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Abstract. For a homeomorphism of a compact metrizable space X, we show that
the property that every point of X is pseudo-non-wandering (see definition 2) is
equivalent to the possibility of embedding the corresponding transformation group
C*-algebra into an AF-algebra.

Let T be a homeomorphism of the compact metrizable topological space X. The
aim of this paper is to give a necessary and sufficient condition on 7, in order to
embed the corresponding transformation group (crossed-product) C*-algebra into
an AF-algebra. Of course the difficult part is to show that the condition is sufficient.
This is done with the same techniques that were used in [4), in the particular case
of the irrational rotation of the unit circle. The only new difficulty that arises, is
how to choose the appropriate AF-algebra. This is achieved by a ‘rough coding
procedure’, based on the study of the periodic pseudo-orbits of the transformation
T [1]. It turns out that the condition which ensures the embedding is the existence
of sufficiently many periodic pseudo-orbits, or, to be more precise, the fact that
every point of X is pseudo-non-wandering for T (see definition 2.). The proof of
the necessity of this condition relies on the adaptation to C*-algebras of the notion
of quasidiagonality introduced by P. R. Halmos [2]. The fact that a C*-algebra
containing a non-unitary isometry is not quasidiagonal was also used by D. Hadwin
to characterize those transformation group C*-algebras having only quasidiagonal
quotients. (Of course a transformation group C*-algebra may be quasidiagonal
without having all quotients quasidiagonal.)

Finally let us mention that another generalization of [4] has been announced by
A.M. Vershik in [6]. Using a different approach he states in a slightly more particular
(and slightly different) case, a more precise result concerning the embedding.

The author gratefully acknowledges helpful advice from D. Voiculescu.

Throughout this paper X will denote a compact metrizable topological space, C(X)

the (separable) C*-algebra of continuous complex valued functions defined on X,
and T: X » X a homeomorphism of X.
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614 M. V. Pimsner

As usual if ¥"=(V,);.; and W =(W,),., are open covers of X, ¥ will be called
finer than V" if there exists a map f:J - I such that W;< V. This will be denoted
V=<;W.

For any natural m and any open cover ¥ =(V;);.; of X we shall denote by ¥*™
the open cover
YvT Vv vT ™y,

that is V"™ =(Vi i Vioinn €1 where

\% L =Vin T"IV,-lm- N "I“""J'IV,»""l
and I is the subset of the direct product I™ consisting of those elements
(ios » . . » im—1) with the property that V,; .  is not empty. Also let me 1™ I
0=<k=m—1, be the maps defined by

i0reemripm

m—1

TGy v ooy Imet) = i
We shall always consider %™ finer than ¥ by means of the projection m, so that
we shall simply write ¥'< ¥, If W =(W,),., is another open cover such that
V' <;W we shall also denote by f:J"”-I"" the map induced by f so that
cV(m) <f W(m),
Definition 1. Let ¥'=(V,),.; be an open cover of X. A sequence w = (w(n)) .z,
w(n)el is called a V-pseudo-orbit of T if
Viy 0T NV i) #  foreveryneZ.
If the ¥-pseudo orbit w is periodic we shall denote by p(w) its principal period,
that is, the smallest natural number p such that
w(n+p)=wn) forevery neZ.
If W is another open cover such that % <% we shall denote by fw the % -pseudo-
orbit
(few(n)) ez
Suppose now that w is a ¥*™ pseudo-orbit of T™. We shall denote by w™ the ¥’
pseudo-orbit of T obtained in the following way: write n=mqg+r with 0=r<m
and define
o™ (n)=m(w(q)) el
It is straightforward from the definitions that
flo™) =[f(w)]™
If k is a natural number that divides m, m = k - I, we may also regard w as a (¥")®*
pseudo-orbit of (T’)" so that @ makes sense and is a ¥ pseudo-orbit of T
Moreover

(wkl)kz = wkl'kZ
whenever the product k, - k, divides m.

Definition 2. A point x € X is said to be pseudo-non-wandering for T if for every
open cover ¥'=(V));.; and any ie [ such that xe V; there exists a periodic ¥~
pseudo-orbit w =(w(n)),.z such that w(0)=1i.
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The set of pseudo-non-wandering points for T will be denoted X (T). (This set
coincides with the chain recurrent set introduced by C. C. Conley.)

It is an easy consequence of the definition that X(T) is a closed T- and T -
invariant subset of X. Every non-wandering point is clearly pseudo-non-wandering,
the converse being false in general. A simple example is the action of the shift on
the one point compactification of Z, i.e. Tx =x+1 for xe€ Z and T(c0) =00, where
the only non-wandering point is 00, whereas every point is pseudo-non-wandering.
(For the definition of non-wandering points see, e.g., [1].)

LemMma 1. X(T)=X(T™) for every meN.,

Proof. Suppose that ¥'=(V,),.; is an open cover and that xe V. If xe X(T™),
then there exists a periodic ¥*™ pseudo-orbit for T™, w(n)eI™ such that
mo(@w(0)) = ip. The V" pseudo-orbit o™ of T is then periodic and

0™ (0) = mo(w(0)) =ip
so that x € X(T). Conversely, let W =(W,)ccx, W <;¥ be an open cover with the
property that

T_iWw(n+i) < Vi O0<i=m,

for every W-pseudo orbit w of T. To choose ¥ one may fix a metric on X and
choose the Wis to be balls of sufficiently small radii. We leave the details to the
reader. If xe X(T) and o is a periodic %" pseudo-orbit for T such that f(w(0)) = i,
then

o=(fow(m: n)),ez
is a periodic ¥-pseudo-orbit for T™ so that xe X(T™). O

We shall be interested mainly in the case when X (T) = X. A typical example when
this does not hold is the action of the shift on the two point compactification of Z,
ie. Tx=x+1 for xeZ, T(+)=+00, T(—00)=—0c0. The following lemma shows
that this example is in some sense generic.

LEMMA 2. The point x belongs to X\X(T) if and only if there exists an open set U
such that T(U)< U and xe U\T(U). (As usual U stands for the closure of U.)

Proof. If the open set U has the above properties, consider the open cover ¥ =
(Vy, Vs, Vi) where V,=U, V,=U\T(U), V5= X\T(U). Since

Von T 'WV,=@0=V,nT'V,
and
VinT 'V,=@=V,nT 'V,

any ¥ pseudo-orbit w with w(ny) =2 satisfies w(n)=1 for every n> n,. So there
is no periodic ¥ pseudo-orbit with w(0)=2 which in turn implies that

V< X\X(T).

To prove the converse suppose that there exists an open cover ¥ =(V;),.; and an
index ip € I such that x € V; and that no periodic ¥ pseudo-orbit w satisfies (0) = .
Consider the set J of all indices je I with the property that there exists a ¥
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pseudo-orbit (j(n)) ..z such that j(0) =i, and j(n)=j for some n=0 and define
u=UV,.
jeJ
Any point y € T(U) has the property that whenever i is such that V; 3 y there exists
je J satisfying

VinT'Vi#2.
This implies on the one hand that any such i belongs to J so that
T(O)cU
and on the other hand
Vo T(U)=0.

For otherwise there would be a ¥ pseudo-orbit w and an n =1 such that w(0) =i, =
w(n). This would easily imply the existence of a periodic ¥ pseudo-orbit »' such
that «'(0) = iy, in contradiction to the choice of i;. O
Definition 3. A V pseudo-orbit w is said to split into the ¥ pseudo-orbits {n,}rex
if there are increasing maps ¢, :Z > Z such that

eD)no(Z)=  fork#k',
EJ ‘Pk(Z) :Za

M (n) = w(e(n)),

w(e(n)—1)=w(e(n—1)) for every ne Z and every ke K.
Note that no condition is imposed on w(gx(n)+1) and that the possibility of all
n:’s being equal is not excluded. We shall also say that {n,}..x is a decomposition
of w. It is clear that if w splits into the ¥ pseudo-orbits {n,},.x and each =, splits
into {u}iek (k) then w also splits into {u}icu, k-

LEmMMA 3. Let V'=(V,);c; be a finite open cover consisting of a open sets and
o =(w(n)),cz be a V" pseudo-orbit of period p. (Thus p is a multiple of p(w)). Then
there exists a decomposition {n ek 0f w into periodic V' pseudo-orbits such that
p(m) =« for every ke K and

%J @ ([0, p(m))) =[0, p). (1)

(Intervals will always be integer valued.)
Proof. It is enough to show that if p > a, then w splits into n and 7 where p(n) =< a,
7 has period p=p—p(n) and

@,([0, p(n))) = [0, p),
for then the 7’s can be further decomposed until p = a. Finally if p = m - p(7), then
7 splits into m identical copies of 7.

To prove the above assertion choose a and b in [0, p) such that w(a) = w(b) and
0 < b—a = a. This is possible since p>> a. Moreover one can assume that all indices
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w(k) with a <k =b are distinct. Define ¢.,, ¢ ;:Z~ Z in the following way:
If n=(b—a)g+r,0=<r<b—a put

@y(n)=p-q+a+r+l,
and if n=[p—(b—a)]g+7, 0=r<p—b+a put

_{p(j+f iffF=a,

i \pj+i+b-a ifi>a

It is easy to see that if n(n) = w(¢,(n)) and 7(n) = w(¢;(n)), then n and 7 are ¥
pseudo-orbits satisfying the desired properties. |

Remark. The splitting described in the preceding lemma depends essentially on p.
For example the same construction carried out with p replaced by 2p yields a
different decomposition.

From now on we shall suppose that X(T') = X. The AF-algebra ssociated to (X, T)
will depend on some rough symbolic which we start to describe. For any finite open
cover ¥ and any positive integer m we shall denote by (¥, m) the set of all
periodic ¥™ pseudo-orbits of T™ whose principal period does not exceed the
cardinality of the cover ¥‘™. Consider a sequence of open covers such that
V. <j, Va+1 and a sequence (m,) ,.z of positive integers such that m, divides m,,.,
for each n.

For each w € (¥4, Mn+;) We shall consider f,w™+™ asa V™) pseudo-orbit
of T™ of period p(w) - (m, .,/ m,) and we shall fix a decomposition of fu Tt/
into pseudo-orbits belonging to (7, m,) with the additional properties stated in
lemma 3. In order to keep this fixed decomposition in mind, we shall denote by
F.(») the index set which was denoted K in the definition of the splitting. By forcing
the notation a little we shall regard the elements of F, (w) as %™ pseudo-orbits of
T™. So equal pseudo-orbits may be distinct as elements of F,(w). Identifying these
elements we get a map denoted E, from the subsets of Q(¥,...;, Ma+;) to the subsets
of AV, m,). If I:“,,,p denotes the composition E,oF, oo ~n+,,_1 define

Qn= U Fop( @V M),
pe

which is clearly non-void since Q(%,, m,) is a finite set. In addition 15,,(Qn+1) =Q,.
More precisely the following lemma holds.

LEMMA 4. For every x € X and every j= (i, . . ., im_,) € I'™ such that xe V;e V™
there exists a V™ pseudo-orbit w of T™ belonging to Q,, such that w(0) =]
Proof. Choose a sequence j, = (ig, . . . » im,. 1) € I35, p=0 such that j,=j and
Jp-1= (fn+p—l (io)s -« s fnip (im,,,,,,_,—l ).
This is easily achieved by looking at the orbit of the point x. Since
X=X(T)=X(T™)
by lemma 1, the subset
Qi p () € QY et pp Misp)

consisting of those pseudo-orbits satisfying n(0)=j, is non-empty for each n.
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Moreover the additional requirement (1) of lemma 3 ensures that
ﬁn,p(Qn+p(x)) N Qn+p—p’(x) # @
for every p and p', p' = p so that finally
0,nQ,(x)*3. g

The AF-algebra associated to (¥,),.(m.), and to the decomposition maps (F,), is
defined as follows. For each neN let
A, =D M,
well,

where M, is the finite-dimensional factor isomorphic to the p(w) - m, X p(w) - m,
matrix algebra over C. The morphism ¢,: A, > A, +, will be constructed by exhibit-
ing for each w € (1, a unital *-monomorphism ¢,, from @, r,(., M, to M,. Note
that since F,(Q..1)=Q,, @Pucn,., b, will determine a unital embedding of A, into
An+1'

The explicit construction of the ¢,’s will be given below. First, we shall identify
each M, w e, < (¥, m,) with

B(I7[0, p(0))® I7[0, m,)),
the algebra of bounded operators acting on the complex Hilbert space
1[0, p(@))® (0, m,).

(Intervals are integer valued.) Recall that if @ € (2,,,,, then F, (@) is a decomposition

of f,w™+/™ as described in lemma 3. So that there are ¢,:Z~Z, n € F, (o) such
that

n+1

m,4q
0,00, p(n))) = [o, p(w)—;—),

n

e, (Z) N (Z)=D forn, u e F,(w), (n # u, as elements in F,(w)),
e (Z2)=12,
n

n(n) =w'(,(n)),
w'(p,(n—1))=w'(¢,(n)—1)  forevery neZ and every n € F, (o),
where
@' = f@™n/ M,

For every s, t € N we shall denote by U,, € B(I*[0, 5)® 150, 1)) the unitary defined by

e®e, ifj+1#1,
U,eQe=1e.,0e ifj+l=tit+tl#s,
e ey ifj+li=ti+1=s.
If t=1 we shall write U, instead of U,,.
If u, v € N is another pair of natural numbers such that s+ t=u- v we shall denote
by
W 170, w)® 0, v) > P[0, s)® 1[0, t)
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the unitary
Wie®e=¢,®e,
where
vitj=1g+r O=r<t
Note that
WU, =U W,
Consider next the isometries

mn
Wo.m W1, : 170, p(n)) > I2 [0, p(w) m“)

n

Wonei=e,m  i€[0,p(n))
Wi m = Uptwymyar/mn Wo,nUp(a)-
Note that if n # u (as elements in F,(w)),

W:)k,ﬂ WO,}L = 0 = W>1k,‘n Wl,-m
so that

Wo=B W,.,,
n
and

Wl =@ Wl,n
n

619

are isometries from @, cF, () 1[0, p(n)) to 1[0, p(w)m,.,/m,), and taking into
account the dimensions of the two spaces they are in fact unitaries. In particular

W, W§ is a unitary element in

(e for))

and a simple spectral argument shows the existence of a unitary U in the C*-algebra

generated by W, W¥ such that
U™ =W, Wk
and
Ih-U|=2n/m,.
Let

we:( @ 210,00 0110, m> 20, pw) 2222 0, m,

neF,(w) n

be the unitary defined by
qul) (¢®e)=( inof)® €.
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The map ¢,, is defined to be conjugation with the unitary
W, =w2wd where W2 = WEL) s/ ma)om,

plw),my

Keeping the identification M, = B(I’[0, p(»))® I’[0, m,)) for @ €Q,, in mind we
shall denote by U, € M,, the unitary U p.y.m,-

LEMMA 5. Let we Q},,,,, then

vw-w & )

neFy(w)

(1)

=2mw/my;

=27/ m,.

(2)

o ® v)-u

neF,(w)
Proof. Obviously, we have to prove only the first assertion. Let
P e( ® 1o, p(n») ® 1[0, m,).
n€Fy(w)
Using the definition of W,, and the intertwining properties of the unitaries W/, it
follows that

U, W, (£® €)= W2 VIU piyimyrsmym (U Wo€® €))
[(WR(U'Wot®e;1y) if j+1#m,
B {w53>( Uporimyymy U™ Wot®eo)  if j+1=m,
On the other hand

W (@ U )(g@ ) W2WP (£@esy) if j+1#m,
@ €)=

w7 T WPWR(BU,))O)®e  if j+1=m,

{ W2 (U™ Weé) ® €4 if j+1#m,

w® (WO(@ U,,(,,))§>®e0 if j+1=m,.

Since

Wo (67’3 UP(n)) = Upr(mpertma W1

it follows finally that

W, (67'9 U,,) (é®e))
_{Wf.,z)(UjHWof)@ejﬂ if j+1#m,
W (U paryimpersm U™ Wo)® e if j+1=m,

Since | U~ U’||<2#/m, and
(vw-w(eu,))Eon

is orthogonal to

(wa,,,~ W,,,( C? Un)) (é®eg)
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, U,W,~W, (@ U,,)

Choose now for each open set V,e ¥, ie I"™ a point x;& V; To each ¥\
pseudo-orbit of T™, w, there corresponds the sequence (x,,(k)) ..z where x,(k) =

for i # j, it follows that

=2n/m,. O

Xw(k).
Note that x,(k) does not depend on « but only on the index w(k)el (m) et
m,: C(X)-> M, be the representation

7m.(fe®e=f(T'x, (i) e®e¢ for every i € [0, p(w)), j€[0, m,).
LEMMA 6. Let we Q. and fe C(X) then

(1)

mnw-w.( @ m(n)

= max su x)— :
neFy(w) Ve, § Pv|f( )= f(y)l

" X,yE

()~ do (69 ﬂn(f))us‘r,nax sup |f(x)—f(y);
n eV, x,ye V

(2)
(3) Imu(fo )= Usm(HU.l= max sup |£(x)~f(y)]
n+il x,yeV

+ max sup |f(Tx)—f(Ty)l.

VeVuti xye v

Proof. Note first that if m,;(f) € I[0, p(n)) denotes the restriction of ,(f) to the
subspace 1[0, p(1))®e;, i.e.

o (fle=f(Tx,(i))e,
then

Wo(@? Wn,j(f)) Wi =W, (GWB Wn,j(f)) W’f
This follows from the fact that
f(Tx, (D) =f(T'x,(k))
whenever ¢, (I) = ¢, (k+1)—1, for then denoting by ' the pseudo-orbit f,o ™/
the properties of the splitting imply that
n() =o' (g,(N)=0'(p.(k+1)—1) =0’ (¢.(k)) = n(k)
so that
x, (D) =x,(k).
This implies that Wo(® 7, ;) W§ commutes with W, W¥ and so with U. Note further
that

T (YWD = W27, (f)
where
7.(f)e®@e=f(T'x,(q))eDe

where im,+j=gqm,.,+r, (0sr<m,,;). Now let ¢(®e be a vector in
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(@-, 110, p(n))) ®’[0, m,). Then
T (W@ = Wi, (U Woé)®e,;

Wo@m,()ED = WEWD (@ m,,(1)€) ®¢
-we (Uwo(@ mtn) ) o6
=W (Wo( @ my(1)) W3t ) @6

=W (W,® 1)(67’3 7Tn(f))(Wi'i RINU'Wpé®e)).
Thus

5 (- Woo1 (@ min) Wi o1

(W= W (@ (1)

and since the difference is a diagonal operator the above norm is equal to

o (fle®e—(Wo® 1)(61,9 71'n(f)>(W6" ®1)e®e¢;

max
L

= max |f(T'x.,(9)) = f(T'x,(k))|

where
im,+j=qm,. +r, 0=r<m,,;, and ¢,(k)=1i

Recall that {n} was a decomposition of f,w™ ™. In particular
(k) = fu ™" (@, (k).
From the definition of f,wT=+/™ we see that
fuw ™ M (@, (k) = 7 f, - @(§))

where
en(k)=g4(mpy/m)+7  0=F<m,,\/m,
Since
pn(k)m, +j=qm,. +r 0=r<mg,
and

oo (K)Ym, +j=gmu . +im,+j  O0=F<m,.i/m,,
it follows that § =q and 7m, +j=r. So that
n(k) = 7 fa0(q)).
This implies that. x,(k) and T x,(q) lie in the same open set of ¥™ so that
T’x, (k) and T x,(q) = T'x,(q) lie in the same open set of ¥,. This proves (1)
and (2).
To prove (3) note that operator w,(fe T)— U,m,(f)U¥% is diagonal, so that

|mu(fe T)=Ubm. (/UL
=max |7, (f° T)e®e—Uln,(f)U,e®e¢].
L}
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But
|7 (feT)e®e;— Ukm,(f)U,e® ¢l
0 jt1#m,,,
=¢f(T™x, () — f(x, (i +1))] ifj+1=m,.y,i+1# p(w)

[F(T™1x,(p(@)—1)) = f(x,(0)]  if j+1=my,y,,i+1=p(w).
Recall that w is p(w) periodic, so that x,(0) = x, ( p(w)), so that it suffices to estimate

| F(T™1x,(k)) — f(x,(k+1))|
for every ke Z. Since @ is a ¥+ pseudo-orbit of 7™+ there exists y € X such

n+1

that A Vw(k) and T"'"“ye Vw(k+l)’ so that
| f(T71x,(k)) = f(x,(k+1))]
= (T x, (k)= f(T™ )|+ f(T™1y) = f(x,(k+ 1))

= max fy‘i‘i, If(Tx)—f(Ty)|+Vrggfﬂ xfyuepv |f(x)—f(y)l.

This concludes the proof of (3) O
Recall that the AF-algebra associated to (¥,),, (m,), and to the decomposition
maps (F,), is the inductive limit

3

n
—)An___)An+1___)""

where A, =P, cq, M, and ¢, =P, cq,., b Define U, =P, ca, U, and
7 C(X)> A, by m.(f)= @ =,(f).

well,

Recall also that ar is the automorphism of C(X) defined as
ar(f)=f T

THEOREM 7. Let T be a homeomorphism of the compact topological metrizable space
X with the property that every point x € X is pseudo-non-wandering. Then there exists
a sequence of finite open covers (V,),, and a sequence of positive numbers (m,,), such
that for any decomposition maps F,, C(X) X,, Z may be unitally embedded into the
AF-algebra associated to (V,),, (m,), and (F,),.

Proof. Let S be a countable dense subset of C(X) such that ar(S) =S and choose
the sequence of finite open covers (¥,,), to have the property that

Z(max sup If(x)—f(y)|)<oo forevery fe S.
n \Ve¥u xyev

Suppose also that the m,’s satisfy

¥ 1 <00,

n m'l
Combining lemmas 5 and 6 one sees that the sequences {U,}nens {7n(f)}nen, fE€S
are norm convergent and that

l7mu(ar(f))—U,m (fUX|>0  foreveryfeS.

https://doi.org/10.1017/50143385700002182 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002182

624 M. V. Pimsner

This implies that z(f)=1im, 7,.(f) exists for every fe C(X) and that, denoting
U =lim, U, the pair (7, U) is a covariant representation of the C*-dynamical
system (C(X), ar, Z). This pair generates a unital *-representation

p:C(X) Xo, Z> A,

so all we have to prove is that p is faithful. This will follow once we show that for
each finite sum ¥/, fiu' € C(X) X,, Z with f € S,

Z T (fU,

—— | % .

If we represent C(X) faithfully as multiplication operators on [*(X), then [3,
corollary 7.7.8] shows that @, x 7, is a faithful representation of C(X) X,, Z on
P x H, where

H,=1*(2)
with canonical basis e(n),

m(fle(n)=f(T"x)e(n),  feC(X)

and
m(u)e(n)=e(n+1), neZ and xeX
Thus
N . N )
Y fu'l| =sup wx(z f,~u')
i=0 xeX i=0
so that for a given £>0, we may find x€ X and a sequence (& )z such that
T |&/*=1and
N |12
Y ful =X Z Ei- f(T"x)
i=0 keZ |i=0

Moreover we may suppose (by replacing the point x too if necessary) that & =0
if k does not belong to some interval [0, M]. Let & be positive and choose n big
enough to get

max sup [fi(x)—fi(y)| <8 i=0,...,N,

VeVy xyev
and

m,=M+N.

By lemma 4 there exists a ¥'{™ pseudo-orbit of T™, w €, such that xe V.
In other words, for every ke[0, M+ N1}, x,(k) and T *x lie in the same open set

https://doi.org/10.1017/50143385700002182 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002182

Embedding transformation group C*-algebras 625

Ve, so that

2
=

N 2

L m(f)U.,

i=0

Y m(f)U.,
i=0

2
=

EO 7Tw(fi)U<iu (%4 §kek)

2

E &i-ifi(x, (k)

i=0

M+N
=2
k=0

M+N

=

k=0

2

—(M+N)N35§?

z

L &ifi(T")

2

—e—(M+N)N?s2.

=

X fu

Choosing 8 and £ small enough we get the desired result. |
We conclude this paper by showing that the condition X = X(T) in the above
theorem is essential.
PROPOSITION 8. If T acts on the compact space X such that X # X (T), then there
exists a non-unitary isometry in C(X) X, Z.
Proof. As in the proof of theorem 7 we represent C(X) X, Z faithfully on @, x H,
where

H,=[%2),

with canonical bases e(n),

m(fle(n)=f(T"x)e(n), [feC(X)
m(u)e(n)=e(n+1) neZ and xeX

By lemma 2 there exists an open set U such that T(U)< U and U\T(U) # &. Let
fe C(X) be such that f(x) =% for xe X\U, f(x)=2 for xe T(U) and 1= f(x)=<2
for every x € X. Thus . (f- u) is a weighted shift whose weights satisfy the properties
that if @, <2 then a, =3 for every n <k and if a; >3 then «, =2 for every n> k.
Since there exists x € X such that #,(f- u) has weights both 3 and 2 and any two
such shifts are similar by means of an invertible S satisfying

Isl=2, Is7I=2
it follows that &5,. x 7,(1—fu) is an injective semi-Fredholm operator of negative

index. Hence the isometry in the polar decomposition of @,cx 7.(1—fu) is in
@xex ﬂ.x(C(X) Xa-r Z) D

Recall from [§] that a unital separable C*-algebra A is called quasidiagonal if there
is a unital *-monomorphism
p:A-> B(H)
such that
p(A)NnK(H)=0,
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(K (H) denotes the compact operators on H), and a sequence {P,},cn Of finite
dimensional orthogonal projections in B(H) such that

=P =P, =<---, UP,(H)=H
and
|P.p(a)—p(a)P,]|—> O  foreveryac A.

That the definition does not depend on the representation p follows from the non-
commmutative Weyl-von Neumann-type theorem of D. Voiculescu [7]. In par-
ticular, any subalgebra of a quasidiagonal algebra is again quasidiagonal. Since any
AF-algebra is quasidiagonal, non quasidiagonality is an obstruction to the embed-
ding into an AF-algebra.

The next theorem shows that this is the only obstruction in the case of C(X) X, Z.

THEOREM 9. Let T be a homeomorphism of the compact metrizable space X. The
following are equivalent:

(1) X=X(T);

(2) C(X) X,, Z is quasidiagonal;

(3) there exists a unital embedding of C(X) X, Z into an AF-algebra.

Proof. (1)=>(3) and (3)=(2) are already proved, while (2)=>(1) follows from
proposition 8 combined with the result of P. R. Halmos, [2], that a non-unitary
isometry is not a quasidiagonal operator. O
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