑘
-dense ascending sequence of integers (𝑛𝑖)∞𝑖=1. Then

ex(𝑛, 𝐹) is 16𝑘2
(𝑛−1
𝑟−2

)
-smooth.

Given an 𝑟-graph 𝐹 , we say 𝐹 is 2-covered if every pair of vertices in 𝑉 (𝐹) is
contained in some edge of 𝐹 . In particular, complete 𝑟-graphs are 2-covered.

Suppose that 𝐹 is a 2-covered 𝑟-graph. Then it is easy to see that duplicating a vertex
in an 𝐹-free 𝑟-graph does not change its 𝐹-freeness. Thus, a proof analogous to that of
Fact 4.2 can show that 𝛿(𝑛, 𝐹) ≥ Δ(H) for every maximum 𝐹-free 𝑟-graphH on 𝑛−1
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vertices. Consequently, we have 𝛿(𝑛, 𝐹) ≥ 𝑑 (𝑛 − 1, 𝐹). By combining this result with
Fact 4.1 and Lemma 3.5, we can extend Theorem 6.3 as follows :

Theorem 6.3 Suppose that 𝐹 is a 2-covered 𝑟-graph. Then ex(𝑛, 𝐹) is 4
(𝑛−1
𝑟−2

)
-smooth.

Recall that Allen, Böttcher, Hladký, and Piguet [2] determined, for large 𝑛, the value
of ex(𝑛, (𝑡 + 1)𝐾3) for all 𝑡 ≤ 𝑛/3. Considering that the situation is already very
complicated for 𝐾3, the following question seems very hard in general.

Problem Let 𝑟 ≥ 2 be an integer and 𝐹 be a nondegenerate 𝑟-graph with 𝑚 vertices.
For large 𝑛 determine ex(𝑛, (𝑡 + 1)𝐹) for all 𝑡 ≤ 𝑛/𝑚. ■

A first step towards a full understanding of Problem 6.4 would be determining the
regime of 𝑡 in which members in 𝐾𝑟𝑡 1 EX(𝑛 − 𝑡, 𝐹) are extremal. Here we propose the
following question, which seems feasible for many hypergraphs (including graphs).

Problem Let 𝑟 ≥ 2 be an integer and 𝐹 be an 𝑟-graph with 𝑚 vertices. For large 𝑛
determine the maximum value of 𝑠(𝑛, 𝐹) such that

ex(𝑛, (𝑡 + 1)𝐹) =
(
𝑛

𝑟

)
−

(
𝑛 − 𝑡
𝑟

)
+ ex(𝑛 − 𝑡, 𝐹)

holds for all 𝑡 ∈ [0, 𝑠(𝑛, 𝐹)]. ■

Understanding the asymptotic behavior of 𝑠(𝑛, 𝐹) would be also very interesting.

Problem Let 𝑟 ≥ 2 be an integer and 𝐹 be an 𝑟-graph with 𝑚 vertices. Let 𝑠(𝑛, 𝐹) be
the same as in Problem 6.5. Determine the value of lim inf𝑛→∞

𝑠 (𝑛,𝐹 )
𝑛

. ■

Note that the result of Allen, Böttcher, Hladký, and Piguet [2] implies that 𝑠(𝑛, 𝐾3) =
2𝑛−6
9 for large 𝑛. In particular, lim𝑛→∞

𝑠 (𝑛,𝐾3 )
𝑛

= 2
9 .

It would be also interesting to consider extensions of the density Corrádi–Hajnal
Theorem to degenerate hypergraphs such as complete 𝑟-partite 𝑟-graphs and even
cycles6. The behavior for degenerate hypergraphs seems very different from nondegen-
erate hypergraphs, and we refer the reader to e.g. [19, Theorem 1.3] for related results
on even cycles.

As pointed out to us by Mubayi, ex(𝑛, (𝑡 + 1)𝐹) is also related to the well-known
Erdős–Rademacher Problem [16]. More specifically, a lower bound for the number of
copies of 𝐹 in an 𝑛-vertex 𝑟-graph H with 𝑒 edges can provide a lower bound for the
number of vertex-disjoint copies of 𝐹 inH , as revealed by results inHypergraphMatch-
ing Theory. However, this approach is unlikely to give a tight bound for ex(𝑛, (𝑡 + 1)𝐹)
since these two questions generally have different extremal constructions. We refer the
reader to, for example, [70, 71, 64, 61, 62, 72] and references therein for more results
related to the Erdős–Rademacher Problem.

6This question was explored in recent work [35, 34, 36].
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A Proof of Fact 4.3

Proof Fix a sufficiently small 𝜀 > 0 and let 𝑛 be a sufficiently large integer such that

ex(𝑛 − 𝜀1/2𝑛, 𝐹) ≤ 𝜋(𝐹)
( (
1 − 𝜀1/2

)
𝑛

𝑟

)
+ 𝜀

(
𝑛

𝑟

)
.

Suppose to the contrary that |𝑍𝜀 (H)| ≥ 𝜀1/2𝑛. Then fix a set 𝑍 ⊂ 𝑍𝜀 (H) of size 𝜀1/2𝑛
and let𝑈 B 𝑉 (H) \ 𝑍 . It follows from the definition of 𝑍𝜀 (H) that

|H [𝑈] | ≥ |H | − |𝑍 | ·
(
𝜋(𝐹) − 𝑟𝜀1/2

) (
𝑛 − 1
𝑟 − 1

)
≥ (𝜋(𝐹) − 𝜀)

(
𝑛

𝑟

)
− 𝑟

𝑛
· |𝑍 | ·

(
𝜋(𝐹) − 𝑟𝜀1/2

) (
𝑛

𝑟

)
= (𝜋(𝐹) − 𝜀)

(
𝑛

𝑟

)
− 𝑟𝜀1/2 ·

(
𝜋(𝐹) − 𝑟𝜀1/2

) (
𝑛

𝑟

)
=

(
(1 − 𝑟𝜀1/2)𝜋(𝐹) + (𝑟2 − 1)𝜀

) (
𝑛

𝑟

)
.

On the other hand, we have

|H [𝑈] | ≤ ex(𝑛 − 𝜀1/2𝑛, 𝐹) ≤ 𝜋(𝐹)
( (
1 − 𝜀1/2

)
𝑛

𝑟

)
+ 𝜀

(
𝑛

𝑟

)
≤

(
1 − 𝜀1/2

)𝑟
𝜋(𝐹)

(
𝑛

𝑟

)
+ 𝜀

(
𝑛

𝑟

)
≤

(
1 − 𝑟𝜀1/2 +

(
𝑟

2

)
𝜀

)
𝜋(𝐹)

(
𝑛

𝑟

)
+ 𝜀

(
𝑛

𝑟

)
≤

((
1 − 𝑟𝜀1/2

)
𝜋(𝐹) +

((
𝑟

2

)
+ 1

)
𝜀

) (
𝑛

𝑟

)
.

Here, we used the inequality that (1 − 𝑥)𝑟 ≤ 1 − 𝑟𝑥 +
(𝑟
2
)
𝑥2 for 𝑥 ∈ [0, 1] and 𝑟 ≥ 2.

Since 𝑟2 − 1 >
(𝑟
2
)
+ 1 for 𝑟 ≥ 2, we arrived at a contradiction. Therefore, we have

|𝑍𝜀 (H)| ≤ 𝜀1/2𝑛. It follows that the induced subgraphH ′ ofH on 𝑉 (H) − 𝑍𝜀 (H)
satisfies

𝛿(H ′) ≥
(
𝜋(𝐹) − 𝑟𝜀1/2

) (
𝑛 − 1
𝑟 − 1

)
− |𝑍𝜀 (H)|

(
𝑛 − 2
𝑟 − 2

)
≥

(
𝜋(𝐹) − 𝑟𝜀1/2

) (
𝑛 − 1
𝑟 − 1

)
− 𝜀1/2𝑛 · 𝑟 − 1

𝑛 − 1

(
𝑛 − 1
𝑟 − 1

)
≥

(
𝜋(𝐹) − 2𝑟𝜀1/2

) (
𝑛 − 1
𝑟 − 1

)
,

completing the proof of Fact 4.3. ■
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B Proof of Theorem 6.2

The following fact can be derived from a slight modification of the proof of Fact 4.2 :
instead of duplicating the vertex 𝑣 just once, we duplicate it 𝑛 − 𝑛𝑖∗ times.

Fact Let 𝑘 ≥ 1 be an integer and (𝑛𝑖)∞𝑖=1 be a
1
𝑘
-dense ascending sequence of inte-

gers. Suppose that (𝐹, 𝑃) is an 𝑟-uniform (𝑛𝑖)∞𝑖=1-Turán pair and H is a maximum
𝑃-construction on 𝑛𝑖∗ vertices, where 𝑖∗ is sufficiently large. Then for every 𝑛 ≥ 𝑛𝑖∗ ,
we have

ex(𝑛, 𝐹) − ex(𝑛𝑖∗ , 𝐹) ≥ (𝑛 − 𝑛𝑖∗ ) · Δ(H) ≥ (𝑛 − 𝑛𝑖) · 𝑑 (𝑛𝑖 , 𝐹).

■

Proof Let 𝑛 be a sufficiently large integer and let 𝑖∗ be such that 𝑛𝑖∗ ≤ 𝑛 ≤ 𝑛𝑖∗ + 𝑘 .
The existence of such an 𝑖∗ is guaranteed by the assumption that (𝑛𝑖)∞𝑖=1 is a

1
𝑘
-dense

ascending sequence.
LetΦ B

��ex(𝑛, 𝐹) − ex(𝑛𝑖∗ , 𝐹) − (𝑛 − 𝑛𝑖∗ ) · 𝑑 (𝑛𝑖∗ , 𝐹)
��. Notice that

Φ
Fact 𝐵.1
= ex(𝑛, 𝐹) − ex(𝑛𝑖∗ , 𝐹) − (𝑛 − 𝑛𝑖∗ ) · 𝑑 (𝑛𝑖∗ , 𝐹)

=

𝑛−𝑛𝑖∗∑︁
𝑗=1

(
ex(𝑛𝑖∗ + 𝑗 , 𝐹) − ex(𝑛𝑖∗ + 𝑗 − 1, 𝐹) − 𝑑 (𝑛𝑖∗ , 𝐹)

)
Fact 4.1
≤

𝑛−𝑛𝑖∗∑︁
𝑗=1

(
𝑑 (𝑛𝑖∗ + 𝑗 , 𝐹) − 𝑑 (𝑛𝑖∗ , 𝐹)

)
Lemma 3.5

≤
𝑛−𝑛𝑖∗∑︁
𝑗=1

4 𝑗
(
𝑛𝑖∗

𝑟 − 2

)
≤ 4

(
𝑛 − 𝑛𝑖∗

)2 (
𝑛𝑖∗

𝑟 − 2

)
.

Additionally,

𝑑 (𝑛, 𝐹) − 𝛿(𝑛, 𝐹)

Fact 4.2
≤ (𝑑 (𝑛, 𝐹) − 𝛿(𝑛, 𝐹)) +

𝑛−𝑛𝑖∗−1∑︁
𝑗=1

(𝑑 (𝑛 − 𝑗 , 𝐹) − 𝛿(𝑛 − 𝑗 , 𝐹))

=

𝑛−𝑛𝑖∗−1∑︁
𝑗=0

𝑑 (𝑛 − 𝑗 , 𝐹) −
𝑛−𝑛𝑖∗−1∑︁
𝑗=0

𝛿(𝑛 − 𝑗 , 𝐹)

=

𝑛−𝑛𝑖∗−1∑︁
𝑗=0

(
𝑑 (𝑛 − 𝑗 , 𝐹) − 𝑑 (𝑛𝑖∗ , 𝐹)

)
+ (𝑛 − 𝑛𝑖∗ ) · 𝑑 (𝑛𝑖∗ , 𝐹) −

(
ex(𝑛, 𝐹) − ex(𝑛𝑖∗ , 𝐹)

)
≤
𝑛−𝑛𝑖∗−1∑︁
𝑗=0

��𝑑 (𝑛 − 𝑗 , 𝐹) − 𝑑 (𝑛𝑖∗ , 𝐹)
�� +Φ

Lemma 3.5
≤ 4(𝑛 − 𝑛𝑖∗ )2

(
𝑛𝑖∗

𝑟 − 2

)
+ 4(𝑛 − 𝑛𝑖∗ )2

(
𝑛𝑖∗

𝑟 − 2

)
= 8(𝑛 − 𝑛𝑖∗ )2

(
𝑛𝑖∗

𝑟 − 2

)
.
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Therefore, we obtain that

|𝛿(𝑛, 𝐹) − 𝑑 (𝑛 − 1, 𝐹) | = |𝛿(𝑛, 𝐹) − 𝑑 (𝑛, 𝐹) + 𝑑 (𝑛, 𝐹) − 𝑑 (𝑛 − 1, 𝐹) |
Lemma 3.5

≤ |𝛿(𝑛, 𝐹) − 𝑑 (𝑛, 𝐹) | + 4
(
𝑛 − 1
𝑟 − 2

)
≤ 8(𝑛 − 𝑛𝑖∗ )2

(
𝑛𝑖∗

𝑟 − 2

)
+ 4

(
𝑛 − 1
𝑟 − 2

)
≤ 12𝑘2

(
𝑛 − 1
𝑟 − 2

)
,

proving Theorem 6.2. ■
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