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Abstract

This paper investigates the automorphism groups of Cayley graphs of metacyclic p-groups. A charac-
terization is given of the automorphism groups of Cayley graphs of a metacyclic p-group for odd prime
p. In particular, a complete determination of the automorphism group of a connected Cayley graph with
valency less than 2p of a nonabelian metacyclic p-group is obtained as a consequence. In subsequent
work, the result of this paper has been applied to solve several problems in graph theory.

2000 Mathematics subject classification: primary 05C25, 20B25.

1. Introduction

Let G be a finite group, and let S be a subset of G that does not contain the identity 1
of G. If § = S := {s~! | s € S}, the graph with the vertex set G and the edge set
{{x,sx} | x € G, s € S} is called a Cayley graph of G and denoted by Cay(G, S).
The adjacency relation of the graph Cay (G, S) is uniquely determined by the group
G and the subset S, and so are some simple properties of Cay(G, S), for example,
Cay(G, S) is a regular graph with valency |S|, and Cay(G, S) is connected if and
only if {§) = G. However, to understand some further graph structure properties of
the graph, for example, how symmetric the graph is, we often need to know the full
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automorphism group of Cay(G, S). By the definition, it is easy to see that the group
G acts regularly on the vertex set G by right multiplication (that is, g acts on x as
the product xg) and so G may be viewed as a regular subgroup of the automorphism
group of the Cayley graph. In particular, the automorphism group of a Cayley graph
acts transitively on the vertex set. But in general the problem of determining the
full automorphism group of a Cayley graph is very difficult. Since a Cayley graph
I' = Cay(G, S) is defined by G, a natural approach to the problem is to understand the
relationship between the full automorphism group AutI" and G, for example, whether
or not G, as a regular subgroup, is normal in AutT".

For convenience, a Cayley graph I will be called normal if the regular subgroup
G is normal in AutI" (see [21]). The automorphism group of a normal Cayley graph
I' = Cay(G, S) is a semidirect product of the regular normal subgroup G by the
subgroup Aut(G, S) which consists of all automorphisms of the group G that fix S
setwise (see Lemma 2.1). The automorphisms of the graph I' are therefore completely
determined by automorphisms of the group G. Usually, the latter is much easier to be
determined. Thus a natural problem is to determine normality of Cayley graphs for a
given class of groups.

The problem determining normality of Cayley graphs of a given cyclic group of
prime order was solved by Alspach [1]; some partial answers for other classes of
groups to this problem can be found in several papers, for example [3, 6, 11, 20].
The main purpose of the paper is to characterize the automorphism groups of certain
Cayley graphs for metacyclic groups of prime-power order, in view of normality.

For two groups G and H, let G X H be a semidirect product of G by H. For a
subset S of a group G, write

Aut(G, S) := {0 € Aut(G) | 8(S) = S}.

The first result of this paper determines automorphism groups of Cayley graphs of
a nonabelian metacyclic p-group in the case when p is an odd prime that does not
divide the order of Aut(G, S).

THEOREM 1.1. Let G be a finite nonabelian metacyclic p-group for an odd prime p,
andlet T = Cay(G, S) be a Cayley graph of G. Assume that Aut(G, S) is a p’-group.
Then either AutI’ = G x Aut(G, S), or G = Zy 1 Z3- and AutT" = PSL(2, 8) % Z4,
where r > 1.

Note that the p’-group Aut(G, §) in the theorem is a cyclic group of order dividing
p—1(see[14,15]). We then have a complete determination of the automorphism group
of a connected Cayley graph with valency less than 2p for a nonabelian metacyclic
p-group of odd order.
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COROLLARY 1.2. Let I' = Cay(G, S) be a connected Cayley graph with valency
less than 2p of a finite nonabelian metacyclic p-group G for an odd prime p. Then
Autl" = G x Aut(G, S).

One of the motivations of studying normal Cayley graphs comes from some prob-
lems of graph theory. A graph is said to be half-transitive if it is vertex-transitive and
edge-transitive but not arc-transitive. Initiated with a question of Tutte [19, page 60},
half-transitive graphs have received considerable attention for many years (see, for
example, [2, 4, 16, 20]). In [13], the result of this paper has been applied to construct
and characterize an interesting class of half-transitive graphs. A Cayley graph I" of a
group G is called a graphical regular representation of G if AutI” = G. The prob-
lem of deciding whether a Cayley graph is a graphical regular representation of the
corresponding group is a long-standing one, see [7]. The result given in Theorem 1.1
is used in [12] to solve the problem for metacyclic p-groups.

After we describe some background results in Section 2, we will prove Theorem 1.1
and Corollary 1.2 in Section 3.

2. Background results

We first setup some notation and terminology. Let G be a group. Denote by ¢(G)
the Frattini subgroup of G. The product of all minimal normal subgroups of G is
called the socle of G and is denoted by Soc(G). The automorphism group and the
outer automorphism group of G are denoted by Aut(G) and Out(G), respectively. For
two subgroups H and K of G, let C4(K) denote the centralizer of K in H, and let
Ny (K) denote the normalizer of K in H.

We now collect some basic results, which will be used in this paper.

LEMMA 2.1. Let I' = Cay(G, S) be a Cayley graph of a finite group G. Then
Naur(G) = G x Aut(G, §).

PROOF. Write A := AutI". The normalizer of G in the symmetric group Sym(G)
is G x Aut(G) (see [5, Corollary 4.2B]). So we have

NA(G) = (G x Aut(G))N A = G X (Aut(G) N A).
Obviously, Aut(G) N A = Aui(G, §). O

We also note that a proof of this lemma may be found in [7, Lemma 2.1}].

LEMMA 2.2. Let I' = Cay(G, S) be a Cayley graph of a finite p-group G. If
Aut(G, S) is a p'-group, then G, viewed as a regular subgroup, is a Sylow p -subgroup
of AutT.
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PROOF. Write A = AutI". Suppose that Aut(G, S) is a p’-group. Then N,(G)/ G
is a p’-group. If G is not a Sylow p-subgroup of A, then G is a proper subgroup of a
Sylow p-subgroup P of A. Thus G < Npx(G) < N4(G) (see [17, page 88]), which is
a contradiction since N, (G)/ G is a p’-group. O

We also need the following facts about finite simple groups with a subgroup of
prime-power index. First we prove a property about outer automorphisms and Schur
multipliers of such simple groups.

LEMMA 2.3. Let p be an odd prime. Let T be a nonabelian simple group which has
a subgroup H of index p' > 1, and let M(T) be the Schur multiplier of T. Then

(i) p1IM(D);
(ii) either p 4 |Out(T)| or T = PSL(2, 8) and p' = 32.

PROOF. The finite nonabelian simple groups T with a subgroup H of prime-power
index were classified by Guralnick in [9], and the Schur Multipliers of finite sim-
ple groups are completely classified, see Table 4.1 in [8, page 302]. Combining
these two classifications, we only need to check the case that T = PSL(n, ¢) and
(¢" — 1)/(qg — 1) = p', where ¢ = r/ for some prime r and some positive integer f .
It is known that

2df if n >3,

M(T)|=d, |0u(T)|=
IM(T)| | Out(T)| {df it n=2.

where d = ged(n, g — 1). If nf < 2, then T = PSL(2, r) and {Out(T)| = 2,
sop 1 |Out(7)| and p { |M(T)|. Assume that nf > 3. If r = 2 and nf = 6,
then it follows that (g" — 1)/(g — 1) = 3? and so T = PSL(2, 8) and |M(T)| = 1
in this case. If (r,nf) # (2, 6) then by Zigmondy Theorem (see [10, IX 8.3 and
8.4]), there is a (primitive) prime k > nf suchthatk | (*"/ — 1) butk { (+/ — 1).
Thus k | (¢" —1)/(q — 1) = p' and so k = p. In particular, p > df, and hence
p110ut(T)| and p { IM(T)|. O

The following lemma is an immediate consequence of Corollary 2 in Guralnick [9].

LEMMA 2.4, Let T be a nonabelian simple group acting transitively on Q with p'
elements for a prime p. If p does not divide the order of a point-stabilizer in T, then
T acts 2-transitively on Q.

Finally, we observe a fact on transitive permutation groups of prime-power degree.

LEMMA 2.5. Let p be a prime, and let A be a transitive permutation group on Q2 of
prime-power degree. Let B be a nontrivial subnormal subgroup of A. Then B has a
proper subgroup of p-power index, and O, (B) = 1. In particular, O, (A) = 1.
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PROOF. The assumption that B is subnormal in A means that there exists a series
of subgroups B < B; < --- < B, = A. Let v be a point in £ which is not fixed by
B. Since A is transitive on 2, B,_, is half-transitive on £2. Thus the B,_;-orbit O,_,
containing v is of p-power size. Similarly, B, is half-transitive on O,_,, and thus
the B,_,-orbit O,_, containing v is also of p-power size. Repeating this argument,
we have that the B-orbit containing v is of p-power size, and so B has a proper
subgroup of p-power index. So the subnormal subgroup O, (B) has a subgroup of
p-power index, and hence O, (B) = 1. In particular, taking B = A, we have that
0,(A)=1 O

3. Proofs of the main results

In this section, we prove the main results, that is, Theorem 1.1 and Corollary 1.2.
We will proceed the proofs with a series of lemmas. We recall that a metacyclic group
is a group G which has a cyclic normal subgroup K such that G/X is cyclic. We
notice that every subgroup and every quotient group of a metacyclic group are also
metacyclic, and in particular, can be generated by at most two elements.

Let G be a finite nonabelian metacyclic p-group for an odd prime p, and let
I' = Cay(G, §) be a Cayley graph of G. Let A denote the automorphism group of
the Cayley graph I', and let A; denote the group of all automorphisms of I" that fix
the identity 1 of G. To prove Theorem 1.1, we assume that Aut(G, S) is a p’-group.
Then by Lemma 2.2, G is a Sylow p-subgroups of Aut I, or equivalently, p does not
divide |A,|.

LEMMA 3.1. The graph T is not a complete graph.

PROOF. Suppose that I' is a complete graph, thatis, I' = K,,, where n = |G|. Then
A = S, the symmetric group of degree n. However, a Sylow p-subgroup of S, is not
isomorphic to the nonabelian metacyclic group G, which is a contradiction. O

LEMMA 3.2. If N be a nonabelian minimal normal subgroup of A, then p = 3 and
N = PSL(2, 8).

PROOF. Assume that N is non-abelian minimal normal subgroup. Then N =
T, x - -- x T;, where T; = T for some nonabelian simple group T. By Lemma 2.5, [N |
is divisible by p. The normal subgroup N has a Sylow p-subgroup contained in G.
Since G is metacyclic, it follows that k is at most 2. By Lemma 2.5, T, has a subgroup
of p-power index. Thus by Lemma 2.3 (ii), either p = 3 and T} = PSL(2,8) or p
does not divide | Out(Ty)|.
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Assume first that p does not divide | Out(T})|. Since N4 (T;)/ T,C4(Ty) is iso-
morphic to a subgroup of Out(T7)), it follows that |G| divides |T;C4(T})|. Since T;
is nonabelian simple, 7, N C,(7;) = 1, and hence the product T\C4(T}) is a direct
product. Suppose that p { |C,(T})|. Then T contains a Sylow p-subgroup of A,
and hence T, is transitive on the vertex set G. By Lemma 2.4, noting that p does not
divide |A,|, T; is 2-transitive on the vertex set G. So I' is a complete graph, which
contradicts Lemma 3.1. Therefore, p divides |C4(7})|. Taking a Sylow p-subgroup
P, of Ty and a Sylow p-subgroup P, of C4 (7)), we see that G is conjugate to P, x P.
Consequently, the P; are cyclic, and so G is abelian, which is not the case.

Assume now that p = 3 and 7} = PSL(2, 8). Consider the case where k = 2,
namely N = Ty x T,. AsNNC,(N) =1,(N,C,(N)) = NxC,(N). ByLemma?2.5,
if C4(N) # 1 then 3 divides |C,(N)|, and thus a Sylow 3-subgroup of N x C4(N)
is isomorphic to Zy x Z, x P for some nontrivial 3-group P, which is a contradiction
since G is metacyclic. Hence C,(N) = 1. Write B = N, (7). Then B = N4(T))
and B is a normal subgroup of A with index 2. Both of C,(T}) and C,(T3) are also
normal in B. Since C,(T)) N C,(Ty) = C,(N) = 1, it follows that B is isomorphic
to a (subdirect) subgroup of B/C,(T)) x B/C4(T), and so B is isomorphic to a
subgroup of Aut(7}) x Aut(7;). Let Q be a Sylow 3-subgroup of B. Then Q is also a
Sylow 3-subgroup of A and G N N is a normal subgroup of G isomorphic to Zy x Z.
Since G is nonabelian metacyclic, G has an element of order 27; however, there is no
such an element in Aut(PSL(2, 8)), and so no such an element in Aut(7;) x Aut(73),
a contradiction. Therefore, k = 1 and N = PSL(2, 8). ]

We then have a consequence of Lemma 3.2.

LEMMA 3.3. Either Soc(A) is soluble or G = Zy ¥ Z3- and A = PSL(2, 8) x Z5.,
where r > 1.

PROOF. Suppose that Soc(A) is insoluble. Then by Lemma 3.2, p =3 and A has a
minimal normal subgroup N such that N = PSL(2, 8). Let C = C,(N). ThenA/C
is isomorphic to a subgroup of Aut(N) = N X Z;. As G is nonabelian metacyclic,
it follows that A/C = N x Z3. So A/C = L/C x B/C, where L/C = N and
B/C = Zs. Since L N N is normal in the simple group N, we see that N < L, and so
NNB=1.Thus A = N x B. Let P be a Sylow 3-subgroup of B. Then P is cyclic
and B = CP. Let M be the normalizer of P in B. Then M = (C N M)P. Since
P/(CNP)=EB/C=1Z;,wehave CNM > CN P = d(P), the Frattini subgroup
of P, and hence M/®P(P) = (CN M)/ D(P) x P/®(P). So the subgroup CNM
acts trivially on P/®(P), which implies that C N M acts trivially on P also. Thus
P centralizes the normalizer M of the Sylow 3-subgroup P. It then follows from
Burnside’s Theorem for p-nilpotency that B is 3-nilpotent. Thus the normal Hall
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3'-subgroup of B is a characteristic subgroup of C and so it is a normal p’-subgroup
of A. By Lemma 2.5, we have B = P. Therefore, A = N x P, as desired. 0

We will also prove the following lemmas.
LEMMA 3.4. If Soc(A) is soluble, then C,(0,(A)) < O,(A).

PROOE. Suppose that B is a normal semisimple subgroup of A. From the definition
of a semisimple group, we see that B = B’, and B/Z(B) is a direct product of
nonabelian simple groups. By Lemmma 2.5, B has a subgroup of p-power index, and in
particular, B/Z(B) has a subgroup of p-power index. It follows from Lemma 2.5 that
Z(B) is a p-group. Since B/Z(B) is a direct product of nonabelian simple groups,
we see from Lemma 2.3(i) that p { |M (B/Z(B))|. So Z(B) = 1. Thus B is a direct
product of nonabelian simple groups, and so B contains an insoluble minimal normal
subgroup of A. This yields a contradiction to the assumption. Thus A has no normal
semisimple subgroups. By the definition (see [18, Definition 6.10, page 452}), the
generalized Fitting subgroup F*(A) equals the Fitting subgroup F(A). By Lemma 2.5,
0,(A) = 1, and thus F*(A) = F(A) = O,(A). Therefore, C4(0,(4)) < 0,(A).
The lemma follows from Lemma 2.5. g

LEMMA 3.5. If Soc(A) is soluble then G = O,(A) 4 A.

PROOF. Let H = O,(A). It follows from Lemma 3.4 that C,(H) < H. Write
V=H/®d(H) and A= A/®(H). Then V may be regarded as a vector space over
Z,. We consider the action of A on V by conjugation. Since H acts triviallyon V, we
have H < C4(V) and C,(V) is normal in A. Suppose that H is a proper subgroup
of C,(V). Then C,(V) has a nontrivial p’-element x. Since the p'-element x acts
trivially on H/®(H), we see that x acts also trivially on H. Sox € C4(H) but x
is not contained in H. This yields a contradiction since C4,(H) < H. Therefore
C4(V) = H, and so the conjugation leads a faithful representation of A/H as a
subgroup of GL(V).

If V= Z,, then A/H is isomorphic to a subgroup of a cyclic group of order
p — 1; in this case H is the Sylow p-subgroup of A and so G = O,(A). We now
consider the remaining case, namely when V = 7, x Z,. Suppose that H < G.
Then A/H is isomorphic to a subgroup L of GL(2, p). Since H < G, a Sylow
p-subgroup of L is not normal. Then by [17, Theorem 6.17, page 404], L NSL(2, p)
contains SL(2, p), and hence SL(2,p) < L. Since 1 < Z(SL(2,p)) < O, (L)
for odd p, we see that 1 < O,.(L). We also have O,,(A) = V x Q, where
Q = 0O,(L). Since SL(2,p) < L, V is a minimal normal subgroup of A It
follows from Z(0, ,-(A)) = Cy(Q) x Cy(V) = Cy(Q) that Cy(Q) is normal in A.
Therefore Cy( Q) = 1. Further, by the Frattini argument (or see [17, (8.12), page 238],
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A= VNz(Q). Since Kﬂ Ni(Q)=Cv(Q)=1,wehave A = V % Nz (Q),and so a
Sylow p-subgroup of A is isomorphic to (Z, x Z,) x Z,. This is not the case since p
is odd and G is a metacyclic p-group. Consequently, we have G = 0,(A) < A. O

PROOF OF THEOREM 1.1. To complete the proof of Theorem 1.1, we now only need
to show that A = G x Aut(G, S) when G is normal in AutT", while it follows from
Lemma 2.1. So the proof of Theorem 1.1 is now complete. a

We now prove Corollary 1.2.

PROOF OF COROLLARY 1.2. Since p is odd, there exists a subset T of S such that
TNT' =@, S=TUT". Since |S| < 2p, we have |T| < p. Let @ be an
p-element in Aut(G, S). Assume that 6 has an orbit of length p. Then there exists an
element ¢ in 7 such that both of ¢ and ™! are contained in the orbit of length p. This
means that 1~! = 6*(¢) for some k with 1 < k < p. So (6%) stabilizes t. However,
(6%) = (6) since p does not divide 2k. This yields a contradiction. So 8 acts trivially
on S. Since S generates G, we see that 8 acts faithfully on S. Thus 6 = 1, which
implies that Aut(G, S) is a p’-group. For p = 3, it easily follows from since |[S| < 4
that the automorphism group A is a {2, 3}-group. So A is soluble. By Theorem 1.1,
we have A = G x Aut(G, S) for p = 3. If p > 3, the claim also follows from
Theorem 1.1. O
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