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Finite Froude and Rossby numbers
counter-rotating vortex pairs
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We investigate the nonlinear evolution of pairs of three-dimensional, equal-sized and
opposite-signed vortices at finite Froude and Rossby numbers. The two vortices may
be offset in the vertical direction. The initial conditions stem from relative equilibria
obtained numerically in the quasi-geostrophic regime, for vanishing Froude and Rossby
numbers. We first address the linear stability of the quasi-geostrophic opposite-signed
pairs of vortices, and show that for all vertical offsets, the vortices are sensitive to an
instability when close enough together. In the nonlinear regime, the instability may lead
to the partial destruction of the vortices. We then address the nonlinear interaction of the
vortices for various values of the Rossby number. We show that as the Rossby number
increases, destructive interactions, where the vortices break into pieces, may occur for a
larger separation between the vortices, compared to the quasi-geostrophic case. We also
show that for well-separated vortices, the interaction is non-destructive, and ageostrophic
effects lead to the deviation of the trajectory of the pair of vortices, as the anticyclonic
vortex dominates the interaction. Finally, we show that the flow remains remarkably close
to a balanced state, emitting only waves containing negligible energy, even when the
interaction leads to the destruction of the vortices.

Key words: vortex instability, vortex interactions

1. Introduction

Vortices are key dynamical features of the atmosphere and the oceans. Collectively, they
contribute to a significant part of the mass transport in the oceans (Zhang, Wang & Qiu
2014). When two opposite-signed vortices are close together, they interact strongly and
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form a pair that self-propagates in the flow (de Ruijter et al. 2004; L’Hegaret et al. 2014).
Typically, the distance separating the vortices remains nearly constant in time, at least
until the pair interacts strongly with another feature. Such pairs of vortices are sometimes
referred to as dipoles, and they can transport momentum, mass and tracers efficiently over
long distances in the fluid. Recent analyses of altimetry data have shown that dipoles are
widespread in the global ocean (Ni et al. 2020).

Dipoles also include mushroom-like currents that abound in the oceans (Fedorov &
Ginsburg 1989). Other families of dipoles include modons on the β-plane (Stern 1975;
Larichev & Reznik 1976) and on the f -plane (Kizner et al. 2008), to name but a few
examples. Other examples are the hetons introduced by Hogg & Stommel (1985) where the
two opposite-signed vortices occupy distinct depths. These vortices will not be considered
in the present paper.

Pallàs-Sanz & Viúdez (2007) investigated numerically the ageostrophic motion of a
specific family of pairs of opposite-signed vortices where the two vortices are ellipsoids
of uniform potential vorticity. The authors showed that ageostrophic effects affect the
trajectory of the dipole as the anticyclonic vortex tends to be larger and more intense.
In their study, the vortices in the dipole remained well-separated and the vortices retained
their volume.

In the present work, we determine numerically pairs of opposite-signed, uniform
potential vorticity (PV) vortices in mutual equilibrium under the quasi-geostrophic (QG)
approximation, for vanishing Rossby (Ro) and Froude (Fr) numbers, on the f -plane.
These equilibria are then used to initialise numerical simulations at finite Ro and Fr.
This choice helps the vortices to remain close to an equilibrium for small Ro, and
therefore limits vortex deformations otherwise associated with another arbitrary choice
of initial conditions. It also limits the spontaneous generation of inertia-gravity waves
and allows the flow to remain close to a balanced state. We show that both under the QG
approximation and at finite Ro and Fr numbers, the pair of vortices undergoes a destructive
interaction when the distance separating them is less than a threshold that we determine.
For non-destructive interactions, where the vortices retain their material, we quantify the
dynamical asymmetry between the cyclonic and the anticyclonic vortices by measuring a
QG-equivalent PV ratio. This is the PV ratio of a pair of QG vortices having the same
trajectory.

The paper is organised as follows. Pairs of counter-rotating vortices in mutual equilibria
under the QG approximation are presented in § 2. Section 3 is devoted to the nonlinear
evolution of the vortex pairs at finite Ro and Fr numbers. Conclusions are given
in § 4.

2. Quasi-geostrophic equilibria

We first consider pairs of counter-rotating vortices under the QG approximation. Under this
approximation, the full flow fields can be recovered from a single scalar field q, the QG PV
anomaly, hereinafter referred to as PV for simplicity. In the form used in this study, the QG
equations are obtained by a Rossby number expansion of Euler’s equations for a rotating
fluid under the Boussinesq approximation with Fr2 � Ro � 1. Here, Ro = U/( fL) is the
Rossby number, while Fr = U/(NH) is the Froude number; U is a characteristic scale
of horizontal velocity, f is the Coriolis frequency, N is the buoyancy (or Brunt–Väisälä)
frequency, and L and H are horizontal and vertical length scales, respectively. A complete
derivation may be found in Vallis (2006). For simplicity, we assume that both f and N
are constant. The PV q may be defined as the modified three-dimensional Laplacian of a
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streamfunction ϕ:

q = ∂2ϕ

∂x2 + ∂2ϕ

∂y2 + f 2

N2
∂2ϕ

∂z2 = LQG(ϕ). (2.1)

The PV q is conserved materially in the absence of diabatic or dissipative effects:

∂q
∂t

+ u
∂q
∂x

+ v
∂q
∂y

= 0, (2.2)

where the advecting velocity field u = (u, v, 0) is the non-divergent geostrophic velocity
deriving from the streamfunction ϕ as

u = −∂ϕ
∂y
, v = ∂ϕ

∂x
. (2.3a,b)

Finally the buoyancy anomaly is recovered from ϕ via

b = f
∂ϕ

∂z
. (2.4)

It is important to notice that there is no dynamical asymmetry between a cyclonic vortex
(q > 0) and an anticyclonic vortex (q < 0) in QG.

We consider two vortices of uniform PV ±qr, with qr > 0 without loss of generality. We
denote as vortex 1 the vortex with PV q1 = −qr, and as vortex 2 the vortex with q2 = qr.
The vortices have the same volume V1 = V2 = V , hence the same strength in absolute
value |κ1| = |κ2|, where κi ≡ (4π)−1qiVi. We set qr = 2π, implicitly defining a time scale
for the problem. For example, the rotation period of a single sphere, in the (x, y, zN/f )
coordinate system, of uniform PV qr is T = 6π/qr = 3 here. Each vortex is centred at
xi. We denote the vertical offset between the vortices as �z = z2 − z1 ≥ 0 without loss
of generality. Recall that the absence of vertical advection under the QG approximation
implies that zi = const. The fluid domain is unbounded in all three directions of space.

We determine numerically the shape of the vortices in mutual equilibrium, translating
steadily at a constant velocity V in the unbounded fluid domain. It should be noted that
Reinaud & Dritschel (2009) have already determined equilibria for pairs of unequal-sized
counter-rotating vortices, albeit at lower resolution. In this case, the pairs rotate rather
than translate. The present choice of translating vortices is to emphasise the dynamical
asymmetry due to ageostrophic effects discussed in § 3. In this present study and without
loss of generality, the vortex centres are horizontally aligned along the y-direction and
separated in the x-direction. Thus the vortices translate in the y-direction. The boundary
of each vortex is discretised in the vertical direction by nc horizontal layers. In each
layer, the vortex boundary is defined by a contour. For the pair of vortices, there are 2nc
contours, denoted Ck, 1 ≤ k ≤ 2nc. We use an iterative procedure that makes the contours
Ck converge to streamlines in the reference frame translating with the vortices:

ϕ̃(x) = ϕ(x)− Vx = Ck, ∀x = (x, y, z) ∈ Ck, (2.5)

where Ck is a constant depending on the contour Ck, and ϕ̃ is the streamfunction
expressed in the reference frame translating at velocity V . Details of the method may
be found in previous works, e.g. Reinaud & Dritschel (2002) and Reinaud (2019). For a
given vertical offset �z, we start with vortices that are well separated in the horizontal
direction by a distance �xinit. The initial guess for the vortex shape is a sphere in the
(x, y, zN/f ) coordinate system. This is motivated by the fact that a pair of spherical vortices
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vortex 2
vortex 2

vortex 1

vortex 1

z z

xm
1

xm
1

δ> 0 δ< 0

xm
2

xm
2

x x

(b)(a)

Figure 1. Definition of the innermost gap δ = xm
1 − xm

2 , the signed distance between the innermost edges of
vortex 1 and vortex 2. The cyclonic vortex (q > 0) is henceforth shown in red, while the anticyclonic vortex
(q < 0) is shown in blue.

infinitely separated in the horizontal direction would indeed be in equilibrium. Indeed, any
axisymmetric vortex standing alone is a steady state. We can also note that all vortices in
this study have a mean unit height-to-width aspect ratio in the (x, y, zN/f ) coordinate
system.

We take x1 > 0 for the first equilibrium. When the equilibrium is reached, the vortices
are pushed slightly together by a small distance δ′, and the numerical procedure is resumed
for the new horizontal separation. The procedure is repeated until the method fails to
converge, corresponding to the end of the numerical branch of solutions. Hence, for a
given �z, we determine a family of equilibria spanned by the horizontal distance between
the vortices. For this horizontal distance, it is convenient to use the innermost gap δ =
xm

1 − xm
2 , the distance between the two innermost edges xm

i of the vortices as shown in
figure 1. Note that δ can reach negative values when the vortices are vertically offset.

We also address the linear stability of the equilibria. Details of the method may also
be found in previous works, e.g. Reinaud & Dritschel (2002) and Reinaud (2019). The
method analyses the deformation modes of the vortex bounding contours by considering
infinitesimal disturbances on the horizontal position vector ρk(θ̃, t) of the nodes along the
contour Ck:

ρk(θ̃, t) = ρe,k(θ̃)+ γk(θ̃, t)
(−dye,k/dθ̃ , dxe,k/dθ̃ )

(dxe,k/dθ̃ )2 + (dye,k/dθ̃ )2
, (2.6)

where ρe,k = (xe,k, ye,k) is the position vector at equilibrium, and θ̃ is the ‘travel-time
coordinate’, an angle proportional to the time taken by a fluid particle to travel along the
contour Ck. The disturbance γk is taken in the form

γk(θ̃, t) = eσ t
M∑

m=1

γ̂m,k eimθ̃ , (2.7)

where m is the mode’s azimuthal wavenumber, and M is the maximum wavenumber
considered in the study. The evolution equation for γk is given by

∂γk

∂t
+ ωk

∂γk

∂θ̃
= −

2nc∑
l=1

�ql
∂

∂θ̃

∮
Cl

γl Gk,l

(∣∣∣ρe,k(θ̃)− ρe,l(θ̃
′)
∣∣∣) dθ̃ ′, (2.8)

where ωk is the constant rotation rate of a fluid particle along the contour Ck, �ql = ±qr
is the PV jump across the contour Cl, and Gk,l is the Green’s function giving the velocity
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Figure 2. (a) Translation velocity V of the equilibria, and (b) maximum growth rate σm
r , both scaled by the

reference PV qr , versus the innermost gap δ for the relative vertical offset �z = 0 (black lines) and �z/H =
21/83 (red lines), 41/83 (blue lines), 62/83 (green lines).

induced in the layer containing the contour Ck in the layer containing the contour Cl in the
unbounded fluid domain.

In this study, we set M = 10, which is enough to capture the onset of instability from
previous experience (Reinaud & Dritschel 2009). Substituting (2.7) into (2.8) results in
a 4 × nc × M real eigenvalue problem where σ = σr + iσi is a complex eigenvalue. The
real part σr of σ is the mode’s growth rate, and the imaginary part σi of σ is its frequency.

In this study, we set nc = 83 for a fine vertical discretisation of the vortices. Symmetry
with respect to the plane y = 0 is imposed. Half of each contour Ck is discretised using
np = 330 nodes to ensure high accuracy. The total volume of PV, in the (x, y, zN/f )
coordinate system, is set to 4π/3. The mean radius of each vortex in this coordinate
system is therefore rv = (1/2)1/3. We denote H = 2rv = 22/3 as the total height of
each vortex. The vertical offset �z between the vortices is taken, for convenience,
as a fraction, in number of layers, of the total height H. In this study, we consider
�z/H = 0, 21/83, 41/83, 62/83, so offsets of 0, ∼25 %, ∼50 % and ∼75 % of the vortex
height. For each value of �z, we start the calculation with �xinit = 3, and we used
δ′ = 0.01 between equilibria.

Figure 2(a) shows the translation velocity V of the vortex pair at equilibrium as a
function of the innermost gap δ. For �z = 0, the velocity increases monotonically as
the gap δ decreases and the vortices interact more strongly. For �z /= 0, the velocity is
no longer a monotonic function for the gap for δ < 0. This can be explained easily by
the fact that for a pair of opposite-signed QG point vortices, the translation velocity is
∝ δx/(δx2 + δz2)3/2 – where δx and δz are the horizontal and vertical separations between
the point vortices, respectively – and has an extremum for δx = δz/

√
2. In figure 2(a), V is

also affected by the shape of the finite-core vortices in equilibrium and the vertical overlap
of the vortices for δ < 0. The translation velocity V also decreases with the vertical offset
�z as the vortices are further apart, weakening their interaction. Figure 2(b) shows the
maximum growth rate σm

r versus the gap δ. For all�z, the pair of vortices is in a neutrally
stable equilibrium with σm

r � 0 for large δ. The residual non-zero values for large δ are
due to the finite numerical accuracy of both the numerical determination of the equilibria
and the linear stability analysis itself. As δ is further decreased, a first mode of instability,
corresponding to σm

r > 0, appears at a critical value of the gap δc that depends on the
vertical offset�z. The values of δc are reported in table 1. As�z increases, the interaction
between the vortices weakens for a given δ, and δc decreases. It is, however, interesting
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�z/H 0 21/83 41/83 62/82
δc 0.08 −0.36 −1.00 −1.57
d3D 0.978 1.044 1.056 1.22

Table 1. Critical gap δc for the four values of relative vertical offset �z/H considered, and corresponding
vortex centroid separation d3D.

to notice that the distance d3D between the two vortex centroids at the margin of stability,
also given in table 1, increases with �z. This shows that vortices are particularly sensitive
to vertical shear, which is enhanced by increasing moderately the vertical offset �z. A
similar trend is observed at the margin of stability of pairs of co-rotating QG vortices
(Reinaud & Dritschel 2002, 2005) and the importance of vertical shear is also shown
in QG turbulence (Reinaud, Dritschel & Koudella 2003). Since the vortices exert on
each other both horizontal and vertical shear, the instabilities have both barotropic and
baroclinic components. We conjecture that for �z small, the instability is dominated by
barotropic effects, while baroclinic effects increase continuously as �z is increased. For
�z/H > 1 (not considered in the present paper), the pair of opposite-signed vortices is
referred to as a heton, and the instability is mostly baroclinic in nature.

Figure 3 shows the shape of the vortices at equilibrium for the first unstable state, i.e.
for δ = δ−c , within the accuracy of δ′, the gap increment between consecutive equilibria.
Except for the case �z = 0, the vortices tilt with respect to the vertical direction. The
vortices flatten in the x-direction, the direction along the axis joining the vortex centres,
and elongate in the y-direction as the gap is decreased. Recall that the vortices have circular
horizontal cross-sections as δ → ∞. Figure 4 shows the last equilibria found numerically
for each �z. We denote by δ∗ the corresponding value of the gap δ. These states are
strongly unstable.

We next investigate the nonlinear evolution of the unstable equilibria. We use contour
surgery with the standard set-up of the method (Dritschel 1988; Dritschel & Saravanan
1994). The method is purely Lagrangian and the fluid domain is explicitly unbounded,
consistent with the equilibria. We start with the equilibria shown in figure 3 for δ =
δ−c . The contours bounding the vortices in mutual equilibrium are re-discretised using
fewer nodes to reduce the computational cost of the contour surgery simulations while
maintaining high accuracy. This re-discretisation introduces a small disturbance on the
equilibria, enough to trigger the instability. The simulations are run until t = 100. We
determine diagnostically the locations of the vortex centres

xi = 1
Vi

∫∫∫
Vi

x d3x, (2.9)

and the semi-axis lengths, a ≤ b ≤ c, of the best-fitted ellipsoids as functions of time.
The best-fitted ellipsoid to a vortex is the ellipsoid having the same centre and the same
second-order geometric moments as the vortex,

Imn =
∫∫∫

Vi

(xm − xm
i )(x

n − xn
i ) d3x, (2.10)

where we denote (x, y, z) = (x1, x2, x3) to simplify notations. Results are presented in
figure 5. The values of the translation velocity V/qr of these specific equilibria are recalled
in table 2. In all cases, the dipole starts by translating at a constant velocity V > 0, and
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(b)(a)

(d )(c)

Figure 3. Vortex bounding contours for the relative equilibria at the margin of stability, for (a) �z/H = 0,
(b) �z/H = 21/83, (c) �z/H = 41/83, and (d) �z/H = 62/83. The vortices are viewed orthographically at
angle 60◦ from the vertical direction, in the (x, y, zN/f ) coordinate system.

the vortices deform little: the semi-axis lengths a, c, b remain constant initially. As the
disturbances grow on the unstable equilibria, the vortices deform slightly as seen from
the small variations of the semi-axis lengths in figures 5(b,d, f,h). This in turn affects
their trajectories as seen in figures 5(a,c,e). For�z/H = 62/83, vortex deformation occurs
mostly in the limited region where the vortices occupy the same horizontal layers, and the
weak deformation has a limited effect on the vortex centre trajectories. For�z/H = 21/83,
results are shown for t ≤ 85 until a small debris detaches from vortex 2. The volume of the
debris is only 1.6 × 10−6V2. In all the other cases, the interaction is non-destructive. The
vortices deform but retain their material, at least until the end of the simulation t = 100.
It should also be noted that by t = 100, the dipoles have nearly travelled the distance
L = Vt that the undisturbed equilibria would have; see figures 5(a,c,e,g) and table 2. The
instability hardly affects the dipoles overall, which is expected so close to the margin of
stability.

We next turn our attention to the nonlinear evolution of the strongly unstable equilibria
shown in figure 4, corresponding to δ = δ∗. In these cases, simulations are run until t = 50.
A snapshot on the vortices at t = 50 is shown in figure 6. In all four cases, the interaction
results in the destruction of the two vortices as they break into several secondary vortices
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(a) (b)

(c) (d )

Figure 4. Vortex bounding contours for the last relative equilibria along the branch for δ = δ∗, for (a)�z/H =
0, (b) �z/H = 21/83, (c) �z/H = 41/83, and (d) �z/H = 62/83. The vortices are viewed orthographically
at angle 60◦ from the vertical direction, in the (x, y, zN/f ) coordinate system.

�z/H 0 21/83 41/83 62/83
V/qr 0.0987 0.0868 0.0616 0.0278
L(t = 100) 62 54.5 (46.4)a 38.7 17.5

Table 2. Translation velocity V/qr for the QG equilibria for δ = δ−c shown in figure 3 and the distance
L = Vt that the undisturbed equilibria would travel until t = 100.

aAt t = 85.

and a plethora of PV debris and filaments. For small vertical offsets, the interaction forms
a mushroom-like structure, e.g. �z/H = 0, 21/83. For large vertical offsets, �z/H =
41/83, 62/83, part of the secondary vortices resemble hetons, or baroclinic dipoles.
It should be noted that there is no dynamical asymmetry between cyclones q > 0 and
anticyclones q < 0 within the QG model. In the cases considered here, the two vortices
are initially symmetric. Contour surgery does not, however, enforce symmetry. While the
numerical noise does not disturb the vortices symmetrically, some degree of symmetry
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Figure 5. Vortex centre trajectories (a) and best-fitted ellipsoid semi-axes lengths (b) for the unstable
QG equilibria for δ = δ−c shown in figure 3(a) for �z = 0. Similarly, (c,d) for �z/H = 21/83, (e, f ) for
�z/H = 41/83, and (g,h) for �z/H = 62/83.
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(a) (b)

(c) (d )

Figure 6. Vortex bounding contours for the nonlinear simulation of the unstable QG equilibria shown in
figure 4 for δ = δ∗, for (a) �z/H = 0, (b) �z/H = 21/83, (c) �z/H = 41/83, and (d) �z/H = 62/83 at
t = 50. The vortices are viewed orthographically at angle 60◦ from the vertical direction in the (x, y, zN/f )
coordinate system. The colour gradient indicates depth.

remains in the evolution of the vortices. The dynamical symmetry of the QG model breaks
when adding the ageostrophic effects associated with a finite Ro. This is the focus of § 3.

3. Finite Fr and Ro vortices

We next consider the evolution of the pairs of vortices at finite Fr and Ro. Following
Dritschel & Viúdez (2003), the prognostic equations are written in terms of Ertel’s PV
anomaly rescaled by N2, q, which is conserved materially, and the horizontal part Ah of
the vector quantity

A ≡ ω

f
+ ∇b

f 2 , (3.1)

where ω = ∇ × u is the vorticity, b is the buoyancy anomaly, and u = (u, v,w) is the
velocity.
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Finite Fr and Ro counter-rotating vortex pairs

The evolution equations for the variables q and Ah are

Dq
Dt

= 0, (3.2)

DAh

Dt
+ f k × Ah = 1

f
(ω · ∇)uh +

(
1 − N2

f 2

)
∇hw − 1

f 2 ∇hu · ∇b, (3.3)

where D/Dt ≡ ∂/∂t + u · ∇ is the material derivative, k is the vertical unit vector, and
the subscript h denotes the horizontal part of a vector quantity. We next define a vector
potential ϕ = (ϕ, ψ, φ) associated with the vector A ≡ �ϕ. Then we have readily

u = −f ∇ × ϕ, (3.4)

b = f 2 ∇ · ϕ. (3.5)

The inversion relations to obtain ϕ are

�ϕh = Ah, (3.6)

LQG(φ)−
(

1 − f 2

N2

)
∇ · ∂ϕh

∂z
+ f 2

N2 ∇(∇ · ϕ) ·
(
∇2ϕ − ∇(∇ · ϕ)

)
= q. (3.7)

The fluid domain is a triply periodic box of dimension [0, 2π]3 in the (x, y, zN/f )
coordinate system. Following Dritschel & Viúdez (2003), PV is advected in a Lagrangian
way. A fine 10243 grid is used to convert the Lagrangian PV field into a gridded Eulerian
field. Equations (3.6) and (3.7) are then solved spectrally on a coarser Eulerian 2563

grid. Nonlinear products are de-aliased using the 2/3 rule; see Orszag (1971). A small
biharmonic diffusion is applied to the fields Ah, such that the highest wavenumber is
dumped at a rate 1 + Ro4

PV per initial period Tip = 2π/f = TbuoyN/f = 10; see Dritschel
& Viúdez (2003) and McKiver & Dritschel (2008). Further details of the method may also
be found in Dritschel & Viúdez (2003).

The QG equilibrium vortices obtained in § 2 are used as initial conditions and
are rescaled to fit the new layer thickness dz = 2π/1024. Simulations are spun-up
using an initialisation phase where PV is smoothly ramped from q = 0 to q = f RoPV
for the targeted PV-based Rossby number RoPV = q/f , minimising the generation of
inertia-gravity waves; see Dritschel & Viúdez (2003) for details. In all cases, we set
f /N = 0.1. Dritschel & McKiver (2015) have shown that geostrophic turbulence depends
only weakly on f /N at least for f /N � 0.5. Time is normalised by setting N = 2π so that
the buoyancy period is Tbuoy = 2π/N = 1. For each vertical offset �z, we consider four
values of the PV-based Rossby number RoPV = 0.1, 0.3, 0.5 and 0.6. Simulations are run
for the same QG-equivalent time, TQG = T( f /N)RoPV = 50. Equations are marched in
time using the leapfrog scheme with time step �t = 0.1.

3.1. Destructive interactions
We first present examples of destructive interactions. For each �z, the initial condition
consists of vortices whose shape is given by the QG equilibrium for the smallest gap
δ = δ∗ found in § 2 and shown in figure 4. Recall that these correspond to the ends of
the branches of solutions obtained numerically. These are typically the most deformed
vortices and are strongly unstable under the QG approximation.
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(a) (b) (c) (d )

Figure 7. Vortex bounding contours shown orthographically at angle 45◦ from the vertical direction, for
(�z/H, δ) = (0, 21/83, 41/83, 62/83), and RoPV = 0.5 at tQG = 50 for δ = δ∗.
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Figure 8. Evolution of the approximate volume of the largest cyclonic vortex (solid line) and anticyclonic
vortex (dashed line) for RoPV = 0.5 and δ = δ∗, and �z/H = 0 (black), 21/83 (red), 41/83 (blue) and 62/83
(green).

The shape of the vortices is given in figure 7 at tQG = 50 for RoPV = 0.5. The interaction
is, as expected, destructive. Indeed, in each case, the pair of vortices breaks into smaller
secondary vortices and produces a large number of filaments and PV debris. This is generic
of all destructive interactions, at all RoPV , when the initial conditions correspond to an
unstable QG equilibrium. We measure the evolution of the approximate volume of the
largest cyclone and the largest anticyclone in the flow. These are defined as the largest
regions of contiguous positive and negative PV, respectively. The volume is evaluated
using the vortex bounding contours redrawn on flat, equal-thickness layers, i.e. neglecting
the deformation of the isopycnals. Results are shown in figure 8. They show that the largest
anticyclone is larger than the largest cyclone by tQG = 50 for all �z. The anticyclone is
expected to be more intense and to dominate the interaction, as argued below.

The evolution of the vortex pair for �z = 0 is discussed further, and its evolution is
presented, in figure 9. The cyclone first sheds a small amount of filaments at early times.
Then the anticyclone sheds a medium-sized vortex in the wake of the dipole, while a part
of the cyclone is entrained around the anticyclone, as shown in figure 9(b). Then the part
of the cyclone surrounding the anticyclone is partially shed as a medium-sized vortex,
formed to the right of the anticyclone, as seen in figure 9(c). A large filament is also shed
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Finite Fr and Ro counter-rotating vortex pairs

(a) (b) (c) (d )

Figure 9. Vortex bounding contours shown orthographically at angle 45◦ from the vertical direction for
�z = 0, RoPV = 0.5, at tQG = 0, 10, 20, 30 for δ = δ∗.
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Figure 10. (a) Minimum and (b) maximum local Rossby numbers Romin
loc , Romin

loc and (c) maximum local Froude
number Frmax

loc versus time for RoPV = 0.5 for the cases shown in figure 9 for �z/H = 0 (black), 21/83 (red),
41/83 (blue) and 62/83 (green).

�z/H Romin
loc Romax

loc Frmax
loc

0 −0.486 0.440 0.335
21/83 −0.438 0.434 0.314
41/83 −0.418 0.388 0.331
62/83 −0.415 0.326 0.354

Table 3. Time-averaged values for RoPV = 0.5.

by the pair of vortices. It is stretched in the wake of the dipole because its front end remains
attached to the dipole, while its tails slows down as the dipole moves away.

We next consider the evolution of the extrema of vertical and horizontal vorticity.
Figure 10 shows the evolution of the minimum and maximum local Rossby numbers
Romin

loc ≡ minD(ζ )/f and Romax
loc ≡ maxD(ζ )/f , where ζ is the relative vertical vorticity,

as well as the maximum local Froude number Frmax
loc ≡ maxD(|ωh|)/N, where ωh is the

horizontal part of the relative vorticity ω. Results are shown for RoPV = 0.5 at δ = δ∗.
The values fluctuate around means given in table 3. Results indicate that the time-averaged
values of Romin

loc , Romax
loc , hence of the vertical relative vorticity ζ extrema, reach larger

magnitudes in the anticyclone than in the cyclone.
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The internal vertical potential φ for a unit sphere, in the (x, y,Nz/f ) coordinate system,
of uniform PV q can be expanded in q following McKiver & Dritschel (2016), and reads

φ = qr2

6
− q2r2

27
+ q2r2

180

(
cos 2θ − 1

3

)
+ o(q2), (3.8)

where r =
√

x2 + y2 + (zN/f )2 is the radial coordinate and θ is the latitude. The external
vertical potential reads

φ = − q
3r

+ q2

54r4 +
(

q2

30r3 − q2

36r4

)(
cos 2θ − 1

3

)
+ o(q2). (3.9)

The horizontal components of the vector potential ϕ are zero in this case.
The first term in both equations corresponds to the QG solution. The leading correction

term −q2r2/27 in (3.8) increases the magnitude of φ for an anticyclone (q < 0), while it
decreases it for a cyclone (q > 0). Hence it is expected that the vertical relative vorticity ζ
reaches higher values in the anticyclone.

Finally, the maximum Froude number Frmax
loc is of the same order of magnitude as the

maximum Rossby number, and we have the expected scaling |ωh|/N ∼ ζ/f and ζ/|ωh| ∼
f /N, where ζ ∼ U/L, |ωh| ∼ U/H. Hence H/L ∼ f /N.

To further analyse the evolution of the flow, we first define diagnostically two additional
potentials, derived from the PV field q produced by the simulation at finite Ro, at any
given time. We first define the QG potential ϕQG = (0, 0, φQG), obtained by inverting
LQG(φQG) = q. We also define a balanced potential ϕbal, obtained using the nonlinear
QG balance (NQG) derived by McKiver & Dritschel (2008). The balance relations in
NQG include the ageostrophic corrections up to O(Ro2

PV). From these two potentials, we
further define the imbalanced potential ϕimb = ϕ − ϕbal and the ageostrophic potential
ϕageo = ϕ − ϕQG.

Figure 11 shows the imbalanced vertical velocity wimb ≡ −f ∇ × ϕimb · k for RoPV =
0.5, δ = δ∗ and �z/H = 0, 62/83. The field allows one to observe the inertia-gravity
waves generated by the vortex pair. We recover in the vertical cross-sections the typical St
Andrew’s cross pattern and the concentric horizontal wave patterns. Due to the periodic
boundary conditions, we also see the waves generated by the period vortex images entering
the computational box. It should be noted that to allow one to visualise the wave patterns,
the figure limits the range of value of vertical velocity shown. As expected, the imbalanced
vertical velocities are minimum/maximum in the vortices.

Figure 12 shows a vertical cross-section of the full rescaled, isopycnal displacement D̃ =
DN2/f 2 across the vortex pair. Here, D ≡ −b/N2. For the anticyclonic vortex (right),
D̃ > 0 for the vortex upper half, and D̃ < 0 for its lower half. The reverse is true for the
cyclonic vortex on the left. Hence the anticyclone contains more mass even before the
vortices start to break. It should be noted that the buoyancy anomaly associated with a QG
spherical cyclone or anticyclone already shows the same trend for the associated buoyancy
anomaly that it induces.

We next define the energy norm

Etot =
√〈|u|2 + N2D2

〉
f

=
√〈|∇ × ϕ|2 + (∇ · ϕ)2

〉
, (3.10)

where 〈·〉 stands for the grid average. The same definition may be applied to all five fields
ϕ, ϕbal, ϕQG, ϕimb, ϕagoe to define Etot, Ebal, EQG, Eimb, Eageo, respectively. The evolution
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Figure 11. Imbalanced vertical velocity wimb for RoPV = 0.5, δ = δ∗ and: (a,b) �z = 0, tQG=3, in (a) the
(x, z)-plane at y = 3.68, (b) the (x, y)-plane at z = 3.14; (c,d) �z/H = 62/83, tQG = 5 in (c) the (x, z)-plane
at y = 3.14, (d) the (x, y)-plane at z = 3.14. The actual min/max values are provided above the plots, and the
ranges of values shown are indicated by the colour bars.

of the energy norms is shown in figure 13 for�z = 0, δ = δ∗ and RoPV = 0.1, 0.3, 0.5 and
0.6. On the one hand, the curves Etot and Ebal of the energy norm based on the full fields
and the balanced energy norm are nearly indistinguishable, for all four values of RoPV . On
the other hand, the imbalanced energy Eimb is nearly zero at all times. This means that the
vortices remain in a near balanced state for all times. Recall that due to quadratic nature of
the energy, Etot /= Ebal + Eimb, even if, by construction, ϕ = ϕbal + ϕimb. We also see, as
expected, that as RoPV increases, a smaller part of Etot is contained in the QG fields alone
(EQG). The ageostrophic energy norm Eageo also increases with RoPV .

Similar observations are made for �z /= 0 as shown in figure 14. Again, the full energy
norm Etot is almost identical to the balanced energy norm Ebal, while the QG energy norm
EQG is roughly 90 % of Etot. While the flow has a non-negligible ageostrophic component,
it remains balanced. We next turn out attention to non-destructive interactions.
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Figure 12. Rescaled isopycnal displacement D̃ in the (x, z)-plane at y = 3.68 for RoPV = 0.5, δ = δ∗ at
tQG = 3.
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Figure 13. Evolution of the total ‘energy norm’ based on full fields (Etot, black), balanced fields (Ebal, blue),
QG fields (EQG, red), imbalanced fields (Eimb, green) and ageostrophic fields (Eageo, yellow), for �z = 0,
δ = δ∗, and RoPV values (a) 0.1, (b) 0.3, (c) 0.5 and (d) 0.6. The blue and black lines are nearly identical.
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Figure 14. Evolution of the total ‘energy norm’ based on full fields (Etot, black), balanced fields (Ebal, blue),
QG fields (EQG, red), imbalanced fields (Eimb, green) and ageostrophic fields (Eageo, yellow), for RoPV = 0.5,
δ = δ∗ and �z/H values (a) 21/83, (b) 41/83, (c) 62/83. The blue and black lines are nearly identical.
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Figure 15. Values of bounds δ+n (squares, solid line) and δ−n (circles, dotted line) for the limit of
non-destructive interaction δn for RoPV = 0.1 (black), 0.3 (red), 0.5 (blue), 0.6 (green). Values of the bounds
δ+c (black squares) and δ−c (yellow circles) for the margin of linear stability for the QG equilibria are given for
comparison.

3.2. Elastic interactions
We now focus on the ageostrophic effects when the interaction between the cyclonic and
anticyclonic vortices is not destructive, but the vortices still deform. We first determine the
smallest gap δ = δn for which the two vortices retain their full volume, i.e. do not lose any
material via filamentation, in the time window tQG ∈ [0, 50]. Using the same convention
as for the margin of stability of the QG equilibria, we denote δ+n the smallest value of δ
for our family of equilibria for which the interaction is non-destructive, and δ−n the largest
value of δ for which filamentation occurs, i.e. δ−n < δn < δ+n , with δ+n − δ−n = δ′ = 0.01.

The values of δ+n and δ−n are given in figure 15 for the four vertical offsets considered.
For RoPV ≥ 0.3 and δ = δ−n , the vortices show relatively little deformation for tQG ∈

[0, 50], and are, in that sense, meta-stable. For example, figure 16 shows at tQG = 50
the pair of vortices for RoPV = 0.5, δ = δ−n and the four values of �z. For Ro = 0.1,
δ−n is close to the QG margin of stability, and by tQG = 50, the vortices are strongly
deformed, yet have not shed any material (result not shown). They would arguably undergo
a destructive interaction at later time. Reaching much larger integration time is, however,
impractical for low RoPV as it corresponds to a large effective time t = tQGN/( f RoPV)
while the time step is still controlled by the small buoyancy time scale.

The values of δ±n increase with RoPV for a given vertical gap �z as the ageostrophic
effects increase, making the vortices deform rapidly from the QG equilibria.

Similarly to the QG cases described in § 2, we determine diagnostically the centroid of
each vortex. Figure 17 shows the vortex centre trajectories for δ = δ−n for each values
of RoPV and �z considered. Recall that δ−n depends on both RoPV and �z, therefore
the value of δ−n is different in each panel of figure 17. A second series of vortex centre
trajectories is presented in figure 18, where we use the same QG equilibrium for all
RoPV for a given �z. To ensure that all cases are non-destructive, but the vortices are
close enough to interact as strongly as possible, we use for a given �z the value δ =
δ−n (�z,RoPV = 0.6), since δ−n (�z,RoPV ≤ 0.6) ≥ δ−n (�z,RoPV = 0.6); see figure 15.
Here, we see that increasing RoPV increases the curvature of the trajectory, indicating
an increased dynamical asymmetry between the two vortices.

In all cases, the trajectory of the vortex centres is nearly circular. The trajectories are
qualitatively similar to the trajectories of a pair of opposite-signed, unequal-strength QG
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(b)(a) (d )(c)

Figure 16. Vortex bounding contours viewed orthographically at angle 45◦ from the vertical direction, at
tQG = 50, RoPV = 0.5, δ = δ−n and �z/H values (a) 0, (b) 21/83, (c) 41/83, and (d) 62/83.
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Figure 17. Trajectories of the vortex centres for t ∈ [0, 50], δ = δ−n , �z = 0 and RoPV values (a) 0.1, (b) 0.3,
(c) 0.5, (d) 0.6; �z/H = 21/83 and RoPV values (e) 0.1, ( f ) 0.3, (g) 0.5, (h) 0.6; �z/H = 41/83 and RoPV
values (i) 0.1, (j) 0.3, (k) 0.5, (l) 0.6; �z/H = 62/83 and RoPV values (m) 0.1, (n) 0.3, (o) 0.5, (p) 0.6.
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Figure 18. Trajectories of the vortex centres for t ∈ [0, 50], δ = δ−n (�z,RoPV = 0.6), �z = 0 and RoPV
values (a) 0.1, (b) 0.3, (c) 0.5, (d) 0.6; �z/H = 21/83 and RoPV values (e) 0.1, ( f ) 0.3, (g) 0.5, (h) 0.6;
�z/H = 41/83 and RoPV values (i) 0.1, (j) 0.3, (k) 0.5, (l) 0.6; �z/H = 62/83 and RoPV values (m) 0.1, (n)
0.3, (o) 0.5, (p) 0.6.

point vortices. Recall that, however, the finite Ro and Fr vortices have equal Ertel’s PV,
in absolute value. They also stem from equal-volume QG vortices. The curvature of the
trajectories is due only to the ageostrophic asymmetry between the cyclonic and the
anticyclonic vortex. To have an indirect measure of this effect and be able to compare
cases together, we define the QG-equivalent PV ratio ρequiv

QG , that is, the strength ratio of a
pair of opposite-signed QG point vortices with the same circular trajectory. This is done
as follows. For each non-destructive interaction that we have simulated numerically over
the course of this study, we determine diagnostically the position of both vortex centres at
51 times, indexed from 0 to 50, every �t = 1 for 0 ≤ t ≤ 50. We select the position of the
vortex centre, at three times, for each vortex, xi,j

c , where i = 1, 2 is the vortex index and j is
the time index, 0 ≤ j ≤ 50. This gives 2 × 51 × 50 × 49 triplets of vortex centre locations.
For each location triplet, we determine the centre of the circle defined by the three points.
The centre of the circle is the centre of rotation and coincides, by construction, with the
strength centre for the equivalent QG point vortex pair. The latter can also be expressed as
a function of the location of both vortices and their strength ratio, hence it allows one to
determine the strength ratio from the locations. We then calculate the mean strength ratio,
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Figure 19. The QG-equivalent PV ratio ρequiv
QG versus the gap δ, for RoPV = 0.1 (black), 0.3 (red), 0.5 (blue),

0.6 (green), and �z/H = 0 (circles), 21/83 (squares), 41/83 (stars) and 62/83 (diamonds).

averaging the values calculated over the full list of triplets, and all six possible pairs of x-
and y-coordinates for the vortex centre within each triplets. Results are given in figure 19
for all non-destructive interactions. It should be noted that Pallàs-Sanz & Viúdez (2007)
quantified the asymmetry between the two vortices by measuring the curvature of the
trajectory.

The external streamfunction induced by a unit sphere given by (3.9), restricting
attention, for simplicity, to the equatorial plane θ = 0 of a vortex, is

φ(r) = − q
3r

+ q2

45r3 + o(q2), (3.11)

hence the azimuthal velocity induced by the single vortex is

uθ = −∂φ
∂r

= q
3r2

(
1 − q

5r4

)
+ o(q2). (3.12)

By analogy with the QG solution, the factor 1 − q/5r4 can be interpreted as a
‘local’ PV correction to, hence for the dipole of PV, q = ±qr, qr > 0, ρequiv

QG �
−(1 − qr/(5r4))/(1 + qr/(5r4)). This is a crude estimate as (i) the actual vortices of
the pair are not spherical but deformed, and (ii) this estimate does not take into account
the volume difference associated with the isopycnal displacement, which also favours the
anticyclone. Figure 19 shows a relatively weak dependence of ρequiv

QG on δ, for a given RoPV ,
at least for the small range of δ considered. The same is true for the influence of �z. One
the other hand, ρequiv

QG depends strongly on RoPV = q/f . Increasingly, ρequiv
QG departs from

−1 as RoPV increases, confirming the strengthening of the asymmetry with RoPV .
We finally estimate the evolution of the vortex deformation. To that purpose, and

similarly to the analysis done in § 2, we measure the semi-axis lengths, a ≤ b ≤ c, of
the vortex best-fitted ellipsoids. Again, the calculation is performed using the vortex
bounding contours redrawn on flat, equal-thickness layers, i.e. neglecting the deformation
of the isopycnals. Results are presented in figure 20. Since the equilibria stem from unit
width-to-height aspect ratio vortices, and since the vortices elongate mostly along the
y-direction, and flatten in the x-direction, the smallest semi-length, a, is in the x-direction,
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Figure 20. Evolution of best-fitted ellipsoids semi-axis lengths a/a0, b/b0, c/c0 for RoPV = 0.1 (black), 0.3
(red), 0.5 (blue) and 0.6 (green). Solid (dashed) lines correspond to the cyclonic (resp. anticyclonic) vortex. For
�z/H = 0 and δ = δ−n (RoPV = 0.6) (a–c), �z/H = 21/83 and δ = δ−n (RoPV = 0.6) (d–f ), �z/H = 41/83
and δ = δ−n (RoPV = 0.6) (g–i). �z/H = 62/83 and δ = δ−n (RoPV = 0.6) ( j–l).

and the largest semi-length, c, is in the y-direction. For small �z, i.e. �z/H = 0, 21/83,
and RoPV = 0.5, 0.6, we see that b increases with time for the anticyclone. Since b initially
corresponds to the semi-length along z, and the calculation ignores the displacement of the
isopycnals, b can increase only if the vortex vertical axis tilts. Hence we observe a vertical
tilt of the anticyclone for large RoPV and small�z. Interestingly, a similar tilt was observed
by Reinaud & Dritschel (2018) for pair of interacting co-rotating vortices. Overall, the
oscillations observed for the ‘horizontal’ semi-lengths a and c indicate the pulsation of
the vortices around a nearby quasi-equilibrium. The amplitude of the oscillations is larger
for the cyclone, which is confirmed in figure 21, which shows the standard deviation of
the normalised semi-axis lengths a/a0, b/b0 and c/c0. For larger �z, the semi-length b
also oscillates, indicating an oscillation of the vertical tilting of vortices. This is due to the
increase in vertical shear as �z increases.

971 A41-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

70
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.709


J.N. Reinaud

0.2 0.4 0.6

RoQG

0.2 0.4 0.6

RoQG

0.2 0.4 0.6

RoQG

0.01

0.02

0.03σ
a/

a 0

σ
b/

b 0

σ
c/

c 00.04

0.05

0.06

0.07

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0

0.02

0.04

0.06

0.08

0.10
(b)(a) (c)

Figure 21. Standard deviation of the evolution of the best-fitted ellipsoids semi-axis lengths a/a0, b/b0, c/c0
versus RoPV for �z/H = 0 (black), 21/83 (red), 41/83 (blue), and 62/83 (green). Solid (resp. dashed) lines
correspond to the cyclonic (resp. anticyclonic) vortex.

4. Conclusions

We have investigated the evolution of pairs of counter-rotating vortices at finite Ro and
Fr. The initial conditions stem from a pair of equal-sized, unit width-to-height aspect
ratio, equal and opposite uniform PV QG vortices in mutual equilibrium. The QG vortex
pair may be linearly unstable if the vortices are close together. The instability leads to
the deformation of the vortices, and the vortices may break into pieces. At finite Ro
and Fr, the interaction can also lead to the destruction of the vortices if they are close
enough together. In this case, the largest remaining vortex is typically an anticyclone.
Remarkably, even during destructive interactions, the vortices remain close to a balanced
state and emit only very few inertia-gravity waves. The flow may, however, contain a
non-negligible ageostrophic part. At leading order, the ageostrophic effects tend to make
an anticyclonic vortex more intense than a cyclonic vortex for the same PV, in absolute
value. The isopycnals displacement also makes the anticyclone stronger than the cyclone.

The paper restricted attention to uniform PV vortices. The study could be extended
to pairs of counter-rotating vortices with distributed, smooth internal PV distributions.
Analysing how the smoothness of the PV field affects (i) the spontaneous generation of
inertia-gravity waves and (ii) the stability/robustness of finite Ro and Fr vortices is of
particular interest. Indeed, these have a direct impact on the dipoles’ longevity, hence
their ability to transport heat, salinity, moment and mass in the ocean. Another class of
dipoles of interest is the hetons. An unpublished cursory study indicates that the heton
may be sensitive to a baroclinic instability that may affect either the cyclonic vortex or the
anticyclonic vortex more, depending on RoPV .

Finally, our choice of parameters and initial conditions leads to Fr ∼ Ro. Exploring the
full (Ro,Fr) parameter space is also of interest. For example, Billant, Dritschel & Chomaz
(2006) were able to find common features for the instabilities affecting a Moore–Saffman
elliptical vortex for small Froude number and arbitrary Rossby numbers. Whether such
general features exist for pairs of opposite-signed vortices remains to investigated.
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