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Abstract

Options with extendable features have many applications in finance and these provide
the motivation for this study. The pricing of extendable options when the underlying
asset follows a geometric Brownian motion with constant volatility has appeared in
the literature. In this paper, we consider holder-extendable call options when the
underlying asset follows a mean-reverting stochastic volatility. The option price is
expressed in integral forms which have known closed-form characteristic functions. We
price these options using a fast Fourier transform, a finite difference method and Monte
Carlo simulation, and we determine the efficiency and accuracy of the Fourier method
in pricing holder-extendable call options for Heston parameters calibrated from the
subprime crisis. We show that the fast Fourier transform reduces the computational time
required to produce a range of holder-extendable call option prices by at least an order
of magnitude. Numerical results also demonstrate that when the Heston correlation is
negative, the Black–Scholes model under-prices in-the-money and over-prices out-of-
the-money holder-extendable call options compared with the Heston model, which is
analogous to the behaviour for vanilla calls.
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1. Introduction

As Longstaff [23] has described, “Any financial contract that could involve a
rescheduling of payments, a renegotiation of terms, an early call or exercise provision
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or some similar type of flexibility over the timing of cash flows could be viewed
generally as including an option with an extendable maturity”. One such option is
the extendable option which can either be a holder-extendable option or a writer-
extendable option, in addition to being classified as a call or a put. At the initial
maturity time, the holder-extendable option can be extended to another maturity time
for an additional premium, whereas the writer-extendable option can be extended to
another maturity time if the option is out-of-the-money. The pricing for the writer-
extendable option is more straightforward than the holder-extendable option; hence it
is not included in this study.

An extendable option is an example of a dual-expiry exotic option [4], and its
framework has been used in other financial contracts such as extendable warrants
[13, 16] and extendable bonds [26]. In addition, Longstaff [23] discussed other
applications of extendable options to real-estate and shared-equity mortgages. Hauser
and Lauterbach [13] suggested that investors are in favour of extendable call
warrants because they produce lower absolute pricing errors than the standard call
warrants. Extendable options are also used for commodity markets, for instance, price
extendable oil options as discussed by Dias and Rocha [9]. Neftci and Santos [26]
noted that extendable bonds have stabilizing properties and “the embedded options
work as a cushion and replicate the trading gains from hedging long-term bonds with
interest rate derivatives”. Recently, Koussis et al. [22] considered the problem of
product development, which inherently contained extendable features, within the real-
option framework that generalized the results of Longstaff [23]. Indeed, the application
of extendable features within the real-option framework deserves further investigation.

The earliest examples of financial derivatives that have this feature appear in the
work of Ananthanarayanan and Schwartz [1] and Brennan and Schwartz [3], which
displayed theoretical pricing for retractable and extendable bonds. Longstaff [23]
discussed extendable options extensively and provided a closed-form solution for
extendable options under the Black–Scholes model [2]. In recent years, Chung and
Johnson [6] extended the work of Longstaff [23] to a general case where the holder
or the writer can extend the option more than once, and they derived a closed-form
solution for n-extensions. While these studies are within the Black–Scholes framework
[2], Ibrahim et al. [19] derived an analytical pricing formula for holder-extendable call
options in the Schöbel–Zhu model. On the other hand, Gukhal [12] provided closed-
form solutions for the extendable option with a jump feature based on the Merton
jump-diffusion model [24] and demonstrated that a compound option is a special case
of the extendable option. Additionally, Peng and Peng [27] extended the study of
Chung and Johnson [6] by deriving a value for an n-time extendable option with jumps,
where the underlying asset price followed a fractional process, while Shevchenko [31]
derived the price for an extendable option in the case of an underlying asset that follows
a geometric Brownian motion with time-dependence and volatility.

Given the underlying asset price S and the initial strike price K1, at a given initial
maturity time T1, the call option can be extended to time T2 for a new strike price K2
by paying an additional premium A. The payoff of the holder-extendable call option
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Figure 1. Holder-extendable call payoff at time T1 when H is finite and unique.

can be represented by

max[0, S T1 − K1, C(S T1 ,K2,T2 − T1) − A], (1.1)

or, similarly, by

max[max(S T1 − K1, 0),max(C(S T1 ,K2,T2 − T1) − A, 0)],

which indicates that, at time T1, the holder has to compare two risky payoffs and
choose the largest payoff, where C(S ,K, t) is the price of a vanilla call option.

The holder of a holder-extendable call option has the right, but not the obligation,
to do the following: let the option expire worthless; exercise the option; or extend
the option’s maturity time. The choice region where the option is either exercised or
extended is determined by solving for the critical asset values s∗ and s∗∗, which may
be obtained from the equations

C(s∗,K2,T2 − T1) − A = 0, (1.2)
s∗∗ − K1 = C(s∗∗,K2,T2 − T1) − A. (1.3)

Equation (1.2) has a unique solution s∗ = L that is bounded by the relation A ≤
L ≤ A + K2e−r(T2−T1). If L ≥ K1, then the call option is never extended, and hence
the holder receives C(S T1 , K1, T1). If L < K1, then equation (1.3) has a finite unique
solution s∗∗ = H when A > K1 − K2e−r(T2−T1), where the call option is extended when
L < S T1 < H, exercised when S T1 ≥ H and is worthless when S T1 ≤ L. This is the usual
case for a holder-extendable call option and is depicted in Figure 1, where the solid
line represents the payoff of max(S T1 − K1,0) and the dashed line represents the payoff

of C(S T1 , K2, T2 − T1) − A. However, when A ≤ K1 − K2e−r(T2−T1), equation (1.3) has
no solution if L < K1, where the call option is extended when L < S T1 and is worthless
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Figure 2. Holder-extendable call payoff at time T1 when H does not exist.

when L ≥ S T1 . An analysis of these conditions was also given by Gukhal [12] and
Shevchenko [31]; Figure 2 illustrates this.

The fair price of an option whose price depends on its underlying asset price can
be determined under the risk-neutral probability measure Q, where the expected return
on the risky asset is the same as that on a risk-free investment in cash. Therefore, at
maturity time T, the price of a holder-extendable call option EC is computed as the
discounted risk-neutral conditional expectation of its payoff (1.1) at a risk-free rate r
defined as

EC = e−r(T1−t)EQmax[0, S T1 − K1, C(S T1 ,K2,T2 − T1) − A], (1.4)

where C is calculated in either the Black–Scholes framework [2], CBS , or the Heston
framework [14], CH . (Note that the Heston vanilla call has a semianalytic solution
which is used in the Monte Carlo simulation (MCS) under the Heston framework.)
Hence, the analytical pricing solution for a holder-extendable call option in the Black–
Scholes framework [2] is given as follows [23].

Theorem 1.1. Given underlying asset price S , initial maturity date T1 and strike price
K1, the price of a holder-extendable call option whose maturity time may be extended
to T2 for an additional payment A with a new strike price K2, is given by

ECBS (S t,K1,T1,K2,T2, A)

= CBS (S t,K1,T1)

+ [S t M(2)(a1, b1,−∞, c1; ρ) − K2e−r(T2−t)M(2)(a2, b2,−∞, c2; ρ)]

− [S t M(a1, d1) − K1e−r(T1−t)M(a2, d2)] − Ae−r(T1−t)M(a2, b2), (1.5)
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where

a1 =
ln(S t/H) + (r + σ2/2)(T1 − t)

σ
√

T1 − t
, a2 = a1 − σ

√
T1 − t,

b1 =
ln(S t/L) + (r + σ2/2)(T1 − t)

σ
√

T1 − t
, b2 = b1 − σ

√
T1 − t,

c1 =
ln(S t/K2) + (r + σ2/2)(T2 − t)

σ
√

T2 − t
, c2 = c1 − σ

√
T2 − t,

d1 =
ln(S t/K1) + (r + σ2/2)(T1 − t)

σ
√

T1 − t
, d2 = d1 − σ

√
T1 − t,

ρ =

√
T1 − t
T2 − t

and M(a,b) is the cumulative probability of the standard normal density in the interval
[a, b], while M(2)(a, b, c, d; ρ) is the cumulative probability of the standard bivariate
normal density with correlation ρ for the region [a, b] × [c, d].

The price of a holder-extendable call option (1.5) in Theorem 1.1 can be represented
in terms of fewer univariate normal distributions by using the identities

M(2)(a, b, c, d; ρ) = N(2)(b, d; ρ) − N(2)(a, d; ρ) − N(2)(b, c; ρ) + N(2)(a, c; ρ),

M(2)(a, b,−∞, d; ρ) = N(2)(b, d; ρ) − N(2)(a, d; ρ),
M(a, b) = N(b) − N(a),

where N(·) is the standard normal distribution and N(2)(·, ·; ρ) is the standard bivariate
normal distribution with correlation ρ. This yields the following corollary.

Corollary 1.2. The price of a holder-extendible call option with maturity T1 and strike
price K1, whose maturity may be extended to T2 with a new strike price K2 by making
an additional payment A, is given by

ECBS (S t,K1,T1,K2,T2, A)

= CBS (S t,K1,T1) + S tN(2)(b1, c1; ρ) − K2e−r(T2−t)N(2)(b2, c2; ρ)

− [S tN(2)(a1, c1; ρ) − K2e−r(T2−t)N(2)(a2, c2; ρ)] − Ae−r(T1−t)[N(b2) − N(a2)],

where a1, a2, b1, b2, c1, and c2 are as defined in Theorem 1.1.

Equation (1.5) represents the price of a vanilla call option with strike price K1
plus the nonnegative value of the extension privilege. Hence, the holder-extendable
call option is worth at least as much as its corresponding vanilla call option, and
the holder-extendable call option is worthless when letting S = 0. Moreover, letting
L = 0 and H = ∞ reduces the holder-extendable call option to a vanilla call option
that is always extended and which yields C(S t,K2,T2). Additionally, in equation (1.2),
imposing A = 0 yields L = 0, and taking H = K1 reduces the holder-extendable call
option pricing formula (1.5) to a writer-extendable call option pricing formula.
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In this study, we consider the problem of pricing holder-extendable call options
under the Heston model [14], which is characterized by the dynamics

dS t = rS t dt +
√

vtS t dWt,1,

dvt = κ(θ − vt) dt + σ0
√

vt dWt,2,

where 〈dWt,1,dWt,2〉 = ρdt, κ ≥ 0 is the speed of mean reversion, θ ≥ 0 is the mean level
of variance, σ0 > 0 is the volatility of the volatility and vt follows a mean-reverting
square-root process [8]. It is convenient to write the above equations in terms of two
independent Brownian motions (W̃t,1, W̃t,2) such that

dS t = rS tdt +
√

vtS t

(√
1 − ρ2dW̃t,1 + ρdW̃t,2

)
dvt = κ(θ − vt) dt + σ0

√
vtdW̃t,2,

or

d
(
S t

vt

)
=

(
rS t

κ(θ − vt)

)
dt +

(√
vt(1 − ρ2)S t ρ

√
vtS t

0 σ0
√

vt

) (
dW̃t,1
dW̃t,2

)
,

where E
[
dW̃t,1dW̃t,2

]
= 0, that is, dW̃t,1 is uncorrelated with dW̃t,2. In order to compare

this with the Black–Scholes formulation, the expected variance (given an initial
variance v0) over the life of an option of maturity T is required [14]. Under the Heston
dynamics, this was given by Rouah [29] as

υ(T ) = EQ
[ ∫ T

0
vt dt

∣∣∣∣v0

]
= (v0 − θ)

(1 − e−κT

κ

)
+ θT. (1.6)

According to Sophocleous et al. [32], the complexity of the model increases when
stochastic volatility is incorporated. Hence, a numerical technique is used to price
options with this additional feature. Numerical techniques may include MCS and finite
difference methods (FDMs) [7, 10]. The fast Fourier transform (FFT) technique in
option pricing was introduced by Carr and Madan [5] and has since gained popularity
in option pricing because its algorithm offers computational efficiency by employing
the characteristic function of the log price, which is known in closed-form for many
models discussed in the literature [17, 28, 33–35]. Ibrahim et al. [20] applied
the FFT technique to price the holder-extendable call options in the Black–Scholes
environment [2], while, in this study, we aim to apply the FFT technique to price the
holder-extendable call options under the Heston model [14].

The remainder of the paper is organized as follows. Section 2 provides the charact-
eristic functions and numerical solutions of extendable options using the FFT
technique. The extendable option is expressed as expectations of indicator functions,
and the inverse Fourier transform (IFT) is obtained for one- and two-dimensional
FFTs. We employ known closed-form representations of characteristic functions in
the implementation of the FFT. The numerical results in Section 3 document the
effectiveness and efficiency of the proposed model against two benchmarks: MCS
and FDMs. Section 4 concludes the paper.
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2. The FFT

In this section, we implement the FFT technique to price an extendable option
by expressing the payoff function as a difference of its expectations of indicator
functions [4]. The FFT approach utilizes the characteristic function of the underlying
asset price process. For the extendable option, the implementation involves univari-
ate and bivariate characteristic functions under the risk-neutral measure Q. The
characteristic function is defined as follows.

Definition 2.1. Given two stochastic processes Xt and Yt for 0 ≤ t ≤ T, with density
functions qT (XT ) and qT (YT ), the characteristic function is the Fourier transform of its
density function such that

ϕ(u1) = EQ(eiu1XT )

for a one-dimensional stochastic process and

ϕ(u1, u2) = EQ(eiu1XT + eiu2YT )

for a two-dimensional stochastic process, where u1 and u2 are arbitrary real numbers
and i =

√
−1 is the imaginary unit.

The following lemmas present the univariate characteristic function as provided
by Heston [14] and the bivariate characteristic function that is obtained from the
arguments presented by Griebsch and Wystup [11], under the Heston model.

Lemma 2.2. Under the Heston model, a univariate characteristic function is given by

ϕxT1
(u1) = exp

[
iu1

{
xt + r(T1 − t) +

ρ

σ0
{−v0 − κθ(T1 − t)}

}]
× exp[A(T1 − t, a(u1), b(u1))v0 + B(T1 − t, a(u1), b(u1))],

where

A(τ, a, b) =
da(u)(1 + e−dτ) − [κa(u) + 2b(u)][1 − e−dτ]

2de−dτ + [σ2
0a(u) − κ − d][e−dτ − 1]

,

B(τ, a, b) =
κθ

σ2
0

(κ − d)τ +
2κθ
σ2

0

ln
[ 2d
2de−dτ + {κ + d − σ2

0a(u)}[1 − e−dτ]

]
,

a(u) = iu
ρ

σ0
, b(u) = iu

[
−

1
2

+ κ
ρ

σ0
+

1
2

iu(1 − ρ2)
]
, d =

√
κ2 + 2σ2

0b(u).

Lemma 2.3. Under the Heston model, a bivariate characteristic function is given by

ϕxT1 ,xT2
(u1, u2) = exp

{
iu1

(
xt + r(T1 − t) +

ρ

σ0
[−v0 − κθ(T1 − t)]

)}
× exp

{
iu2

(
xt + r(T2 − t) +

ρ

σ0
[−v0 − κθ(T2 − t)]

)}
× exp{B(T2 − T1, a(u2), b(u2)) + A(T1 − t,C(τ, a, b), b(u1 + u2))v0}

× exp{B(T1 − t,C(τ, a, b), b(u1 + u2))},
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where
C(τ, a, b) = a(u1) + A(T2 − T1, a(u2), b(u2)),

and A(τ, a, b), B(τ, a, b), a(u), b(u), d are as defined in Lemma 2.2.

By the martingale property under the risk-neutral measure Q, the holder-extendible
call option as shown in equation (1.4) can be valued at time t using expectations of
indicator functions

ECH(S t,K1,T1,K2,T2, A)

= e−r(T1−t) EQ[(exT1 − ek1 )1{xT1>h}]︸                       ︷︷                       ︸
I

+ e−r(T2−t) EQ[(exT2 − ek2 )1{xT1≥l,xT2≥k2}]︸                              ︷︷                              ︸
II

− e−r(T2−t) EQ[(exT2 − ek2 )1{xT1≥h,xT2≥k2}]︸                              ︷︷                              ︸
III

−e−r(T1−t) EQ[ea1{xT1≥l} − ea1{xT1≥h}]︸                          ︷︷                          ︸
IV

,

(2.1)

where xt = ln S t, k1 = ln K1, k2 = ln K2, l = ln L, h = ln H and a = ln A. In integral
form, equation (2.1) can be written as

ECH(S t,K1,T1,K2,T2, A)

= e−r(T1−t)
∫ ∞

h
(exT1 − ek1 )q(xT1 ) dxT1︸                            ︷︷                            ︸

I

+ e−r(T2−t)
∫ ∞

l

∫ ∞

k2

(exT2 − ek2 )q(xT1 , xT2 ) dxT2 dxT1︸                                              ︷︷                                              ︸
II

− e−r(T2−t)
∫ ∞

h

∫ ∞

k2

(exT2 − ek2 )q(xT1 , xT2 ) dxT2 dxT1︸                                              ︷︷                                              ︸
III

− e−r(T1−t)
[

ea
∫ ∞

l
q(xT1 )dxT1︸                ︷︷                ︸
IV

− ea
∫ ∞

h
q(xT1 ) dxT1︸                 ︷︷                 ︸

V

]
,

where q(·) is the conditional density function of the random value xT1 and q(·, ·) is
the joint conditional density function of the random variables xT1 and xT2 for a given
value xt.

Employing a similar approach to that of Carr and Madan [5], we implement a FFT
on terms I − V. To avoid repetition, we only consider term V for the univariate case and
term III for the bivariate case. First, we multiply terms V and III by an exponentially
decaying term so that it is square-integrable, and we define the damped integral

VD(h) = eα1hV(h),

IIID(h, k2) = eα1h+α2k2 III(h, k2),
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for α1, α2 > 0. Then we apply the Fourier transform

ψ(u1) =

∫ ∞

−∞

eiu1hVD(h) dh,

ψ(u1, u2) =

∫ ∞

−∞

∫ ∞

−∞

eiu1h+iu2k2 IIID(h, k2) dk2 dh,

where the Fourier transform ψ is available in closed-form in terms of the characteristic
function ϕ as

ψ(u1) =
ϕxT1

(u1 − iα1)

iu1 + α1
,

ψ(u1, u2) =
ϕxT1 ,xT2

(u1 − iα1, u2 − i(α2 + 1))

(iu1 + α1)(iu2 + α2)(1 + iu2 + α2)
.

Using an IFT, we recover terms V and III as

V(h) =
e−α1h

2π

∫ ∞

−∞

e−iu1hψ(u1) du1, (2.2)

III(h, k2) =
e−α1h−α2k2

(2π)2

∫ ∞

−∞

∫ ∞

−∞

e−iu1h−iu2k2ψ(u1, u2) du2 du1. (2.3)

The integrals in equations (2.2) and (2.3) are evaluated by numerical approximation
using the trapezium rule and a FFT, and are given by

V(h) ≈
e−α1h

2π

N−1∑
j=0

e−iu1, jhψ(u1, j)∆1,

III(h, k2) ≈
e−α1h−α2k2

(2π)2

N−1∑
j=0

N−1∑
m=0

e−iu1, jh−iu2,mk2ψ(u1, j, u2,m)∆2 ∆1,

where ∆1 and ∆2 denote the distances between the points of the integration grid,
and u1, j = ( j − N/2)∆1, u2,m = (m − N/2)∆2 for j,m = 0, . . . ,N − 1 (where N = 2n,
n ∈ N). We define a grid of size N × N by H2 = {(hu, k2,p) | 0 ≤ u, p ≤ N − 1}, with
ω1, ω2 > 0 denoting the distances between the logarithmic critical prices and the
logarithmic strike prices, where

hu = (u − N/2)ω1, k2,p = (p − N/2)ω2,

and then we evaluate using the sum

Z(h) =

N−1∑
j=0

e−iu1, jhψ(u1, j),

Z(h, k2) =

N−1∑
j=0

N−1∑
m=0

e−iu1, jh−iu2,mk2ψ(u1, j, u2,m).
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Choosing ω1 ∆1 = 2π/N and ω2 ∆2 = 2π/N, yields the values of the sum on H2

Z(hu) =

N−1∑
j=0

e−iu1, jhuψ(u1, j) = (−1)u
N−1∑
j=0

e−i(2π/N) ju[(−1) jψ(u1, j)], (2.4)

Z(hu, k2,p) =

N−1∑
j=0

N−1∑
m=0

e−iu1, jhu−iu2,mk2,pψ(u1, j, u2,m)

= (−1)u+p
N−1∑
j=0

N−1∑
m=0

e−i(2π/N) ju−i(2π/N)mp[(−1) j+mψ(u1, j, u2,m)]. (2.5)

On that account, equations (2.4) and (2.5) are computed via FFT by taking the input
arrays, respectively, as

X[ j] = (−1) jψ(u1, j),

X[ j,m] = (−1) j+mψ(u1, j, u2,m)

for j,m = 0, . . . , N − 1. Therefore, the result is an approximation of term V(h) at
N × 1 different logarithmic critical prices h and of term III(h, k2) at N × N different
logarithmic critical prices h and logarithmic strike prices k2, specified by

V(hu) ≈
e−α1hu

2π
Z(hu)∆1,

III(hu, k2,p) ≈
e−α1hu−α2k2,p

(2π)2 Z(hu, k2,p)∆2 ∆1

for 0 ≤ u, p ≤ N − 1. Following similar procedures to those shown above, analogous
results are obtained for terms I and IV in the univariate case and for term II in the
bivariate case.

3. Numerical example

In this section, we analyse the pricing of extendable options using the model
from Section 2. We first evaluate option prices using the FFT. Then we compare
the accuracy and computational time of the pricing under the Heston model with
two benchmark prices determined via MCS and FDMs. We adopt two commonly
employed calibration errors: the absolute relative error (ARE) and the root-mean-
squared error (RMSE). The ARE for each initial stock price j and the RMSE are
defined, respectively, as

ARE j =

∣∣∣∣∣( ÊC j

EC j
− 1

)∣∣∣∣∣, RMSE =

√√√
1

nS

nS∑
j=1

|ÊC j − EC j|
2,

where the sum is over the number nS (= 5) of initial stock values, ÊC is the estimate
price obtained via a FFT and EC is the exact price determined by MCS or FDMs. Note
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Table 1. Inputs to price the extendable options.

Input Value

Initial stock prices, S 0.8, 0.85, 0.9, 0.95, 1.0
Initial strike price, K1 0.9
Initial expiration time, T1 1
Extended strike price, K2 0.95
Extended expiration time T2 2
Risk-free rate, r 0.02
Premium, A 0.03

that the computations were implemented in MATLAB and conducted on an Intel (R)
Core(TM) i7-7700 CPU @ 3.60 GHz machine running under Windows 10 with 12GB
RAM and a 64-bit operating system. For the implementation of the FFT technique, it
is convenient to allow the outer and the inner sum of equation (2.5) to have different
N = N1 and N2 (< 212), respectively. The FFT prices are sensitive to the choice of
∆1, ∆2, α1, α2, N1 and N2 [15]. Hence, to determine an appropriate choice of these
parameters, we adapt the methodology employed by Hurd and Zhou [18], where the
average of the absolute value of the log price differences, as in equation (3.1), was
minimized as

Err =
1

nS

nS∑
j=1

|log(ÊC j) − log(EC j)|. (3.1)

A two-step approach is taken to optimize the FFT parameters. First, α1 and ∆1 are fixed
at 0.75 and 0.1, respectively, which are reasonable parameters [15]. The outputs for
α2 and ∆2 are then employed (together with α1 and ∆1) as initial inputs to minimize
Err. This is repeated for different N1 and N2. In all that follows, these parameters
are determined to have these values: N1 = 26, N2 = 24, ∆1 = 0.1637, ∆2 = 0.0166,
α1 = 0.7496 and α2 = 0.7502. In the MCS approach, we use 100, 000 simulations each
of 1000 steps (following Hurd and Zhou [18], no variance reduction was employed).
Moreover, the FDM is applied over a three-dimensional grid of size 50 × 50 × 7000
(stock price, variance and time to maturity).

Table 1 lists the other parameter values used in the computation. The Heston
parameters, tabulated in Table 2, are sourced from Table 5 of Moyaert and Petitjean
[25], where these values are calibrated from the market prices of Eurostoxx 50 index
options during the subprime crisis. With the parameter values from Tables 1 and 2,
we solve for the critical prices using a root-search algorithm such as the Newton–
Raphson method [21] and obtain L = 0.7946 and H = 1.0753.A comparison of holder-
extendable call prices is tabulated in Table 3.

Our numerical examples demonstrate that the computational time difference is
significant as the FFT takes 50.03s to produce five holder-extendable call prices
including optimizing the FFT parameters, while MCS and the FDM take 892.68s and
126.49s, respectively, to produce five holder-extendable call prices.
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Table 2. Heston parameters.

Input Value

Instantaneous volatility,
√

v 0.33
Long run volatility,

√
θ 0.28

Mean reversion rate, κ 3.15
Volatility of variance, σ0 0.76
Correlation parameter, ρ −0.81

Table 3. Holder-extendable call option prices under the Heston model: FFT, MCS and FDM.

S FFT FDM MCS
(95% confidence interval)

0.8 0.0646 0.0648 0.0646
(0.0641, 0.0651)

0.85 0.0916 0.0910 0.0911
(0.0904, 0.0918)

0.9 0.1219 0.1208 0.1216
(0.1208, 0.1224)

0.95 0.1550 0.1545 0.1550
(0.1540, 0.1560)

1.0 0.1902 0.1909 0.1913
(0.1902, 0.1924)

Table 4. ARE and RMSE (in %) for pricing holder-extendable call options under the Heston model: FFT
vs MCS and FDMs.

S MCS FDM

0.8 0.00 0.31
0.85 0.55 0.66
0.9 0.25 0.91
0.95 0.00 0.32
1.0 0.58 0.37

RMSE 0.05568 0.06856

In Table 4, the ARE and the RMSE for the holder-extendable call option priced
using the FFT under the Heston model are compared with MCS and FDMs. The
ARE and the RMSE indicate the better performance of the FFT model compared with
MCS and FDMs, and the errors obtained for the FFT are generally close to those for
nonextendable options [15].
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Table 5. Vanilla and holder-extendable call prices under the Black–Scholes model and the Heston model.

S
Black–Scholes Heston

Holder- Extension Holder- Extension
Vanilla extendable privilege Vanilla extendable privilege

0.8 0.0632 0.0721 0.0089 0.0494 0.0656 0.0162
0.85 0.0866 0.0962 0.0096 0.0755 0.0918 0.0163
0.9 0.1140 0.1238 0.0098 0.1071 0.1216 0.0145
0.95 0.1451 0.1548 0.0097 0.1416 0.1545 0.0129
1.0 0.1794 0.1888 0.0094 0.1796 0.1908 0.0112

Figure 3. Extension privilege at time T1 with different v0.

Finally, in Table 5, we document the prices of a vanilla call option and a holder-
extendable call option under the Black–Scholes model [2] and the Heston model [14].
The volatility input for the Black–Scholes model is given by

√
ν(T ) in equation (1.6),

where T = T1 for the vanilla call and T = T2 for the holder-extendable call, leading to
Black–Scholes annualized volatilities of 29.61% and 28.85%, respectively. Note that,
for out-of-the money options, the prices for both vanilla calls and holder-extendable
calls are greater under the Black–Scholes environment [2] than the prices under the
Heston environment [14]. This is also true for in-the-money options for both vanilla
calls and holder-extendable calls. This is well known for vanilla calls when ρ < 0 [29],
and it is also the case for holder-extendable calls (whether priced by FFT, MCS or
FDMs) because the distribution of the logarithmic asset prices is negatively skewed
when ρ < 0, producing a heavier left tail of the distribution. Moreover, the Black–
Scholes implied volatility exhibits larger curvature than the Heston implied volatility.
We also observe from Table 5 that the extension privilege is higher under the Heston
model [14] than under the Black–Scholes model [2]. Figures 3, 4 and 5 illustrate the
changes in the values of the extension privilege under the Heston model when v0, σ
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Figure 4. Extension privilege at time T1 with different σ.

Figure 5. Extension privilege at time T1 with different T2.

and T2 increase, respectively. We observe that the extension privilege increases as the
values of v0, σ and T2 increase.

4. Conclusion

This paper considers the pricing of holder-extendable call options under the Heston
dynamics using a FFT, and it compares this with the MCS and FDM benchmarks.
The FFT pricing formula is expressible as a finite sum of expectations of the
indicator functions, where the partition uses the two critical values introduced by
Longstaff [23]. The evaluation of the expectations involves one-dimensional and
two-dimensional Fourier transforms via the corresponding univariate and bivariate
characteristic functions, respectively. Under the Heston model, there exist closed-
form solutions of the characteristic functions; hence, in comparison with MCS and
an explicit FDM, the application of the FFT yields significant computational savings,
typically, of at least an order of magnitude. We also observe that, overall, the Heston
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model performs better than the Black–Scholes model in pricing holder-extendable call
options.

In addition to stochastic volatility, this study can be further developed by
incorporating jumps with stochastic volatility together with stochastic interest rates,
in the spirit of Santa-Clara and Yan [30], and by implementing other optimization
strategies. Finally, the use of extendable options in problems involving real options
may lead to fruitful investigations.
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exponential Lévy models”, SIAM J. Numer. Anal. 43 (2005) 1596–1626;
doi:10.1137/S0036142903436186.

[8] J. C. Cox, J. E. Ingersoll and S. A. Ross, “A theory of the term structure of interest rate”,
Econometrica 53 (1985) 385–407; doi:10.2307/1911242.

[9] M. A. G. Dias and K. M. C. Rocha, “Petroleum concessions with extendible options using
mean reversion with jumps to model oil prices”. Working paper, IPEA, Brazil (1999) 1–27;
http://realoptions.org/papers1999/MarcoKatia.pdf.

[10] P. Glasserman, Monte Carlo methods in financial engineering (Springer, New York, 2004).
[11] S. A. Griebsch and U. Wystup, “On the valuation of fader and discrete barrier options in Heston’s

stochastic volatility model”, Quant. Finance 11 (2011) 693–709;
doi:10.1080/14697688.2010.503375.

[12] C. R. Gukhal, “The compound option approach to American options on jump-diffusion”,
J. Econom. Dynam. Control 28 (2004) 2055–2074; doi:10.1016/j.jedc.2003.06.002.

[13] S. Hauser and B. Lauterbach, “Empirical tests of the Longstaff extendible warrant model”,
J. Empir. Finance 3 (1996) 1–14; doi:10.1016/0927-5398(95)00019-4.

[14] S. L. Heston, “A closed-form solution for options with stochastic volatility with applications to
bond and currency options”, Rev. Financial Stud. 6 (1993) 327–343; doi:10.1093/rfs/6.2.327.

https://doi.org/10.1017/S1446181119000142 Published online by Cambridge University Press

https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/10.1088/1469-7688/4/1/009
https://doi.org/
https://doi.org/
https://doi.org/10.1137/S0036142903436186
https://doi.org/
http://realoptions.org/papers1999/MarcoKatia.pdf
https://doi.org/10.1080/14697688.2010.503375
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/10.1017/S1446181119000142


[16] Pricing holder-extendable call options with mean-reverting stochastic volatility 397

[15] A. Hirsa, Computational methods in finance (Chapman and Hall/CRC Press, London, 2013.).
[16] J. S. Howe and P. Wei, “The valuation effects of warrant extensions”, J. Finance 48 (1993)

305–314; doi:10.1111/j.1540-6261.1993.tb04711.x.
[17] J. Huang, W. Zhu and X. Ruan, “Fast Fourier transform based power option pricing with stochastic

interest rate, volatility, and jump intensity”, J. Appl. Math. 2013 (2013) 1–7;
doi:10.1155/2013/875606.

[18] T. R. Hurd and Z. Zhou, “A Fourier transform method for spread option pricing”, SIAM J.
Financial Math. 1 (2010) 142–157; doi:10.1137/090750421.

[19] S. N. I. Ibrahim, T. W. Ng, J. G. O’Hara and A. Nawawi, “Pricing holder-extendable options in a
stochastic volatility model with an Ornstein–Uhlenbeck process”, Malays. J. Math. Sci. 11 (2017)
1–8; http://einspem.upm.edu.my/journal/fullpaper/vol11/1.pdf.

[20] S. N. I. Ibrahim, J. G. O’Hara and N. Constantinou, “Pricing extendible options using the fast
Fourier transform”, Math. Prob. Eng. 2014 (2014) 1–7; doi:10.1155/2014/831470.

[21] J. Kiusalaas, Numerical methods in engineering with Python, 2nd edn (Cambridge University
Press, Cambridge, 2012).

[22] N. Koussis, S. H. Martzoukos and L. Trigeorgis, “Multi-stage product development with
exploration, value-enhancing, preemptive and innovation options”, J. Banking Finance 37 (2013)
174–190; doi:10.1016/j.jbankfin.2012.08.020.

[23] F. A. Longstaff, “Pricing options with extendible maturities: analysis and applications”, J. Finance
45 (1990) 935–957; doi:10.1111/j.1540-6261.1990.tb05113.x.

[24] R. C. Merton, “Option pricing when underlying stock returns are discontinuous”, J. Financ. Econ.
3 (1976) 125–144; doi:10.1016/0304-405X(76)90022-2.

[25] T. Moyaert and M. Petitjean, “The performance of popular stochastic volatility option pricing
models during the subprime crisis”, Appl. Financ. Econ. 21 (2011) 1059–1068;
doi:10.1080/09603107.2011.562161.

[26] S. N. Neftci and A. O. Santos, “Puttable and extendible bonds: developing interest rate derivatives
for emerging markets”. IMF Working paper, WP/03/201 (International Monetary Fund, 2003)
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.585.3038&rep=rep1&type=pdf.

[27] B. Peng and F. Peng, “Pricing extendible option under jump-fraction process”, J. East China Norm.
Univ. Natur. Sci. 2012 (2012) 30–40; doi:10.3969/j.issn.1000-5641.2012.03.006.

[28] E. Pillay and J. G. O’Hara, “FFT based option pricing under a mean reverting process with
stochastic volatility and jumps”, J. Comput. Appl. Math. 235 (2011) 3378–3384;
doi:10.1016/j.cam.2010.10.024.

[29] F. D. Rouah, The Heston model and its extensions in Matlab and C# (John Wiley & Sons, New
Jersey, 2013).

[30] P. Santa-Clara and S. Yan, “Crashes, volatility, and the equity premium: lessons from S&P 500
options”, Rev. Econ. Stat. 92 (2010) 435–451; doi:10.1162/rest.2010.11549.

[31] P. V. Shevchenko, “Holder-extendible European option: corrections and extensions”, ANZIAM J.
56 (2015) 359–372; doi:10.1017/S1446181115000097.

[32] C. Sophocleous, J. G. O’Hara and P. G. L. Leach, “Algebraic solution of the Stein–Stein model
for stochastic volatility”, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1752–1759;
doi:10.1016/j.cnsns.2010.08.008.

[33] S. Zhang and L. Wang, “A fast Fourier transform technique for pricing European options with
stochastic volatility and jump risk”, Math. Probl. Eng. 2012 (2012) 1–17;
doi:10.1155/2012/761637.

[34] S. Zhang and L. Wang, “Fast Fourier transform option pricing with stochastic interest rate,
stochastic volatility and double jumps”, Appl. Math. Comput. 219 (2013) 10928–10933;
doi:10.1016/j.amc.2013.05.008.

[35] S. Zhang and L. Wang, “A fast numerical approach to option pricing with stochastic interest
rate, stochastic volatility and double jumps”, Commun. Nonlinear Sci. Numer. Simul. 18 (2013)
1832–1839; doi:10.1016/j.cnsns.2012.11.010.

https://doi.org/10.1017/S1446181119000142 Published online by Cambridge University Press

https://doi.org/
https://doi.org/10.1155/2013/875606
https://doi.org/
http://einspem.upm.edu.my/journal/fullpaper/vol11/1.pdf
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/
https://doi.org/10.1080/09603107.2011.562161
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.585.3038&rep=rep1&type=pdf
https://doi.org/
https://doi.org/10.1016/j.cam.2010.10.024
https://doi.org/
https://doi.org/
https://doi.org/10.1016/j.cnsns.2010.08.008
https://doi.org/10.1155/2012/761637
https://doi.org/10.1016/j.amc.2013.05.008
https://doi.org/
https://doi.org/10.1017/S1446181119000142

	Introduction
	The FFT
	Numerical example
	Conclusion
	References

