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Abstract
This paper proposes a robust generalised dynamic inversion (GDI) control system design with adaptive neural net-
work (NN) estimation for spacecraft attitude tracking under the absence of knowledge of the spacecraft inertia
parameters. The robust GDI control system works to enforce attitude tracking, and the adaptive NN augmentation
compensates for the lack of knowledge of the spacecraft inertia parameters. The baseline GDI control law consists
of a particular part and an auxiliary part. The particular part of the GDI control law works to realise a desired atti-
tude dynamics of the spacecraft, and the auxiliary part works for finite-time stabilisation of the spacecraft angular
velocity. Robustness against modeling uncertainties and external disturbances is provided by augmenting a siding
mode control element within the particular part of the GDI control law. The singularity that accompanies GDI
control is avoided by modifying the Moore-Penrose generalised inverse by means of a dynamic scaling factor. The
NN weighting matrices are updated adaptively through a control Lyapunov function. A detailed stability analy-
sis shows that the closed loop system is semi-global practically stable. For performance assessment, a spacecraft
model is developed, and GDI-NN control is investigated for its attitude control problem through numerical simula-
tions. Simulation results reveal the efficacy, robustness and adaptive attributes of proposed GDI-NN control for its
application to spacecraft attitude control.

Nomenclature

I earth centred inertial frame
B body fixed frame
q quaternion vector
ω angular velocity vector
J inertia matrix
τ control torque
e error vector
ϑ norm of attitude error
A control coefficient vector
B control load function
y null control vector
P null projection matrix
I identity matrix
ν dynamic scale factor
Q positive definite matrix
L gain matrix
σmax maximum singular value
s sliding surface
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K sliding mode gain
Ŵ approximated weight vector
h gaussian function
π mean
b standard deviation
V lyapunov function

1.0 Introduction
Various parts of a spacecraft are required to be pointing in certain directions for a successful accom-
plishment of the mission. The solar panels should be pointed towards the sun, the cameras should be
pointed towards the targeted areas and antennas should be pointed towards the ground stations, etc. To
achieve the desired pointing capabilities, highly agile attitude tracking is required that adjusts spacecraft
orientation in the three-dimensional space.

Many practical spacecraft experience large variations in their inertia parameters during the course of
the mission. For example a spacecraft that has to service another satellite in space will require getting
hold of the target satellite. As a result, the inertia of the combined satellite will change significantly,
requiring its control system to adapt accordingly to maintain the desired orientation [1]. LightSail 2
employs a partially deployed solar sail boom [2] and solar panels [3] that may cause uncertainties in its
inertia parameters. Similarly the missions requiring a big change in velocity [4], also experience change
in mass and hence inertia. Factors external to the spacecraft may also affect the dynamics of a spacecraft
such as the solar nutation [5].

The subject of spacecraft stability and control has been studied extensively in recent decades. Several
control methodologies have been proposed by researchers to address accurate spacecraft tracking,
including robust control [6], back-stepping control [7], intelligent control [3], neural networks-based
control [8–10], fault tolerant control [11, 12], sliding mode control [13–16], trajectory linearlisation
control [17], optimal control [18] and adaptive control [19–21].

Nonlinear dynamic inversion (NDI) [22, 23] is a control design methodology that is used exten-
sively in spacecraft control applications. The NDI control methodology relies on linearising the plant
dynamics through feedback and applying linear control consequently. Nevertheless, NDI has several lim-
itations, including the need of exact knowledge of system dynamics, square dimensionality constraints,
the simplifying approximations made to obtain the inverse plant model and cancellation of some useful
non-linearities. To overcome these challenges, the generalised dynamic inversion (GDI) control design
methodology has been introduced in Ref. [24], and has been applied in solving several control problems
for aerospace and robotic applications [25, 26].

GDI-based control works on the principle of defining prime objectives of control system through
constraint differential equations that are asymptotically stable and then establishing the control law by
inverting these dynamical equations employing dynamically scaled Moore-Penrose generalised inver-
sion (MPGI) [25]. The architecture of this control methodology is composed of two components that
are orthogonally complementary and are defined as the particular and auxiliary control components.
Asymptotic stabilisation of the constraint dynamics is realised by the particular part, whereas auxiliary
control offers additional control design freedom to meet secondary control objectives without interfering
with the particular part.

In this work, a robust GDI control methodology aided with adaptive NN is implemented to address
attitude control problem of spacecraft. Initially, GDI control law is constructed and contains a baseline
GDI control augmented with sliding mode control (SMC) based switching control [27]. The switching
control action is introduced to strengthen robustness against modeling uncertainties, non-linearities and
external disturbances.

Additionally, radial basis function (RBF) NN is incorporated within the GDI framework to limit
the dependencies of proposed control on spacecraft dynamics [28]. Lyapunov stability criteria have
been employed to design adaptive laws for updating the weight matrices of the RBF-NN to estimate
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the spacecraft inertial parameters. Furthermore, comprehensive stability analysis of GDI-NN control
is established using the concept of Lyapunov stability to ensure the attainment of reliable asymptotic
tracking. It is noteworthy to mention here that the primary objective of incorporating RBF-NN with
RGDI framework is not to ascertain the precise inertia parameters of the satellite, but rather to identify
the parameters that facilitate the convergence of tracking error to zero.

The effectiveness of proposed GDI-NN control is demonstrated through computer simulations
performed on spacecraft simulator developed in Simulink/Matlab environment.

The paper is organised in the following manner. The rotational kinematics and dynamics of a rigid
body spacecraft are described in Section 2. The detailed formulation of GDI-NN control approach is pre-
sented in Section 3. Lyapunov based stability analysis of proposed control law is discussed in Section 4.
Simulation results along with necessary discussions are presented in Section 5 followed by conclusion
in Section 6.

2.0 Spacecraft dynamics modeling
For establishing the dynamic model of the spacecraft, the rotational dynamics and kinematics of space-
craft are expressed using Euler’s equations. In spacecraft modeling, it is assumed that available thrust is
continuous and the system parameters and applied disturbances are bounded. The spacecraft is assumed
to be a rigid body and flexible bending modes have been neglected. Spacecraft kinematics equations
are derived in Earth centred inertial frame I, whereas dynamics equations are derived in principal axis
frame B.

Attitude kinematics of spacecraft in B with respect to I are described using quaternion as fol-
lows [29].

q = [
ϒT qo

]T (1)

In above expression, ϒ = [q1 q2 q3]T ∈ R3 represents unit quaternion vector whereas the scalar part
is represented by qo ∈ R. The constraint defined on the quaternion vector elements is given as qTq = 1.
The rotational kinematics described in terms of differential equations are given as [29]

q̇ =
[

ϒ̇

q̇o

]
= 1

2

[ (
ϒ× + qoI3×3

)
−ϒT

]
ω q(0) = qi (2)

where ω = [p q r]T ∈ R3×1 denotes angular velocity vector expressed in frame B, vector I3×3 rep-
resents identity matrix and the term ϒ× represents the skew-symmetric cross product matrix described
as

ϒ× =
⎡
⎢⎣

0 −q3 q2

q3 0 −q1

−q2 q1 0

⎤
⎥⎦ (3)

Similarly, the dynamics of spacecraft is represented by Euler’s model, which implies

ω̇ = −J−1
ω×Jω + J−1

τ , ω(0) = ω0 (4)

where J = diag
[
jx jy jz

] ∈ R3×3 is the inertia matrix and vector τ = [τx τy τz]T ∈ R3×1 represents
the control torque generated around the body axis of spacecraft.

3.0 Control design formulation
In this section, formulation of GDI-NN control architecture is illustrated to achieve the pointing accu-
racy in spacecraft. To formulate the asymptotically stable attitude constraint dynamics, quaternion error
function in the form of quaternion products is expressed as [30]

eq(q, t) = q−1 ⊗ qd(t), ∀ t ∈(0, ∞) (5)
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where qd(t) = [ϒd(t) qod(t)]T is the desired quaternion unit vector and q−1 represents quaternion
conjugate described as

q−1 = [−ϒT qo

]
(6)

The product of quaternion established in Equation (5) can be written as, see Ref. [30].

eq =
[

ϒv

qeo

]
=

[
qdo(t)ϒ − qoϒd(t) − ϒ×

d (t)ϒ
qoqdo(t) + ϒTϒd(t)

]
(7)

The quaternion error vector given by Equation (7) must satisfy the constraint such that eT
q eq =(

ϒTϒ + q2
o

) {ϒT
d (t)ϒd(t) + qdo(t)2} = 1. Hence, the quaternion error kinematics in the form of differ-

ential equations are given as

ėq =
[

ϒ̇e

q̇eo

]
= 1

2

[
ϒ×

e + qeoI3×3

−ϒT
e

]
eω (8)

where eω represents the error vector of angular velocity that can be described in differential form as
follows

ėω = ω̇ − ω̇d(t)

= −J−1
ω×Jω + J−1

ω×
d (t)Jωd(t) + J−1

τ (9)

where ωd(t):(0, ∞) → R3 represents the desired vector of angular velocity, whose dynamics are
governed by the following equation

ω̇d(t) = −J−1
ω×

d (t)Jωd(t) (10)

3.1 Constraint formulation
Let ϑ : [−1, 1 ]→[ 0, 1] be the norm of attitude error function, described as

ϑ(qeo) = 1 − q2
eo (11)

The time derivatives of ϑ are computed as [31]

ϑ̇ = qeoϒ
T
e eω (12)

ϑ̈ = 1

2
eT

ω

(
q2

eoI3×3 − ϒeϒ
T
e

)
eω + qeoϒ

T
e J−1τ (13)

Based on the time derivatives of ϑ , spacecraft constraint dynamics can be represented through
following differential equation

ϑ̈ + c1ϑ̇ + c2ϑ = 0 (14)

Here c1 and c2 are positive gain constants. The constraint differential equation given by Equation (14)
is made asymptotically stable through suitable selection of the gain constants c1 and c2. By obtaining
the time derivatives of ϑ in Equation (14), following constraint differential equation in algebraic form
is obtained

A(
eq

)
τ = B

(
eq, eω

)
(15)

whereA:Rn × [t0, ∞) → R1×3 is the control coefficient vector function described as

A(
eq

) = qeoϒ
T
e J−1 (16)

and B
(
eq, eω

) ∈ R symbolise the control load function prescribed as

B
(
eq, eω

) = −1

2
eT

ω

(
q2

eoI3×3 − ϒeϒ
T
e

)
eω − c1qeoϒ

T
e eω − c2

(
1 − q2

eo

)
(17)
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3.2 Design of robust GDI control
The objective of GDI control is to guarantee asymptotic realisation of prescribed constraint dynamics
for stable attitude tracking such that ϑ(qeo) = 0 or ϒe = 03×1. Control law is obtained through inversion
of prescribed constraint dynamics given by Equation (15) employing dynamically scaled MPGI, implies

τ * =A*(eq, ν
)

B
(
eq, eω

) + P
(
eq

)
y (18)

where y represents null control vector and P(
eq

)
represents null projection matrix described as

P(
eq

) = I3×3 −A+(
eq

)A(
eq

)
(19)

The term A* in the control law defined in Equation (18) indicates dynamically scaled MPGI and is
given by

A*(eq, ν
) =AT

(
eq

) {A(
eq

)AT
(
eq

) + ν(t)}−1 (20)

where ν represents dynamic scale factor, its differential form is describes as [32]

ν̇(t) = −ν(t) + γ

‖eω
2‖ , ν(0) > 0 (21)

here γ is a positive constant and ‖ .‖2 is the Euclidean norm. Hence elements ofA* remain bounded
for all t > 0 [33].

Similarly closed-loop stability of angular body rates is achieved by utilising null control vector y =
Leω, its gain matrix L ∈ R3×3 is established by Lyapunov principle [31].

L= −Ṗ(
eq

)
eω) − σmax

(Ṗ(
eq

)
eω

)
) −Q (22)

here Q ∈ R3×3 is a positive definite matrix and variable σmax symbolise the maximum singular value.
By incorporating the null control vector, the baseline control law established in Equation (18) is
described as

τ * =A*(eq, ν
)

B
(
eq, eω

) + P
(
eq

)Leω (23)

By placing the control expression given by Equation (23) in Equation (9), the spacecraft dynamics
are expressed as

ω̇ = −J−1
ω×Jω + J−1

{A+(
eq

)
B
(
eq, eω

) +P(
eq

)Leω

}
(24)

Additionally GDI control given by Equation (23) is augmented with a switching term, which is syn-
thesised to incorporate robustness against variations in system parameters and nonlinearities as well as
to provide improved tracking performance. The resultant robust GDI control expression is written as

τ * =A*(eq, ν
)

B
(
eq, eω

) + P
(
eq

)Leω −KA*(eq, ν
) s

‖ s ‖ (25)

where K denotes sliding mode gain constant and s is the sliding surface defined as

s = ϑ̇ + c1ϑ + c2

∫
ϑdt (26)

3.3 Real-time parameter estimation
For real-time estimation of inertia matrix J in control coefficient vector A given by Equation (16),
RBF-NNs have been engaged and is described as

f̂ = Ŵ
T
h
(
eq

)
(27)
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Figure 1. Block diagram of proposed control architecture.

where Ŵ ∈ R1×5 is the approximated weight vector and h ∈ R1×5 is the Gaussian function described
as

hj(u) = exp

{‖u − πij‖2

2b2
j

}
(28)

where number of inputs and hidden layers are denoted by subscript i and j respectively, π is the
mean and b is the standard deviation of Gaussian function [34]. Based on this, inertial parameters of the
spacecraft assuming axial symmetry are approximated by

J = diag
{

f̂jx f̂jy f̂jz

}
(29)

where

f̂jx

(
eq

) = Ŵ
T

x hx
(
eq

)
f̂jy

(
eq

) = Ŵ
T

y hy
(
eq

)
f̂jz

(
eq

) = fjx (30)

In Equation (30), weight vectors Ŵx and Ŵy are updated in real-time using Lyapunov approach,
whose derivation is explained in the following section. Since the control coefficient vector A given by
Equation (16) depends on the inertia matrix J which is estimated using RBF-NN, therefore the resultant
control expression given by Equation (25) is re-defined as

τ * = Â*(eq, ν
)

B
(
eq, eω

) + P
(
eq

)Leω −KÂ*(eq, ν
) s

‖ s ‖ (31)

where Â* contains the elements of the inertia matrix J which are estimated using RBF-NN. The
overall block diagram of GDI-NN control loop is depicted in Fig. 1.
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4.0 Stability analysis
In this section, the proof of asymptotic convergence of attitude error and angular body rates of spacecraft
has been established through following theorem.

Theorem 1. By considering the closed loop system defined in Equation (24), GDI-NN control expres-
sion given by Equation (31) will guarantee that the controlled system is globally uniformly bounded and
the error function of body attitudes and angular velocities are semi-global practically stable.

Proof. Computation of the derivative of sliding surface s is given as

ṡ = ϑ̈ + c1ϑ̇ + c2ϑ (32)

Asymptotic convergence of s towards zero infers asymptotic realisation of the constraint dynamics
established in Equation (15), which implies

ṡ =A(
eq

)
τ* − B

(
eq, eω

)
(33)

By updating the control law τ * established in Equation (31) and replacing P with I3×3 −
A+(

eq

)A(
eq

)
, sliding mode dynamics given by Equation (33) can be written as

ṡ =A(
eq

) {Â*(eq, ν
)

B
(
eq, eω

) + {
I3×3 −A+(

eq

)A(
eq

)}
Leω −KÂ*(eq, ν

) s

‖ s ‖} − B
(
eq, eω

)
(34)

With respect to the property of pseudo inverse i.e.,A(
eq

)A+(
eq

) = 1 for allA(
eq

) 	= 01×3, and replac-
ingA with Â+ Ã, sliding mode dynamics described in Equation (34) is written in simplified form as

ṡ =
{
Â(

eq

) + Ã(
eq

)} {
Â*(

eq, ν
)

B
(
eq, eω

) −KÂ*(
eq, ν

) s

‖ s ‖
}

− B
(
eq, eω

)
= Â(

eq

) Â*(eq, ν
)

B
(
eq, eω

) − B
(
eq, eω

) −KÂ(
eq

) Â*(eq, ν
)

s

‖ s ‖ + Ã(
eq

) Â*(eq, ν
)

B
(
eq, eω

) −KÃ(
eq

) Â*(eq, ν
) s

‖ s ‖
= {ρ − 1} B

(
eq, eω

) −KÂ(
eq

) Â*(eq, ν
) s

‖ s ‖
+ Ã(

eq

) Â*(eq, ν
)

B
(
eq, eω

) −KÃ(
eq

) Â*(eq, ν
) s

‖ s ‖ (35)

where ρ = Â(
eq

) Â*
(
eq, ν

)
. Defining a Lyapunov function V that is positive definite

V = 1

2
s2 + 1

2
γ1W̃xW̃

T

x + 1

2
γ2W̃yW̃

T

y (36)

By differentiating Lyapunov function V with respect to time, we get the following

V̇ = sṡ + γ1W̃x
˙̂W

T

x + γ2W̃y
˙̂W

T

y (37)

Substituting the expression of ṡ given by Equation (35) in Equation (37), implies

V̇ = {ρ − 1} Bs −Kρ ‖ s ‖ +Ã
{
Â*

B −KÂ* ‖ s ‖
}

+ γ1W̃x
˙̂W

T

x + γ2W̃y
˙̂W

T

y (38)
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Let δ = Â*B −KÂ* ‖ s ‖ and replace Â with W̃
T

x hx
(
eq

) + W̃
T

y hy
(
eq

)
, then expression of V̇ implies

V̇ = {ρ − 1} Bs −Kρ ‖ s ‖ +W̃
T

x hx
(
eq

)
δ + W̃

T

y hy
(
eq

)
δ

+ γ1W̃x
˙̂W

T

x + γ2W̃y
˙̂W

T

y

= {ρ − 1} Bs −Kρ ‖ s ‖ +W̃
T

x

{
hx

(
eq

)
δ + γ1

˙̂W
T

x

}

+ W̃
T

y

{
hy

(
eq

)
δ + γ2

˙̂W
T

y

}
(39)

The updating principle of the weight vectors are computed as

˙̂WT
x = − 1

γ1

hx
(
eq

)
δ, ˙̂W

T

y = − 1

γ2

hy
(
eq

)
δ (40)

By placing weight vectors in Equation (39), the simplified expression of V̇ is written as

V̇ = {ρ − 1} Bs −Kρ ‖ s ‖ (41)

Since ν ∈(0, ∞), therefore 0 < ρ
(
eq, ν

)
< 1 for allA(

eq

) 	= 01×3, which follows that

lim
t→∞

ρ
(
eq, ν

) = 0 ⇔ lim
t→∞
A(

eq

) = 01×3 (42)

Therefore, a sliding mode gain K that ensures

K>
ρ − 1

ρ
|B| (43)

will also make sure that V̇ is negative definite and consequently s = 0, as established in Lyapunov’s
direct method [35]. By achieving the condition s = 0, ν ∈(0, ∞) also converges towards zero, which
implies

lim
eq→0

ρ
(
eq, ν

) − 1

ρ
(
eq, ν

) = −∞ (44)

This implies that an infinite value of sliding mode gainK is required to achieve negative definiteness
of V̇ which is not practical. Therefore to address weaker stability condition, sliding mode gain is designed
to satisfy semi-global practical stability condition [26].

5.0 Numerical simulations and discussion
Performance of GDI-NN control for spacecraft attitude control is analysed and discussed through numer-
ical simulations. As indicated in Section 2, the simulations model is developed with the assumptions
that the spacecraft is a rigid body, the control action is continuous, disturbances are bounded and co-
ordinate system of spacecraft coincides with the orbital co-ordinate system. For numerical simulations,
the initial values of inertia matrix is assumed to be J = diag(8, 8, 8), whereas width and mean values of
the RBF-NN functions are initialised as

bj = [1.5 1.5 1.5 1.5 1.5]T (45)

πij =
0 25 50 75 100
0 25 50 75 100
0 25 50 75 100
0 25 50 75 100

(46)

In first scenario, stabilisation effect with GDI-NN is analysed by re-orienting the spacecraft from
initial attitude q0 = [0.3 0.4 0.2 0.85]T expressed in the form of quaternion to a desired quaternion,
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Figure 2. Quaternion vs. time (stabilisation).
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Figure 3. Body rates vs. time (stabilisation).

i.e. qd = [0.7 0.5 − 0.4 0.35]T . For this manoeuver, the initial body rates ω0 are set to be 10deg/sec
and the simulation is executed for 5 seconds. The actual and the commanded attitude profiles in terms
of quaternion are shown in Fig. 2. Similarly the angular body rates are depicted in Fig. 3. It is apparent
from results that the proposed controller smoothly stabilises the spacecraft and enables it to make a
transition from its initial orientation to the desired orientation within 1.5 seconds. The generated input
torque commands τx, τy, τz are shown in Fig. 4, which are well within the specified saturation limits of
10Nm.

https://doi.org/10.1017/aer.2023.78 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.78


The Aeronautical Journal 513

0 1 2 3 4 5
Time (sec)

-10

0

10

x (
N

.m
)

0 1 2 3 4 5
Time (sec)

-10

0

10

y (
N

.m
)

0 1 2 3 4 5
Time (sec)

-5

0

5

z (
N

.m
)

Figure 4. Control torque vs. time (stabilisation).
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Figure 5. Quaternion vs. time (tracking).

The controller is further investigated by commanding the following body rate profile

ωd = [10sin(0.1t) 15cos(0.2t) 20cos(0.3t) ]T , deg/sec (47)

In this case, it is assumed that the spacecraft has an initial angular speed of ω0 = [10 20 30]T

deg/sec. Spacecraft attitude and angular body rates plots are depicted in Figs 5 and 6, respectively. These
plots show that the designed control system enables the spacecraft to seamlessly follow the desired body
rate profile from its initial angular speed. In this case, the simulation is executed for 100 seconds. The
time histories of the corresponding control torques commands required for subject manoeuvering are
shown in Fig. 7. The figure shows that the control effort required to achieve the desired manoeuver is
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Figure 6. Body rates vs. time (tracking).
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Figure 7. Control torque vs. time (tracking).

well within the saturation limit of 10Nm and once the spacecraft starts tracking the desired body rate
profile, the control effort is minimal.

6.0 Conclusion
This paper presents the GDI-NN control system for attitude control of spacecraft. In proposed con-
troller, constraint dynamics have been prescribed for stable attitude tracking, whereas switching control
is introduced to ensure robustness. Furthermore RBF-NN are engaged for real-time estimation of inertial
parameters which relaxes the requirement of these parameters for the controller. Stability analysis of pro-
posed GDI-NN control is presented using Lyapunov stability criteria. Simulation results reveal that the
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attitude and angular body rate response curves rapidly converge towards the desired commands by gen-
erating the required torque commands proving the feasibility of proposed controller for its application
to spacecraft attitude control.
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