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Abstract

Machine learning’s integration into reliability analysis holds substantial potential to ensure infrastructure safety.
Despite the merits of flexible tree structure and formulable expression, random forest (RF) and evolutionary
polynomial regression (EPR) cannot contribute to reliability-based design due to absent uncertainty quantification
(UQ), thus hampering broader applications. This study introduces quantile regression and variational inference (VI),
tailored to RF and EPR for UQ, respectively, and explores their capability in identifyingmaterial indices. Specifically,
quantile-based RF (QRF) quantifies uncertainty by weighting the distribution of observations in leaf nodes, while
VI-based EPR (VIEPR) works by approximating the parametric posterior distribution of coefficients in polynomials.
The compression index of clays is taken as an exemplar to develop models, which are compared in terms of accuracy
and reliability, and alsowith deterministic counterparts. The results indicate that QRF outperforms VIEPR, exhibiting
higher accuracy and confidence in UQ. In the regions of sparse data, predicted uncertainty becomes larger as errors
increase, demonstrating the validity of UQ. The generalization ability of QRF is further verified on a new creep index
database. The proposed uncertainty-incorporated modeling approaches are available under diverse preferences and
possess significant prospects in broad scientific computing domains.

Impact Statement

The proposed uncertainty-incorporated approaches extend the application range of popular random forest and
evolutionary polynomial regression and ensure their practicability for reliability-based design in various
industries. The proposed approaches can meet diverse requirements due to their respective merits in strong
fitting capability and formulable expressions and hold substantial potential in the field of computational science.

1. Introduction

The identification of mechanical indices of materials is vital in engineering design. Experiments in
materials can reveal these indices as design parameters but take much effort and expense (He et al.,
2024a). Alternatively, some readily measured physical characteristics are often employed to estimate
these indices through certain transformation models (Phoon et al., 2022). Numerous empirical relations
and data-driven approaches were proposed to identify mechanical indices of materials in the past (Karimi
et al., 2023; Rezania et al., 2011; Vázquez-Escobar et al., 2021). However, the majority of these methods
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neglected underlying uncertainties and merely generated point estimations (Li et al., 2022; Nassr et al.,
2018; Pei et al., 2023; Rezania et al., 2011;Wang et al., 2020; Zhang et al., 2019, 2020, 2021b). The direct
application of these methods without uncertainty quantification (UQ) may pose huge risks in
engineering practice.

Uncertainty is an inevitable factor contributed by various sources in geotechnical engineering. In
general, uncertainty can be categorized into epistemic and aleatoric uncertainties (Zhang et al., 2021a),
which are also known as reducible and irreducible uncertainties (Olivier et al., 2021). The former arises in
modeling the studied phenomena of interest and is dominated by a lack of knowledge, while the latter is
induced by slightly intrinsic randomness and is hard to mitigate such as measurement error in laboratory
tests. Thereafter, numerous researchworks focus on reducing prominently epistemic uncertainty if there is
no specific demonstration. More specifically, epistemic uncertainty is primarily contributed by intrinsic-
ally spatial variability due to widely spaced materials (Ching and Phoon, 2019; Guan and Wang, 2022;
Lyu et al., 2023), transformation uncertainty in estimating design parameters (Phoon andKulhawy, 1999),
and statistical uncertainty due to limited site investigation data in geotechnics (Ching and Phoon, 2017;
Guan and Wang, 2020). The current study focuses on the second source of epistemic uncertainty, that is,
transformation uncertainty associated with data-driven models and aims to tailor traditionally determin-
istic approaches for broader applications.

To capture substantial uncertainty for reliability-based design, many scholars have been equip-
ping traditionally deterministic approaches with UQ to improve their reliability and practicability.
For example, Zhang et al. (2021b) enhanced the reliability of neural networks (NNs) by incorpor-
ating Monte Carlo dropout (Gal and Ghahramani, 2016), which adopts random dropout of weights
to generate mean and variance for predicting soil maximum dry density. Zhang et al. (2022b) further
integrated NN with variational inference (VI), which approximates the parametric posterior
distribution of weights for interval estimates of soil compression index Cc and creep index Cα.
The bootstrapping technique has also been used to quantify uncertainty in ensemble learning
models, such as NN (Olivier et al., 2021; Psaros et al., 2023; Zhao et al., 2023) and support vector
regression (Li et al., 2023). Apart from the preceding integrations, Wang and Zhao (2017) proposed
a novel Bayesian compressive sampling approach that weighs over prespecified basis functions
to capture the uncertainty of the tip resistance profile. Ching et al. (2022) also designed a
hierarchical multivariate normal probability density functions (PDFs) to generate three-
dimensional (3D) probabilistic predictions of Cc.

Nevertheless, some popular approaches with unique structures, such as random forest (RF) and
evolutionary polynomial regression (EPR), have not been equipped with UQ in numerous geotechnical
applications (Nassr et al., 2018; Pei et al., 2023; Rezania et al., 2011; Zhang et al., 2021b). Through
incorporating bootstrap aggregating (Breiman, 1996) and random subspace (Ho, 1998), RF character-
izes flexible tree structures built upon dichotomy and exhibits strong fitting capability (Karimi et al.,
2023; Wang et al., 2020; Zhang et al., 2021d). In contrast, EPR works by combining symbolic and
numerical regressions to search for a polynomial function, known as user-friendly and applicable
expressions in vast scenarios (Ghorbani and Hasanzadehshooiili, 2018; Gomes et al., 2021). Based on
these characteristics, RF has been widely used in soil indices prediction (Li et al., 2022), 3D
reconstruction of granular grains (Zhang et al., 2022a), landslide susceptibility mapping (Sun et al.,
2021), settlement estimation (Zhang et al., 2019), and slope stability evaluation (Pei et al., 2023), while
EPR has been applied in constitutive modeling (Nassr et al., 2018; Zhang et al., 2021e), liquefaction
evaluation (Ghorbani and Eslami, 2021; Rezania et al., 2010), settlement prediction (Shahin, 2016), and
so forth. Nonetheless, absent UQ hampers their scenarios, and hence, the current study aims to tailor
them for broader applications.

A key issue behind RF is that the output of each decision tree only relies on the average observation in a
certain leaf and neglects the distribution information inside. The distribution information typically can be
interpreted by PDF, cumulative distribution function or quantiles (Hao and Naiman, 2007). Owing to this
neglect, uncertainty was not involved in the aforementioned studies of RF because it merely averages the
generated conditional mean of each tree. Some efforts have been made to address this issue, but they only
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pay attention to classification tasks (Reis et al., 2018; Vázquez-Escobar et al., 2021). Regarding this issue,
quantile regression holds the potential to utilize the distribution information in each leaf because it can
estimate arbitrary quantiles (Koenker and Bassett, 1978) such as the quartile or median. Therefore, RF
deserves to be integrated with quantile regression to enhance reliability for broader applications in
scientific computing domains.

On the other hand, the coefficients of polynomials in EPR are scalars, simply fitted by the least-squares
method. In this aspect, Jin and Yin (2020) discussed the potential of equipping EPR with uncertainty
evaluation by replacing the least-squares method with a Bayesian approximation through the Markov
chainMonte Carlo (MCMC) (Marasco et al., 2022). Nonetheless,MCMC comes with several limitations:
sampling directly from a target PDF becomes intractable when the prior and likelihood PDFs are quite
different (Phoon et al., 2022); it suffers from the curse of dimensionality and becomes inefficient if the
number of target parameters is large (Lykkegaard et al., 2021); it tends to be stuck in local convergence for
some tasks (Lee and Song, 2017). VI has recently become an effective alternative to the MCMC method
and has already been incorporated into NN for probabilistic shear strength predictions of clays (Zhang
et al., 2022b). The integration of EPR and VI is hence worth investigating for designing an efficient
modeling approach with UQ.

To this end, this study proposed two uncertainty-incorporated baseline modeling approaches, that is,
quantile-based RF and VI-based EPR (QRF and VIEPR) to enrich the current data-driven modeling
framework and identify material indices. As a vital design parameter, the Cc of clays was taken as an
exemplar to develop models and verify the feasibility of the proposed approaches. Therefore, two models
denoted by QRF and VIEPR with three input variables (i.e., initial void ratio e0, liquid limit LL and
plasticity index Ip) were developed and applied to predict Cc values. Their performances were fairly
compared in terms of accuracy and reliability and also compared with results of deterministic counter-
parts. The dependency of error and uncertainty on input variables was also investigated. The better-
performing method was further applied to predict Cα for exploring its generalization ability.

2. Methodology

2.1. QRF

As a type of nonparametric algorithm, RF incorporates bagging (Breiman, 1996) and random subspace
(Ho, 1998) to generate trees and leaf nodes for making predictions. Specifically, bagging generates a
bootstrap set by sampling with replacement for training each tree, while random features are considered
for node split. In this context, each tree is an independent predictor, in which the output for a given dataset
is determined by the average observation in a certain leaf. RF further averages outputs generated by each
tree to control overfitting (Zhang et al., 2021b). However, such a strategy only considers the average
observation in leaf nodes and neglects the distribution information inside, offering predictions without
reliability.

Figure 1 illustrates RF using similar notations as Breiman (2001), let θk be learned splits that determine
the growth of the kth tree Tk based on a bootstrap set Dk . Each bootstrap set is sampled from original
training datasets D = fðXi,YiÞjXi ∈Rm,Yi ∈R, i= 1,2,…,ng.

As can be seen from Figure 1, dropping arbitrary input x from the top of Tk will ultimately fall in a
unique leaf λ x,θkð Þ. To calculate the output, observations in this leaf are assigned the same weight
w x,θkð Þ= 1=C λ x,θkð Þ½ �, where C½�� counts the number of observations inside. Conversely, observations
outside the leaf are assigned zero weight. Therefore, the output of a single tree Tk can be calculated by
weighting each observation Yi as follows:

bYk
=
Xn
i = 1

wi x,θkð ÞYi (1)

where wi x,θkð Þ denotes the weight of ith observation in Tk . When it comes to RF with K trees, the weight
of each observation wi xð Þ becomes the average of weights over all trees as follows:

Data-Centric Engineering e20-3

https://doi.org/10.1017/dce.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.5


wi xð Þ= 1
K

XK
k = 1

wi x,θkð Þ (2)

Consequently, the prediction of RF can be expressed by

bY =
Xn
i = 1

wi xð ÞYi (3)

Note that bY is merely an average of the conditional mean generated by leaf nodes and neglects distribution
information inside. To address this issue, the integration of RF with quantile regression (Koenker and
Bassett, 1978; Meinshausen and Ridgeway, 2006), QRF is used to extract distribution information in leaf
nodes for reliability evaluation as shown in Figure 2.

Figure 1. Schematic of RF.

Figure 2. Schematic of QRF.
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Different from RF that weights over each observation Yi in Equation (3), QRF replaces Yi with a
conditional distribution P Yi ≤ yð Þ to estimate the CDF of predictions by:

CDF yð Þ=
Xn
i = 1

wi xð ÞP Yi ≤ yð Þ (4)

where P Yi ≤ yð Þ represents the probability of Yi ≤ y, which equals 1 if Yi ≤ y or 0 otherwise. As a result, a
schematic of predicted CDF can be drawn in the right plot of Figure 2. By performing the inverse of
Equation (4), arbitrarily specified quantile Qα of predictions can be calculated as follows:

Qα = inf y :CDF yð Þ≥ αf g (5)

where inf{�} denotes the infimum of a set and is applied to a set of y that allows CDF yð Þ≥ α.
To sum up, QRF provides a nonparametric distribution of y as a function of x, instead of merely a

conditionalmeangenerated byRF.ForQRF, themedian is employed for point estimations due to its robustness
toward outliers, similar to previous research works (Ching et al., 2022; Löfman and Korkiala-Tanttu, 2021).
For interval estimate, the commonly used 95% credible interval (CI) can be formulated by quantilesQ2:5% xð Þ
andQ97:5% xð Þ as the lower andupper bounds, respectively. It is noteworthy thatQRFkeeps the same structure as
RF when absorbing distribution information over numerous trees. Compared with existing Bayesian methods
(Ching et al., 2019; Guan et al., 2024; Wang and Zhao, 2017; Yoshida et al., 2021; Zhang et al., 2022b), the
prominent difference of QRF is its frequentist manner to generate interval estimates simply using votes inside
treeswithout involving any prior information, rather than update prior distributions to posterior distributions. On
the other hand, QRF only involves the simplest dichotomy for tree growth and avoids complex sampling. As a
baseline algorithm, QRF is generic and can be applied in broad applications, for example, 3D reconstruction of
granular grains (Zhang et al., 2022a) and landslide susceptibility mapping (Sun et al., 2021), not limited to
material indices identification. Given these promising characteristics, such an approach holds the potential of
further fusing data with limited features to refine the generated CDF for interval estimates.

2.2. VIEPR

Inspired by numerous empirical polynomials used for estimating material indices (Nagaraj and Srinivasa
Murthy, 1986; Zhu and Yin, 2000), EPR has been proposed to automatically search for a polynomial
function (Giustolisi and Savic, 2006). EPR works by combining symbolic and numerical regressions in
two phases: structure identification and coefficient estimation. For structure identification, evolutionary
algorithms are used to search for an exponent matrixE∈Rnt ×m such thatm original input variables can be
combined with interior exponents to form nt new transformed variables XT as follows:

XTj = x
Eðj,1Þ
1 � xEðj,2Þ2 � xEðj,iÞi ⋯ � xEðj,mÞm (6)

where xi = ith original input variable; XT j = jth transformed variable; E j,mð Þ = (j,m)-entry of E; Next,
coefficient estimation is implemented by the least-squares method to obtain a general EPR
expression as follows:

y=
Xnt
j = 1

wj �XTjþw0 (7)

where y = predicted output; wj = an adjustable coefficient of XT j; w0 = an additional coefficient as bias.
Although EPRprovides efficient search and explicit solutions, it only generates predictionswithout reliability.

To address this issue, all coefficients w in Equation (7) can be denoted by probability distributions,
such as normal distributions instead of scalars. Suppose that they comply with a certain prior distribution
P(w), their posterior distribution then can be formulated by Bayes’ theorem as follows:

P wjDð Þ= P Djwð ÞP wð Þ
P Dð Þ (8)
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whereP Djwð Þ is the likelihood of observingD givenw;P Dð Þ is model evidence, which can be regarded as
a constant. From the view of Bayesian, Jin and Yin (2020) discussed the potential of equipping EPR with
uncertainty by approximating the distribution of coefficients through the MCMC method (Al-Bittar and
Soubra, 2014). However, solutions may be intractable due to large computational costs and convergence
problems, especially for high-dimensional tasks. Thus, VI is introduced to address this issue.

As an approximation method, VI utilizes a parametric distribution q to approximate target posterior
P wjDð Þ. Specifically, VI learns variational parameters θ in q to make parametric probability density q wjθð Þ
and target posterior PDF P wjDð Þ as close as possible. This objective is mathematically achieved by
minimizing the distance between two distributions, measured by Kullback–Leibler (KL) divergence
(Kullback and Leibler, 1951). Given two distributions p and q, the KL divergence between p and q can
be formulated by

KLðqkpÞ=Eq½ln q� ln p�=
Z

qðwÞlnqðwÞ
pðwÞdw (9)

where q wð Þ and p wð Þ denote the probability densities given certain w.
Therefore, the variational parameters θ are found by minimizing the KL divergence between param-

eterized q wjθð Þ and target posterior P wjDð Þ as follows:
θ = arg min

θ
KL½qðwjθÞkPðwjDÞ�

= arg min
θ

Z
qðwjθÞln qðwjθÞ

PðwÞPðDjwÞdw

= arg min
θ

KL½qðwjθÞkPðwÞ��EqðwjθÞ½ln PðDjwÞ�

(10)

Using MC sampling to evaluate the expectation term in Equation (10), the KL divergence is
approximated and taken as the loss function as follows (Olivier et al., 2021; Zhang et al., 2022b):

L D,θð Þ≈ 1
s

Xs

i

lnq w ið Þjθ
� �

� lnP w ið Þ
� �

� lnP Djw ið Þ
� �� �

(11)

where w ið Þ denotes the ith MC sample drawn from the variational posterior q w ið Þjθ� �
and s represents the

number of samples.
Overall, the development of VIEPR follows procedures shown in Figure 3. For brevity, the

variational posterior of θ is assumed to comply with normal distribution with only two parameters:
mean and standard deviation denoted u and ρ. The training process aims to optimize u and ρ by
gradient descent, instead of a scalar in EPR, meaning that the number of parameters merely doubles in
comparison with EPR. Compared with other Bayesian methods such as Bayesian NNs (Zhang et al.,
2022b), VIEPR has the same computational principle with gradient descent to estimate parametric
posterior distributions of coefficients/weights. For practical applications, VIEPR facilitates the
understanding of engineers by directly organizing related variables as polynomials in vast scenarios
although with limited structures and fitting capability.

3. Data source

The database used in this study is extracted from (Zhang et al., 2021d) and includes 331 datasets, in which
the Cc of various clays was measured with three widely observed physical indices: e0, LL, and Ip.
Numerous empirical relations were built on these indices to identify Cc, primarily because e0 directly
affects the available space to be compressed, while LL and Ip reflect the range of soil moisture
content associated with compression-induced plastic deformation. Nonetheless, these equations neg-
lected underlying uncertainties and merely generated point estimation. Table 1 summarizes the statistics
of indices in the database, which covers wide ranges of initial void ratio (0:66≤ e0 ≤ 4:64), liquid limit
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(25%≤ LL≤ 166:2%), and plasticity index (8%≤ Ip≤ 113:9%). They were then rescaled into the range
(0, 1) using min–max normalization to eliminate scale effects before training.

Figure 4a presents the scatterplots of these soil indices, in which dense and sparse clusters can be easily
distinguished. In this case, reliability evaluation becomes significant because accurate point estimations are
elusive, due to insufficient knowledge of sparse clusters. On the other hand, the distributions of the indices are
illustrated by the histograms in Figure 4b, in which they exhibit notably inhomogeneous distribution with
positive values, similar to most observations (Camós et al., 2016; Jin and Yin, 2020; Shi andWang, 2022; Tang
andPhoon, 2019). Therefore, the natural logarithm is applied to the indices before training to ensure nonnegative
predictions, similar to other published works (Ching et al., 2022; Löfman and Korkiala-Tanttu, 2021). This
operation can be mathematically inverted in closed form. For instance, the median value of the predictions
corresponds to the inverse logarithmic value of the mean of the normal distribution (Ching et al., 2022).

Among the database, 80% was randomly drawn to train the model and the remaining 20% was
employed to test the model. For comparison, all models adopt the same training and testing sets such that
their performances can be fairly compared. To assess model performance, the commonly used mean
absolute error (MAE) and the coefficient of determination (R2) are computed as follows:

MAE=
1
n

Xn

i = 1
ymi � ypi
�� �� (12)

R2 = 1�
Pn

i = 1 ymi � ypi
� �2

Pn
i = 1 ymi � yai

� �2 (13)

Figure 3. Schematic of VIEPR.

Table 1. Statistics of soil indices

Variable Min. Max. Mean STD

Cc 0.12 1.34 0.45 0.22
e0 0.66 4.64 2.18 0.92
LL 25.00 166.2 67.95 24.87
Ip 8.00 113.9 34.72 18.75

Note. STD = standard deviation.
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where n is the total number of data points; ypi , y
m
i , and y

m
i are predicted, measured, and average measured

quantity of interest, respectively. For probabilistic approaches, model reliability can be assessed by the
ratio of the target quantity of interest falling inside the predicted 95% CI. Specifically, this ratio is
expected to reach 95% for a desirable 95%CI in statistics, implying that amodel would be unreliable if the
ratio is less than 95% (He et al., 2024a, 2024b; Lyu et al., 2023; Zhao andWang, 2018). The generalization
refers to the ability to produce accurate and reliable predictions on unseen data and can be reflected by
model performance on the testing set (Zhang et al., 2021c).

4. Development and evaluation of uncertainty models

4.1. Configurations for model development

The training of data-driven models was conducted using an algorithm under a given configuration. In this
section, QRF and VIEPR were proposed as baseline algorithms for predictingCc, and their performances
related to respective hyper-parameters. Nowadays, MAE integrated with 10-fold cross-validation (Stone,
1974) has been commonly used as the loss function when optimizing hyperparameters in several data-
driven modeling platforms (Zhang et al., 2021b, 2022b) and has also been used in the current study.

During the training process of QRF, each validation set is evaluated by trees that are trained on the
remaining datasets to prevent overfitting (Breiman, 2001). Subsequently, the generated MAE is adopted
as the loss function as shown in Equation (12). Similarly, the KL divergence with regularization term is
employed as the loss function of VIEPR to optimize its sole hyperparameter nt. The hyperparameters of
QRF andVIEPR are summarized in Table 2. ForQRF, the numbers of trees, the candidate features, and the
minimum number of samples for split (ntree, mtry, and min_sample_split) are optimized because they
determine the size of forests and the growth of trees (Pei et al., 2023). As a result, the depth of each tree can
be automatically determined once they are fixed. As awidely used evolutionary algorithm, particle swarm
optimization (PSO) is employed to optimize these hyper-parameters and search for the elements of the
exponent matrix in VIEPR. More details of PSO are introduced in Appendix A.
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Figure 4. Statistics of soil indices. (a) Scatterplots. (b) Histograms.
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The configuration of QRF and VIEPR is summarized in Table 3, where sufficient ranges of
hyperparameters can be arbitrarily assigned and optimized to find the optimal one for predicting any
quantity of interest. QRF determines the split by dichotomy to minimize MAE, while VIEPR is
trained by gradient descent to minimize the KL divergence. The Adam optimizer is employed because
of its effectiveness in handling nonstationary objectives (Kingma and Ba, 2014; Zhang et al., 2022b).
QRF utilizes efficient dichotomy and only requires 500 epochs for hyperparameter optimization,
whereas VIEPR updates the posterior coefficients over 20,000 epochs. Since the coefficients in
VIEPR do not involve physical knowledge, their prior distributions are assigned a standard normal
distribution. Finally, a total of 1000 MC samples are drawn to evaluate the KL divergence of VIEPR
and are also employed for predictions.

4.2. Training processes of models

According to the configuration and data source described in the preceding sections, the training results of
QRF and VIEPR are presented in Figure 5, illustrating the evolution of their losses. In Figure 5a, the loss
value of QRF drops rapidly at the beginning and stabilizes after around 100 epochs, reaching its
minimum. This corresponds to the optimized hyperparameters, that is, ntree = 180, mtry = 1, and
min_sample_split = 1. Figure 6 presents one of its trees to illustrate the optimized QRF, where each node
attaches the split value of the feature, the MAE value, and the number of samples inside. Starting with an
initial MAE of 0.45 at the root node, the error gradually decreases as the tree branch undergoes random
splits. This indicates that tree structures effectively minimize errors by distributing datasets to leaf nodes
with similar features.

Similarly, Figure 5b illustrates the loss values of VIEPR, using 1, 4, 7, and 10 transformed
variables as examples. The VIEPR model with only one transformed variable quickly reaches a

Table 2. Hyperparameters of QRF and VIEPR

Algorithm Hyperparameters Description Optimization method

QRF ntree Number of decision trees PSO
mtry Number of candidate features for split PSO
min_sample_split Minimum number of samples for split PSO
max_depth Maximum depth Automatic determined

VIERP nt Number of transformed variables PSO

Table 3. Configuration of QRF and VIEPR based models

Configuration QRF VIEPR

Loss function MAE KL divergence
Bounds of ntree [1, 200] —

Bounds of mtry [1, 3] —

Bounds of min_sample_split [1, 5] —

Bounds of nt — [1, 10]
Training strategy Dichotomy Gradient descent
Optimizer — Adam
Epoch 100 20,000
Prior of coefficients — N(0, 1)
Number of MC samples for training — 1000
Number of MC samples for predicting — 1000
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relatively higher convergence value at around 1000 epochs primarily because of limited fitting
capability. By contrast, VIEPR models with multiple transformed variables attain relatively lower
loss values through more epochs, due to larger search space. The loss values for models with 7 and
10 variables are close to each other, while the minimum loss value is attained by the model with four
variables. This is mainly because apart from likelihood, the KL divergence also includes a regular-
ization term to penalty model complexity, as shown in the first term of Equation (10). Consequently,
the VIEPR model with four transformed variables reaches the minimum loss, and its expression is
formulated by

yVIEPR =w0þw1e0LLþw2
LL

Ip
þw3LLþw4e0 (14)

where each coefficient in the VIEPRmodel follows a normal distribution and can be expressed byw0 �N
(�1.364, 0.062); w1 � N(�0.001, 0.001); w2 �N(�0.253, 0.026); w3 �N(0.006, 0.001); w4 �N(0.324,
0.027). Figure 7 illustrates the prior and posterior of coefficients in VIEPR, in which the posterior
distribution of coefficients was derived in Equation (14). Utilizing the QRF and VIEPR models with the
minimum losses, material indices can be predicted. Note that Equation (14) represents the expression in
interior computations and requires the addition of a natural logarithmic base to generate nonnegative
predictions, due to data preprocessing before training.
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Figure 6. Structure of one tree of QRF.
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4.3. Accuracy and reliability evaluation of models

Based on the above training results, developed QRF and VIEPRmodels were applied to predictCc values
and were also compared with RF and EPR using the same training and testing sets (Zhang et al., 2021d).
By comparison, QRFmakes inferences based on the generated CDF,while RF relies on the average output
of each tree. On the other hand, EPR followed the same procedure as VIEPR, but its coefficients are
approximated by the least-squares method. Cc is also computed by three commonly used empirical
relations (Skempton and Jones, 1944; Sridharan and Nagaraj, 2000; Tiwari and Ajmera, 2012), denoted
three relations in Figure 8 as a benchmark.

To assessmodel accuracy, Figure 8a and 8b presents the performance of the fourmodels aswell as three
relations, in terms of MAE and R2 values, respectively. Notably, these empirical relations showed
significantly larger errors and less agreement with measurements, compared with others. For machine
learning-based models, QRF and RF attained notably lower errors, reaching less than one-third of those
generated by VIEPR and EPR on both training and testing sets. This difference can be attributed to model
structures. Specifically, EPR-based models are fixed expressions using several variables, while RF-based
models allow flexible random trees and splits tominimize errors. Compared to the results generated byRF
(Zhang et al., 2021d), QRF observed significantly improved accuracy on both training and testing sets.
This is primarily because QRF makes predictions based on the generated CDF incorporating distribution
information in each leaf node, while RF merely relies on the average output of each tree. On the other
hand, VIEPR showed a similar level of accuracy as EPR with a minor increase of error in the testing set,
which primarily relates to the regularization term on model complexity in VIEPR. Overall, the trends
observed in the R2 values align with the discussion on the MAE values. Among the four models, QRF
generated the highest R2 and showed the greatest agreement with the measured Cc values, demonstrating
its superior capability in capturing correlations from limited data.
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Regarding reliability evaluation, Figure 9a and 9b illustrates the results of QRF and VIEPR through a
measured versus predicted Cc (median) relationship, along with 95% CIs to examine model reliabilities.
Specifically, the measured Cc values outside 95% CIs on the training and testing sets are plotted as green
triangles and circles, of which the number can reveal the reliability of models. Ideally, a 95% CI
approximately covers 95% of measurements, and therefore, excessive measurements outside the interval
indicate poor reliability and vice versa. Figure 9a shows that nearly all measuredCc values fell in the 95%
CI predicted by QRF, apart from one measurement in the testing set. Such a performance relates to the
weighted sum of distribution information over an entire forest, therefore offering desirable reliability and
generalization ability. In contrast, Figure 9b shows that VIEPR observes around 10% of measurements
falling outside the 95% CIs, showing a slightly underestimated uncertainty due to limited model
structures. Also, predictions of QRF are distributed denser around the diagonal than VIEPR, and this
observation also aligns with what has been discussed earlier about R2.
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To investigate the dependency of model accuracy and uncertainty on input variables, e0 is taken as an
example to illustrate its relationship between error and 95% CI in Figure 10. The results show that QRF
obtained less error and uncertainty than explicit VIEPR along the distribution of e0. Therefore, QRF is
expected to perform more competitively than VIEPR to optimize cost-effectiveness in reliability-based
design, due to reliable control of design parameters. For QRF, smaller uncertainty was found to appear in
the densely distributed range of e0, that is, 1.0–2.0, indicating that more datasets refine predicted CDF and
enhance confidence level. In this regard, the understandable CDF using a simple weighted form allows
engineers to easily understand the principle of interval estimates in tree structure-based models. By
comparison, the uncertainty of VIEPR relies on the contribution of each variable in Equation (14), in
which increased e0 enlarges the predicted uncertainty of Cc since they are positively related. Such a
relationship is uniform with physics phenomena because a larger e0 implies broader space to be
compressed.

With the regularization term, VIEPR generated a consistent error and mean standard deviation on the
training set (0.054 and 0.075) than on the testing set (0.059 and 0.072). Since model accuracy and
uncertainty relate to the mean and variance of polynomials, respectively, it was possible to observe such a
result on randomly sampled training and testing sets. A key advantage of EPR models is their explicit
expression, making them highly accessible and easy to apply in practice (Gomes et al., 2021; Nassr et al.,
2018). Although not as accurate as QRF, the developed VIEPR can be readily formulated and even
applied through Excel. For instance, Equation (14) can be used by engineers without expertise in data-
driven modeling and also delivered into other scientific computing software. For small datasets, these
baseline approaches can fuse data from multiple sources to generate predictions for material indices of
interest, similar to other research works (Bozorgzadeh et al., 2019; Ching and Phoon, 2020; He et al.,
2024a; Wu et al., 2022).

5. Verification of generalization with application to creep index prediction

The previous results have demonstrated the capabilities of QRF and VIEPR with UQ, improving their
applicability in engineering practice compared to deterministic methods. The findings indicate that QRF
generates more reliable predictions, exhibiting superior accuracy and reliability using the same database.
Moreover, its flexible structures and easily adjustable hyperparameters contribute to a simpler training
process and application. Several platforms have already been developed to integrate RF with automatic
hyperparameter optimization and model development (Zhang et al., 2021b, 2022b), ensuring its avail-
ability. Considering these highly proposing characteristics, QRF is suggested to further verify its
generalization ability through additional material index prediction.
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As a common design parameter, Cα is associated with multiple soil physical indices and involves
substantial uncertainty.Cα holds significant importance in engineering practice as it affects the long-term
performance of infrastructure such as settlement. Therefore, it is worthwhile to explore Cα for reliability-
based design. The databasewas drawn fromZhang et al. (2020) and includes 151 datasets, where theCα of
various clays was measured with three commonly observed variables: e0, clay contentCI and Ip. For these
datasets, 80%was randomly drawn for model training, while the remaining 20%was reserved for testing.
The same configuration of QRF used earlier is employed.

Figure 11a presents the predicted error of Cα along the distribution of e0 using QRF. The results
show that QRF observed smaller MAE values, compared to 0.0012 and 0.0039 on the training and
testing sets given by RF in the previous study (Zhang et al., 2020), demonstrating superior accuracy
and generalization ability. Apart from point estimation, the 95%CIwas provided in Figure 11a, which
became broader in the sparsely distributed range of e0, especially the range from 1.5 to 2.0 in the
testing set. This means that QRF can perceive unknown information and generate a reasonable level
of confidence when applied to reliability-based design. Figure 11b compares the predicted and
measured Cc values, in which the majority of measured Cα values fell in the predicted 95% CI with
merely four outliers out of 31 datasets in the testing set. It is worth noting that the ratio of outliers did
not strictly align with the expected 5%, which relates to insufficient datasets. These results showcase
the effectiveness of QRF in enhancing accuracy and reliability on both training and testing sets, thus
validating its generalization ability.

6. Conclusions

This study has tailored two generic uncertain modeling approaches based on RF and EPR. Specifically,
RF is integrated with quantile regression to extract distribution information in leaf nodes for UQ, while VI
is employed to approximate parametric posterior distributions of coefficients in EPR. Thereafter, QRF
and VIEPR were developed and applied to predict the soil compression index of clays.

The results indicated that QRF effectively reduced errors and covered almost all observations
in the predicted 95% CI by integrating tree structures and distribution information inside. In
contrast, VIEPR efficiently found parametric posterior distributions of coefficients to generate
explicit solutions but observed greater errors and uncertainty due to restricted model structures.
Therefore, QRF is suggested to optimize cost-effectiveness for reliability-based design due
to efficient control of design accuracy and range. VIEPR is recommended to find user-friendly
solutions even for those without expertise in data-driven modeling, offering enhanced reliability and
wide applicability.
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Compared with deterministic counterparts, QRF offered slightly improved accuracy than RF mainly
because QRF generated a robust inference incorporating the distribution information in each leaf node,
rather than merely relying on the average of each tree. Conversely, VIEPR showed a minor decrease in
accuracy than EPR, primarily due to an additional penalty inmodel complexity. The dependency ofmodel
accuracy and uncertainty on input variables has been also investigated. Both QRF and VIEPR observed
larger error and uncertainty in sparsely distributed ranges of input variables, meaning that they can
recognize where their drawbacks exist and provide reasonable confidence in predictions.

Taking into account superior performance in predicting the compression index, QRF was further
utilized to predict additional soil creep index using a new database. The accuracy and generalization of
QRFwere validated by comparing toRF in the previous study, while also incorporating interval estimates.
It is worth noting that the proposed approach to quantify uncertainty is not limited to RF but also various
tree structure-based models such as gradient boosting and extremely randomized trees. These highly
promising characteristics strongly suggest that the proposed approaches have immense potential to
enhance the data-driven modeling framework and can be further extended to a broader range of
applications in scientific computing domains.
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Appendix A. Particle swarm optimization (PSO)
As an evolutionary algorithm, PSO searches for a globally optimal solution by iteratively updating a population of particles within a
series of generations. Each particle represents a candidate solution and contains three components including position (X), velocity
(V), and an objective function value. For the ith particle at the (k þ 1)th generation, it is updated by (Zhang et al., 2022a).

Vkþ1
i =wVk

i þ c1r1 Pk
i �Xk
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� �þ c2r2 Pk
g�Xk
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� �
(A1)
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i (A2)

where c1 and c2 = acceleration coefficients; w = an inertia weight; r1 and r2 = random numbers, distributed within the range [0, 1];
Pi denotes the optimal location of the ith particle, and Pg denotes the globally optimal location among all particles. Table A1
summarizes the configuration of PSO used in this study, in which w, c1, and c2 are 1.0, 1.5, and 1.5, respectively, within commonly
used ranges. PSO is assigned 20 particles and 100 generations to guarantee its exploration ability. Considering hyperparameters
should be integers in this study, X is always approximated to the closest integer.
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Table A1. Configuration of PSO

w c1 c2 Popsize Maxgen

1.0 1.5 1.5 20 100

Note. Popsize = size of population; Maxgen = maximum number of generations.
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