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1. Introduction

In 1948, M. I. Graev [2] proved that the free topological group on a completely
regular Hausdorff space is Hausdorff, by showing that the free group admits a certain
locally invariant Hausdorff group topology. It is natural to ask if Graev's locally
invariant topology is the free topological group topology. If X has the discrete
topology, the answer is clearly in the affirmative. In 1973, Morris-Thompson [6]
showed that if X is not totally disconnected then the answer is negative. Nickolas [7]
showed that this is also the case if X has any (non-trivial) convergent sequence (for
example, if X is any non-discrete metric space). Recently, Fay and Smith Thomas
handled the case when X has a completely regular Hausdorff quotient space which has
an infinite compact subspace (or more particularly a non-trivial convergent sequence).
(Fay-Smith Thomas observe that their class of spaces includes some but not all those
dealt with by Morris-Thompson.)

For convenience, we say a completely regular Hausdorff space is tolerable if it has a
countably infinite family of closed subsets An,n = l,2,..., such that (J"=i>ln is not
closed. We shall see that all the spaces above, considered by Morris-Thompson,
Nickolas and Fay-Smith Thomas are tolerable. We prove that the free topological
group on any tolerable space is not locally invariant.

Fay-Smith Thomas mention the space X defined below as one for which the question
of local invariance is undecided: Let M be the discrete space of natural numbers, and X
the subspace of the Stone-Cech compactification fiN of N defined by A" = Nu{p}, for
any peflN\N. Clearly X is a tolerable space, and so the free topological group is not
locally invariant.

We remind the reader that the Graev free topological group on a completely regular
Hausdorff (pointed) space X with basepoint e is a topological group F(X) which,
algebraically, is a free group with X\{e} as a free basis, and is such that any continuous
map from X to a topological group, sending e to the identity, extends uniquely to a
continuous homomorphism on F(X). The basepoint e becomes the identity of F(X), and
the generating copy of X has the topology of the original space. This construction is
independent, up to isomorphism, of the choice of basepoint [2].

A topological group is said to be locally invariant if it has a basis at the identity of
sets invariant under all inner automorphisms.

We need the following theorem.

Theorem A [2, 3]. Let Y be any compact Hausdrqff space. A subset C of F(Y) is
closed if and only if CnFn(Y) is compact, for all n, where Fn(Y) is the set of all words in
F( Y) of reduced length at most n.

1

https://doi.org/10.1017/S001309150001734X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001734X


2 M. S. KHAN, S. A. MORRIS AND P. NICKOLAS

2. The Theorem

Theorem. If X is any tolerable space, then F(X) is not locally invariant.

Proof. Let An,n=l,2,..., be a family of closed subsets of X such that A = (J ™= t An is
not closed. Without loss of generality let the basepoint e be in A\A. For each n, let
xneA\An (so xn=/=e). For each n, let Bn be the subset of F(X) given by Bn = x~nAnx"n, and
put B = \J™=1Bn. We shall prove that B is closed in F(X), but is not closed in any
locally invariant topology on the underlying group of F(X).

Let cj) be the canonical embedding of X in its Stone-Cech compactification f$X. Then
<j> extends to a continuous homomorphism <S>:F(X)-*F(f}X). Put

and
00

c= U cn.
n = 1

Clearly

= U *"x(cn)

= U-
n = l

U
n = l

as An is a closed subspace of X and $ is an embedding of X into flX. So O"1(C) = B.
But since the length of each word in Cm, for m>n, is 2m +1 >n, CnFn(f}X) =
(U"=iC;) n Fn(PX). So, since (J"=1C,- is compact, CnFn(/iX) is compact for each «,
and therefore by Theorem A, C is closed in F(f}X). Hence B = O~1(C) is closed in F(X).

Now let T be any locally invariant group topology which induces the given topology
on X. As eeA\A there exists a net aa in A such that aa-*e. Put ha = xn~"ae[x ,̂ where
n = min{m:aae^m}. Clearly bx-^e in the locally invariant topology x. As ftaeB but e$B,
B is not closed in x. This completes the proof.

Remark 1. The above theorem was announced without proof in [5]. It is interesting
to note that the condition of tolerability is precisely that for which it is known that the
Graev and Swierczkowski topologies [5] on the free group are distinct.
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3. Applications

We call a space intolerable if it is completely regular Hausdorff and is not tolerable.
Of course all discrete spaces are intolerable. In Section 4 we give some examples of non-
discrete intolerable spaces.

Proposition 1. / / X is an intolerable space, then every countable subspace Y of X is
closed in X and its induced topology is discrete.

Proof. As Y is the countable union of its singleton subsets, each of which is closed in
X, Y is closed in X. Similarly, if y is any point of Y then the countable set Y\{y] is
closed in X. Hence {y} is open in Y, and so Y has the discrete topology.

The proof of the next proposition is trivial, and is therefore omitted.

Proposition 2. Every completely regular Hausdorff quotient space of an intolerable
space is intolerable. Also, every subspace of an intolerable space is intolerable.

Corollary. Let X be a completely regular Hausdorff space such that X {or a
completely regular Hausdorff quotient space of X) has any of the following properties:

(i) X is a non-discrete metric space,
(ii) X has a non-trivial convergent sequence,

(iii) X has an infinite compact subspace,
(iv) X has a non-discrete subspace which is a k-space,
(v) X is not totally disconnected.

Then F(X) is not locally invariant.

Proof. Clearly (i)=>(ii)=>(iii)=>(iv)=>(iii). By Proposition 1, if X satisfies (iii), then X is
tolerable, since otherwise the infinite compact Hausdorff subspace would necessarily
contain a countably infinite closed discrete subspace, contradicting the compactness of
the first subspace. If X is not totally disconnected, then by the Lemma of [6], X is
tolerable. So if X has any of the properties (i),..., (v), then X is tolerable. Hence, by
Proposition 2, if a completely regular Hausdorff space has a completely regular
Hausdorff quotient space with any of the properties (i),...,(v), then X is tolerable.
Applying our Theorem of Section 2 then completes the proof.

Remark 2. The above Corollary contains the results of [1], [6] and [7].

Remark 3. We do not know whether the condition of being a tolerable space is
necessary for F(X) to be locally invariant. With this in mind, we end this section with a
proposition which complements Proposition 2 and may be useful in later work.

Proposition 3. Let X and Y be completely regular Hausdorff spaces, with Y a quotient
space of X. If F(X) is locally invariant, then F( Y) is locally invariant.

Proof. If <p:X-+Y is a quotient map, then it is easily shown (and well known) that
the canonical extension of <p to a continuous homomorphism O of F(X) onto F(Y) is a
quotient map. Hence if F(X) is locally invariant so too is F( Y).
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4. Examples

In [1], Fay-Smith Thomas record an example, mentioned in Section 1, for which the
problem of local invariance is not settled. The following Remark covers their example
and more.

Remark 4. Let X be any countably infinite completely regular Hausdorff space, and
PX its Stone-Cech compactification. If I c y c f i x , then F(Y) is not locally invariant.
This result follows from our Theorem, since X is not closed in Y which, by Proposition
1, implies Y is a tolerable space.

So far our only examples of intolerable spaces are the discrete spaces. We now
introduce a family of non-discrete intolerable spaces, but first we observe that even any
infinite product of discrete spaces (with at least 2 points) is tolerable. Indeed, any infinite
product of non-trivial completely regular Hausdorff spaces is tolerable, since it has a
subspace homeomorphic to the compact space formed by taking a countably infinite
product of 2-point discrete spaces.

Example. Let X be any set of cardinality m>K0. Further, let e be any point of X
and n any cardinal number satisfying K0^n<m. We define a topology on X by stating
that the closed sets are all the subsets containing e, and all the subsets of cardinality
^ n. It is easily seen that with this topology, X is a non-discrete Hausdorff normal (and
hence completely regular) topological space. Further, X is intolerable.

So this family of examples is not covered by our Theorem, and we have been unable
to establish whether or not each F(X) is locally invariant.

Further intolerable spaces can be obtained by observing that all finite products, all
box products, and all disjoint unions of intolerable spaces are intolerable.

Remark 5. In fact our proof of the Theorem in Section 2 yields more than we have
said to date. Let xs be the induced topology (from F{flX)) on the free group <&(F(X)). It
is shown in Nummela [8] that TS is the free topology (that is, <S> is an isomorphism of
F(X) onto <!>(F(X)) if and only if X is pseudocompact. So if X is any non-
pseudocompact tolerable space then xs is not the free topology, and the proof of the
theorem shows that ts is not locally invariant.

Remark 6. Finally we point out that every intolerable space is pseudonormal.
(Recall that a topological space X is said to be pseudonormal if given any two disjoint
closed subsets A and B such that one of them is countable, there exist disjoint open sets
U and V such that A<=, U and Bg v. See [4].)

To see this let X be intolerable and A and B as above. Without loss of generality,
assume A is countable. As X is completely regular and Hausdorff, for each as A there
exists a continuous function fa:X->[0,1] such that/a(a)=0 and/a(B) = l. Therefore, for
each a s A, there exist disjoint open sets Ua and Va such that aeUa and B^Va. Then,
since X is intolerable U = {JaeAUa and V=f>\aeAVa are disjoint open sets such that
A<=U and B E K which completes the proof.
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