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The concept of vortex lock-in for a single circular cylinder in an oscillating flow, induced
through acoustic forcing, is revisited. Multiple cylinder diameters are investigated over
a Reynolds number range between 500 and 7200. The lock-in behaviour is investigated
quantitatively through hot-wire anemometry and planar particle image velocimetry
measurements. The results corroborate previous findings describing the frequency range
over which vortex lock-in occurs. It is found that the cylinder location in a standing wave
(pressure node or velocity node) had a significant influence on the lock-in behaviour.
A novel scaling which captures the onset of vortex lock-in is proposed which demonstrates
that the Strouhal number is important in predicting the amplitude of the velocity
fluctuations required to induce lock-in. Velocity fields also reveal the existence of bimodal
vortex shedding during lock-in. This is confirmed using snapshot proper orthogonal
decomposition which demonstrates that symmetric and alternate shedding modes are
simultaneously present during lock-in and that symmetric shedding is inherent to the
near wake region only. Reduced-order reconstruction of the instantaneous velocity fields
confirmed that features associated with the forcing frequency control the shear layer
roll-up up to x/d = 2.1 while the influence of the asymmetric mode is simply to skew the
trajectory of the vortex pair. Since vortex roll-up and the cylinder wake ends at x/d = 2.1,
the emergence of spectral content at 0.5fe is attributed to a wavelength doubling measured
between the vortical structures in the flow field.

Key words: vortex shedding, vortex dynamics

1. Introduction

Understanding the characteristics of vortex shedding behind a bluff body is of paramount
importance due to its ramifications in domains such as nuclear and conventional power
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generation, the structural design of heat exchangers, offshore platforms or bridges and
controlling thermoacoustic instabilities within combustion (Griffin & Hall 1991; Choi,
Jeon & Kim 2008; Sumner 2010; Æsøy et al. 2022). While many aspects of the physics of
vortex shedding from bluff bodies such as formation criterion, near wake flow features and
vortex patterns have been well established, there are still cases where the impact of vortex
shedding is less explored and understood. In this paper, we investigate vortex shedding
from a single circular cylinder in the presence of an incoming oscillating flow, generated
by acoustic forcing.

The injection of energy into the flow field, through external disturbances, has been
shown to alter the properties of the cylinder wake. Such flow disturbances can be achieved
through controlled vibrations of the cylinder (translation oscillations in the transverse or
streamwise direction or rotational oscillations) or through velocity fluctuations generated
by upstream flaps, active grids or electromagnetic speakers that acoustically modulate
the flow field (Williamson 1985; Barbi et al. 1986; Hall, Ziada & Weaver 2003). While
these mechanisms are different in nature, Griffin & Hall (1991) found that the dynamics
of a fixed cylinder exposed to an oscillating flow and an in-line oscillating cylinder in a
steady flow are identical, provided that the acoustic wavelength is large compared with the
cylinder’s diameter, i.e. the cylinder is acoustically compact. This led to the definition of
a reduced amplitude of oscillations, ε, which is equivalent to the amplitude of streamwise
oscillations of a cylinder in a steady flow, normalised by its diameter (Barbi et al. 1986;
Konstantinidis & Balabani 2007), as follows:

ε = �u
2πfed

, (1.1)

where �u is the amplitude of the velocity oscillations, fe is the excitation frequency and d
corresponds to the cylinder diameter.

Although studies employing acoustically generated oscillations are less common,
Blevins (1985) demonstrated that a sound field (standing wave) alters the motion of fluid
particles and induces vortex shedding at a frequency fully correlated with the excitation
frequency of the standing wave. The acoustic velocity fluctuations needed to exceed the
background turbulence (root mean square (r.m.s.) velocities) in order to influence the bluff
body wake. Blevins (1985) further explained that it was not the sound pressure which
affected the nature of the vortex shedding, rather it was due to synchronisation between
the acoustic field and the wake behaviour.

Synchronisation of these two oscillating systems occurs only if the amplitude of the
velocity oscillations is sufficiently above the background turbulence. This phenomenon
is termed vortex lock-in and occurs when the vortex shedding frequency of the cylinder
( fs) is shifted from its natural state ( f0) and becomes half of the excitation frequency
( fe). Barbi et al. (1986) observed that a variation in fe altered fs smoothly until the point
at which lock-in ensued, i.e. at fe/f0 of 1 and fs/f0 of 0.5. Multiple investigations have
revealed that vortex lock-in is only sustained over a certain frequency range. For instance,
Barbi et al. (1986) reported a range for the lock-in envelope between fe/f0 of 1 and 2 while
Al-Mdallal, Lawrence & Kocabiyik (2007) found that at low amplitudes, this range extends
to 3. Previous results also established that the nature of the oscillations can influence the
lock-in range. Primary lock-in, which occurs when fs = fe, has been reported for cases
with transverse or rotational oscillations or in the case of transverse fluidic oscillations
(Williamson & Roshko 1988; Du & Sun 2015). Additionally, secondary subharmonic
lock-in, i.e. fs = 0.5fe, exists for streamwise cylinder oscillations or streamwise fluidic
oscillations (Kim et al. 2009).
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Vortex lock-in for circular cylinders in an oscillating flow

A number of factors have been associated with the existence of these multiple lock-in
regimes. The amplitude of oscillations with respect to the mean flow (�u/U∞) is one
such universal parameter which controls the lock-in behaviour of the wake (Blevins 1985;
Griffin & Hall 1991; Hall et al. 2003; Munday & Taira 2013). Al-Mdallal et al. (2007)
increased �u/U∞ from 0.1 to 0.3 and noted a subsequent shift in the lock-in range from
1.5–2.2 to 1.1–3.0. Additionally, the Reynolds number based on the cylinder diameter
(Red) of the incoming flow can potentially influence the lock-in range but discrepancies
exist between reported results: Konstantinidis, Balabani & Yianneskis (2003) found that
higher Red reduced the threshold for the onset of lock-in; Barbi et al. (1986) surmised
a correlation between the lock-in limits and Red; whereas the results of Griffin & Hall
(1991) advocate for the contrary. Blevins (1985) also hinted at the potential influence of
turbulence of the flow on vortex lock-in. Furthermore, Konstantinidis et al. (2003) reported
that the lock-in range is not symmetric. The range of frequencies over which lock-in
is inherent is wider for fe/f0 less than 2, compared with fe/f0 greater than 2. Although
extensive research has identified the parameters associated with defining the boundaries
of lock-in, no scaling has been derived that capture these limits. It is apt to assume, similar
to Hall et al. (2003), that this can be attributed to the fact that the boundaries of vortex
lock-in described hitherto remain estimates due to the insufficient amount of data points
available in the lock-in regime diagram.

1.1. Flow fields of vortex lock-in
The lock-in behaviour can be further explored through an analysis of the topological
features of the structures present in the wake of the cylinder. An extensive study
by Detemple-Laake & Eckelmann (1989) characterised vortical structures as (i) being
independent of fe/f0, (ii) formed upon synchronisation, i.e. lock-in at fs = 1

2 fe or (iii)
occurring at fs = fe. Flow visualisations revealed a kaleidoscope of patterns induced
by the velocity fluctuations, which included but are not limited to symmetric, alternate
(Kármán vortex street), vortex strings and isolated vortex pairs. Identifying the type of
vortical structures present across the lock-in range can help in understanding the physical
mechanisms. However, this has proven to be a complex task as illustrated through the
direct numerical simulations of Balachandar, Mittal & Najjar (1997), where a cylinder had
the same shedding frequency in both a steady flow and an oscillating flow at fe/f0 = 2, but
different vortex dynamics arise in each case. Despite the wide variety of vortex shedding
patterns reported, recent results have revealed that the wake during lock-in can be primarily
associated with two types of vortex shedding: alternating shedding (AS) and symmetric
shedding (SS) modes.

Konstantinidis, Balabani & Yianneskis (2005) found the alternating mode corresponded
to two single vortices being shed per cycle (2S mode), i.e. the classical Kármán vortex
street which occurs when the incoming flow is steady. On the other hand, SS occurs when
the imposed inflow perturbations have a symmetric component to them (Konstantinidis
& Balabani 2007). Konstantinidis & Liang (2011) explained that in the SS mode, the
flow perturbations promote the simultaneous formation of a vortex pair as the shear layer
simultaneously rolls up on both sides of the cylinder (2P mode). This implies that the
symmetric mode is synchronised with the incoming oscillatory flow. Both Al-Mdallal et al.
(2007) and Konstantinidis, Balabani & Yianneskis (2007) observed wake breathing in the
symmetric mode, where the shear layers on both sides of the cylinder experienced an
inward–outward motion over one cycle of oscillation. However, Konstantinidis & Liang
(2011) observed that symmetrically formed vortices are highly unstable and lose their
coherence within a few diameters downstream of the cylinder. Although many studies
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have reported the dominant shedding mode, the diversity in pattern over the lock-in range
implies that the evolution of the vortical structures, both from a temporal and spatial
aspect, remain incomplete.

1.1.1. Mode competition
A bimodal behaviour was observed by Ongoren & Rockwell (1988) and Griffin &
Hall (1991), resulting in a competition and switching between the alternating (2S) and
symmetric (2P) modes in the near wake. Griffin & Hall (1991) observed that the mode
competition was affected by the upstream feedback of disturbances arising from the near
wake of the cylinder. Konstantinidis & Balabani (2007) attributed the coexistence of the
alternate and symmetric mode to the influence of background turbulence which promotes
transition in the shear layers at low Red numbers. Konstantinidis et al. (2007) explained
that the number of occurrences of each mode was a function of the excitation frequency,
the amplitude of the oscillations, as well as the Reynolds number of the incoming flow.
The dominant shedding mode was also found to vary with fe/f0.

Over the lock-in range, Konstantinidis et al. (2005) found the existence of two vortex
shedding patterns for fe/f0 < 2 while only the 2S mode occurred for cases with fe/f0 ≥ 2.
Konstantinidis et al. (2007) explained that for fe/f0 < 2, i.e. fs/f0 < 1, the period of the
vortex shedding is increased compared with the unforced wake and thus, there is more time
for vorticity to accumulate in the shear layers. However, there is a limit to the amount of
vorticity that a coherent structure can contain, as defined by Jeon & Gharib (2004), since
the rolled-up vortex needs to pinch-off under the action of strain. The pinched-off vortex
pair then induces its own velocity field and advects away from the cylinder, while a new
pair of vortices rolls up, eventually resulting in the 2P mode. For fe/f0 ≥ 2, i.e. fs/f0 ≥ 1,
the inverse occurs as the period of vortex shedding is reduced compared with the unforced
case. This implies that by the end of the forward stroke, the vortex pinches off even though
the maximum vorticity level has not been reached. The vorticity then remains concentrated
in one coherent structure and results in the 2S mode of shedding.

The type of mode also depends on the amplitude of the velocity oscillations. At
low values, the alternating mode is predominant while at high values, even when the
symmetric mode occurs, the shed vortices are unstable and break down within a few
downstream diameters, giving rise to an antisymmetric arrangement of the vortex pair
(Konstantinidis et al. 2007). However, the existence of this bimodal behaviour highlights
the ambiguous nature of the flow field during lock-in and demonstrates that the physical
mechanisms responsible for lock-in are yet to be fully understood. Furthermore, although
there is significant evidence which highlights a connection between the amplitude of the
oscillations and the vortex lock-in regime, no scaling exists that captures this behaviour.
This article primarily aims to establish such a scaling through a systematic parametric
study by revisiting the concept of vortex lock-in for a single circular cylinder in an
oscillating flow induced through in-line acoustic forcing. The cylinder wake flow fields are
examined under conditions of lock-in with the aim of complementing existing explanations
on the mechanisms driving vortex lock-in.

2. Experimental set-up

2.1. Facility and measurements
The experimental set-up is shown in figure 1(a). The rig consists of an inlet section, a
plenum chamber with flow conditioning and a contraction which accelerates the flow into
the test-section shown in figure 1(b), which is a 700 mm long acrylic pipe with a diameter
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Figure 1. Schematic of the test facility. (a) A sketch of the rig with an inlet, a plenum with flow conditioning
features, a contraction and an acrylic pipe, allowing optical access. Loudspeakers were mounted on either side
of the plenum to produce a longitudinal standing acoustic wave in the pipe section. (b) A sketch of the pipe
section with the cylinder is shown. The hot-wire probe was positioned at a location of 4d downstream of the
cylinder and microphones ( p1–4) were used to monitor and control the standing acoustic wave.

of 35 mm. Cylinders with different diameters (d = 1.7, 2.0, 2.4, 4.0 and 6.0 mm) were
placed inside the pipe perpendicular to the streamwise direction. Varying the cylinder
diameter also leads to different blockage ratios. In the current set-up, a maximum blockage
ratio of 21.8 % occurs for the largest cylinder diameter of 6 mm. Studies with a similar
experimental set-up reported blockage ratios of 20 % (Barbi et al. 1986), 9 % (Hall &
Griffin 1993), 13 % (Jarża & Podolski 2004) and 10 % (Konstantinidis & Balabani 2008).
Although a blockage can introduce three-dimensional effects and cause flow distortion
around the cylinder, the aforementioned studies observed no significant effect on the
reported results. Hence, it is expected that blockage ratios used in this study will not have
a considerable effect and no attempt at blockage correction is made.

The mass flow in the test section was set using an Alicat mass flow controller with a
range of 0–1000 standard litres per minute (s.l.p.m.) and accuracy of ±2.5 s.l.p.m. This
corresponds to a bulk velocity ranging between U∞ = [0 → 17.3] m s−1. The turbulence
intensity of the unforced flow, without any cylinder, did not exceed 5 % for the range
of bulk velocity tested. The coordinate system used in this article is represented by
(x, y, z) and is illustrated in figure 1. The streamwise direction is represented by x, y is
perpendicular to the cylinder and z is along its length with the corresponding velocity
components being u, v and w, respectively.

Temporal modulation of the flow was achieved by forcing a standing acoustic wave in
the pipe section. For this purpose, two loudspeakers were mounted on either side of the
plenum and driven by monochromatic waves at frequency fe generated by a TTi-40 MHz
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d (mm) fe (Hz) U∞ (m s−1) f0 (Hz) fe/f0 St0 U∗
0 �u/U∞ BR

1.7 730 2.8–6.2 331–737 0.99–2.20 0.20 5 0–0.38 6.2 %
1460 5.6–12.4 650–1431 1.02–2.25
2190 8.2–17.2 969–1950 1.12–2.26

2.0 730 2.5–15.6 281–1661 0.44–2.60 0.21 4.76 0–0.38 7.3 %

2.4 730 4.1–9.1 342–732 0.99–2.13 0.19 5.26 0–0.38 8.7 %
1460 8.2–17.0 658–1356 1.08–2.21
2190 12.2–17.1 970–1351 1.62–2.26

4.0 730 6.9–15.2 352–723 1.00–2.07 0.20 5 0–0.38 14.6 %
1460 13.7–17.2 670–839 1.74–2.18

6.0 730 7.3–17.0 298–661 1.10–2.45 0.23 4.35 0–0.38 21.8 %
1460 14.6–17.0 572–661 2.21–2.55

Table 1. List of cases and parameters investigated in this study (d, cylinder diameter; fe, excitation frequency;
U∞, mean bulk incoming velocity; f0, natural shedding frequency of cylinder; St0, Strouhal number based on
f0, U∗

0 , reduced velocity calculated as U∞/f0d; �u/U∞, normalised amplitude of the velocity fluctuations;
BR, blockage ratio caused by cylinder). The symbols for each case have been kept constant throughout the
paper and in subsequent plots. For each combination of cylinder diameter, excitation frequency and mean bulk
velocity, 20 cases of �u/U∞ were investigated in the range 0–0.38.

waveform generator. The location of the cylinder in the pipe was varied such that it was
located at a pressure or a velocity node of the standing acoustic mode. In this way, the
cylinder was exposed to pure velocity or pressure oscillations. To monitor and control
the standing acoustic waves, pressure fluctuations p1–4 were measured at the wall with
Bruël and Kjær 1/4 in. (sensitivity 4 mV Pa−1) condenser microphones at four different
streamwise locations inside the pipe section. These were used to reconstruct and control
the longitudinal acoustic field inside the pipe as described in § 3.

A thorough parametric study was carried out to assess the different features of vortex
lock-in using hot-wire anemometry (table 1). These measurements were performed using a
Dantec Streamware Pro system with a single-wire traversing 55P11 hot-wire probe, which
was operated in constant temperature mode. The probe was aligned such that the wire was
positioned in the shear layer, at 0.5d off the centre of the pipe in the transverse direction
and at a downstream distance of 4d, as shown in figure 1(b). The hot-wire probe was
calibrated using King’s law fit predata and postdata acquisition using a jet with a top-hat
velocity profile and velocities ranging from 0–30 m s−1. The hot-wire and pressure signals
were sampled at a rate of 51.2 kHz for 10 s and digitised using a 24-bit NI-9234 data
acquisition.

To obtain quantitative spatial data of the flow field, high-speed planar particle image
velocimetry (PIV) was performed in the x–y plane as shown in figure 1(a). The set-up
consisted of a Phantom V2012 1 MP camera fitted with a 200 mm focal length lens,
providing a field of view ranging from −3d to 3d in the y-direction and −2d to 8d in
the x-direction. The flow was seeded with ≈1 μm olive oil droplets that were produced
using a Laskin nozzle and introduced into the air flow upstream of the plenum. Particle
illumination was achieved using a Litron LDY300 high-speed laser with a beam splitter
to create two laser sheets of thickness ≈1 mm, entering on either side of the pipe to avoid
any shadows caused by the cylinder. For each case, 6000 image pairs were acquired at a
rate of 3 kHz in double-frame mode with �t = 40 μs. Image acquisition, preprocessing
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Figure 2. Characterisation of the unforced vortex shedding frequency. (a) Plot of the shedding frequency f0
against U∞. The red horizontal lines indicate three longitudinal standing modes fe = 730, 1460 and 2190 Hz,
and the linear solid lines indicate the relationship to the Strouhal number St0 = f0d/U∞. (b) Plot of the Strouhal
number St0 plotted against the Reynolds number Red = U∞d/ν.

and vector-field computation were performed using LaVision DaVis 10 software suite.
Cross-correlation for the vector field computation was carried out with an initial step
with a window size of 64 × 64 pixel2 with an overlap of 50 %, followed by two passes
of 24 × 24 pixel2 with a 50 % overlap. This resulted in a spatial resolution of 0.236 mm
per vector in both the x and y directions.

Following the approach of Raffel et al. (2007) and Sciacchitano & Wieneke (2016), the
uncertainty in the PIV velocity flow fields was computed. The correlation error associated
with planar PIV can be estimated to be roughly 0.1 pixels (Raffel et al. 2007). Since the
particle displacement in this study was approximately 10 pixels, this results in a relative
displacement error of the order of 1 %. Due to the low values of �t between the frames,
the error on the time separation is negligible. Correlation error is the main contributor to
the uncertainty of the measured velocity in an instantaneous field, which can be expressed
as εU(t) = 1 % where U(t) is a time series of instantaneous velocity fields. Following the
guidelines of Sciacchitano & Wieneke (2016), the uncertainty is calculated using a linear
error propagation technique, with the uncertainty in the velocity fields determined from the
standard deviation of the respective time series and the number of uncorrelated samples
in time. This resulted in a maximum uncertainty for the velocity field of εū ≈ 3 % and
εv̄ ≈ 2 %, where u and v correspond to the streamwise and spanwise velocity components,
respectively.

3. Acoustic forcing method

Since the forcing frequencies were restricted to standing acoustic modes of the pipe,
U∞ was varied to change the natural shedding frequency f0 of the cylinder. This is
shown in figure 2(a), where measurements of f0, obtained from the hot-wire data, are
plotted against U∞. The red lines indicate the excitation frequencies fe = 730, 1460 and
2190 Hz, corresponding to standing acoustic modes of the pipe. By changing U∞, the
natural shedding frequency f0 varies proportionally and subsequently, when forcing was
applied to the system, the normalised excitation frequency, fe/f0, varied systematically
in the range of 1 to 2.5. This also culminated in a cylinder-based Reynolds number Red
of the flow between 500 and 7200. The cylinder diameter was also varied in the range
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Figure 3. Reconstructed acoustic modes using the multiple microphone method. (a) Pressure mode
reconstructed by fitting p1–4 to (3.2). Black and blue solid lines indicate n = 1.5 and 2.5, corresponding to
standing modes at fe = 730 and 1460 Hz, respectively. (b) Acoustic pressure and velocity ((3.2) and (3.3)), in
the vicinity of the cylinder when placed at the pressure and velocity nodes. For both cases illustrated here, the
acoustic velocity is tuned to |û|/U∞ = 0.055 at the pressure node.

d = [1.7 → 6] mm, which led to different proportionality factors between f0 and U∞ for
the different cylinders. In figure 2(b), the data is plotted as a Strouhal number St0, which
lies in the range [0.19 → 0.23], indicating classical behaviour (Roshko 1954).

In this study, acoustic waves are used to modulate the base flow at the cylinder, which is
similar to the approach adopted by Blevins (1985). The primary difference in the current
study is that the forcing mechanism produces longitudinal acoustic waves which generate
variations in the streamwise velocity or pressure. In the case of Blevins (1985), the acoustic
wave is aligned transverse to the flow direction and the transverse velocity is modulated.
Furthermore, since the cylinder location relative to the velocity and pressure nodes can be
varied, the effect of pressure oscillations on the lock-in behaviour can also be investigated.

The standing wave modes of the pipe can be estimated by the dispersion relation

fe = nc̄
L

, (3.1)

where c̄ is the speed of sound, L is the length of the pipe and n is the mode number.
The values n = 1.5, 3.0 and 4.5 correspond to standing modes at 730, 1460 and 2190 Hz,
respectively. These were obtained by identifying peaks in the pressure spectra obtained
through a frequency sweep of the rig. Figure 3(a) shows the reconstructed pressure mode
in the pipe section for n = 1.5 and n = 3.0, together with the amplitude of the pressure
oscillations p̂1–4.

The acoustic pressure and velocity fluctuations in the pipe section were reconstructed
using the multiple microphone method (Seybert & Ross 1977). Since the flow is at a
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low Mach number, and the acoustic mode in the pipe is approximately one-dimensional,
the acoustic pressure and velocity p′(x, t) = Re{ p̂(x) ejωt} and u′(x, t) = Re{û(x) ejωt} are
described by

p̂(x) = a+ exp(−jk+
x x) + a− exp( jk−

x x), (3.2)

and

û(x) = 1
ρ̄c̄

(a+ exp(−jk+
x x) − a− exp( jk−

x x)), (3.3)

where ω is the angular frequency, ρ̄ is the fluid density, k±
x is the streamwise wavenumber

and a+ and a− are the Riemann invariants of the upstream and downstream propagating
acoustic waves. Performing cross-power spectra on the pressure signals acquired by the
microphones enables computation of p̂(xi), as follows:

p̂i = p̂(xi) =
PSD( p′

ref , p′
i)√

PSD( p′
ref , p′

ref )
, (3.4)

where PSD( p′
ref , p′

i) is the cross-power spectrum between the reference signal p′
ref from

the signal generator and the measured pressure fluctuations p′
i, with ith corresponding

to the microphone number. The spectra were obtained using the Welch method and by
averaging 50 % overlapping segments of the signal, multiplied by a Hanning window.
Finally the Riemann invariants (a±) are obtained by solving for the two unknowns in (3.2).

In figure 3(a) the reconstructed pressure mode shows that forcing at f = 730 and
1460 Hz results in a pressure node at x/L = 0. At this location, p̂ ≈ 0, whereas the
acoustic velocity û is at its maximum. This is shown in figure 3(b), where the velocity
and pressure are reconstructed in the vicinity of the pressure node. The main features in
this plot are, firstly, the acoustic wavelength λa is very large relative to the diameter of
the cylinder (λa/d � 60), indicating that the acoustic velocity is approximately constant
over the cylinder wake. Therefore, such a method of forcing is similar to oscillating
the cylinder in the streamwise direction. Secondly, increasing the mode number from
n = 1.5 to 3 preserves the pressure node location. The same behaviour occurs for n = 4.5.
Subsequently, by iteratively tuning the voltage of the speakers, the velocity amplitude can
be adjusted at the pressure node location. A normalised forcing amplitude is defined as

�u
U∞

= |û|(x/L=0)

U∞
, (3.5)

and for the two cases illustrated in figure 3(a), the value is tuned to �u/U∞ = 0.055.
Through this method it is possible to tune the acoustic forcing amplitude to high values
for different frequencies. Moreover, by moving the cylinder location to x/L = 0.17, the
n = 1.5 mode at fe = 730 Hz now features a velocity node (û ≈ 0) with large pressure
oscillations p̂, which allows the effect of pressure oscillations on lock-in to also be studied
systematically. It is worth noting that the effect of acoustic forcing on the v velocity
fluctuations was tested and found to be negligible.

4. Results and discussions

4.1. Vortex lock-in for circular cylinders
The hot-wire anemometry data was analysed to determine the dominant frequencies
present in the flow at each operating condition. The natural shedding frequency of the
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fs

Φ
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2
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Figure 4. Example of the power spectra from hot-wire measurements for the d = 2 mm cylinder, subjected to
U∞ of 6.1 m s−1 for the unforced case and the forced case at (i) fs /= f0 and (ii) fs /= f0 but fs = 0.5fe, i.e. the
locked-in state.

cylinder was first detected at each Red, through identification of the most energetic peak
in the power spectrum in the unforced flow as shown in figure 4. This showed that the
Strouhal numbers for the tested cylinders varied between 0.19 and 0.23. In the presence of
acoustic forcing, two peaks corresponding to fe and fs emerge from the power spectra as
observed in figure 4. An example of the contour plot for the power spectra at multiple fe/f0
and constant �u/U∞ of 0.125 for the 2 mm cylinder diameter is displayed in figure 5(a).
The peak at the forcing frequency is constant ( f /fe = 1), but the secondary peak which
corresponds to the shedding frequency of the cylinder changes with increasing fe/f0.
Similar to the findings of Barbi et al. (1986), we observe that the shedding frequency
drifts past fe until it reaches 0.5fe. At this point, synchronisation with the forcing frequency
(vortex lock-in) occurs and any subsequent increase in fe/f0 does not alter fs/fe, which
remains at 0.5.

By tracking the evolution of fs with fe/f0, the lock-in characteristics of the cylinder can
be quantified. Figure 5 plots the lock-in characteristics of the d = 2 mm cylinder, located
at the velocity node (figure 5b) and the velocity antinode (figure 5c). Figure 5(b) shows
the variation of fs/f0 with fe/f0 as the forcing amplitude is increased, with the grey line
representing a mean fitting curve from Barbi et al. (1986). At a velocity node, lock-in does
not occur as the acoustic fluctuations are zero. Although the acoustic pressure oscillations
are large, the cylinder is exposed to steady flow conditions and vortex shedding occurs
at f0.

Figure 5(c) shows the flow response at the velocity antinode. An increase in �u/U∞
alters the shedding frequency of the cylinder for a constant value of fe/f0, and provided that
�u/U∞ is high enough, vortex lock-in is achieved where fs = 0.5fe. This is in agreement
with Blevins (1985), who explained that it is not the acoustically generated pressure
fluctuations themselves but rather the velocity induced from the acoustic wave which
influences the vortex shedding. Such behaviour confirms that the amplitude of the velocity
oscillations is an important parameter in dictating the lock-in behaviour of the cylinder
positioned away from a velocity node. The lock-in behaviour of the single cylinder at the
velocity antinode is in agreement with the limits identified by Barbi et al. (1986). The
lock-in envelope ranges from fe/f0 of 1 to 2.2, consistent with the findings of Barbi et al.
(1986) and Al-Mdallal et al. (2007). However, the fe/f0 range tested in this study is not
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(a) (b) (c)

Figure 5. (a) Contour plot for the power spectra for the d = 2 mm cylinder at fe = 730 Hz, �u/U∞ = 0.125
and over the range of fe/f0 = 0.46–2.67, lock-in regime diagram for the 2 mm cylinder at the (b) velocity node
and (c) velocity antinode, as the amplitude of the velocity oscillations at the velocity antinode is varied. The
direction of the drift in the shedding frequency, fs, is shown by the red arrow as fe/f0 increases.

deemed exhaustive enough to assess the occurrence of multiple lock-in modes, as reported
by Konstantinidis & Balabani (2007). Note that for brevity, only the d = 2 mm case is
shown in figure 5 but all tested cylinder diameters exhibited similar behaviour.

4.2. Scaling of the onset of vortex lock-in
Additional insight into vortex lock-in can be achieved by analysing the frequency ratio
( fe/f0) corresponding to the onset of vortex lock-in for each amplitude of the velocity
fluctuations. We define the onset of lock-in as the first value of fe/f0 in the regime diagram
at which fs = 0.5fe. Multiple studies have highlighted that the limits of lock-in can be
described by the reduced amplitude ε (1.1), which varies with fe/f0 (Barbi et al. 1986;
Kim, Yoo & Sung 2006; Konstantinidis & Balabani 2007). However, the amount of data
from the previous literature is limited and there appear to be no studies yet, which have
systematically varied all parameters of interest required to establish a universal scaling
law. A large parametric study is conducted herein to fully explore the lock-in map. Figure 6
shows a comparison between the lock-in limits for the 2 mm cylinder tested in this study
and data available from the literature. It can be observed that the data points tend to
collapse towards a power law,

ε = λ
(

fe
f0

)α1

. (4.1)

While it is possible to fit the data against predefined non-dimensional groups such
as ε and fe/f0, such an operation will limit the scaling law to these assumed groups.
Instead, a similar methodology as the one employed in Berk et al. (2018) and Jankee &
Ganapathisubramani (2021) is used to fit the scaling parameters to dimensional variables
first. Based on previous research efforts, the main parameters which influence the onset of
lock-in are the cylinder diameter d, the amplitude of the velocity oscillations �u, the bulk
mean flow velocity U∞ which in turn alters the natural shedding frequency of the cylinder
f0 and the excitation frequency fe. The values of �u corresponding to the onset of lock-in
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Figure 6. Variation of the reduced amplitude corresponding to the onset of lock-in with fe/f0. For brevity
only the 2 mm cylinder case from the current study is shown, together with available data from the literature.
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Konstantinidis et al. (2003), Red = 2150

Konstantinidis et al. (2011), Red = 2580
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Figure 7. (a) Experimentally acquired data points describing the onset of lock-in for multiple values of fe/f0
and different cylinder diameters, prior to scaling. The plot is overlaid with available data from the literature
with the same symbols as in figure 6. (b) Comparison of �u/U∞ corresponding to the onset of lock-in between
experimental data (�u/U∞)expt and predictions by the data-driven model (�u/U∞)mod using data from this
study for (4.8) and (c) validation of the newly derived scaling with data from literature. Note that the greyed-out
points correspond to data from this study as plotted in (b).

are fitted against these dimensional parameters as defined by

�u ∝ F (U∞, f0, fe, d), (4.2)

which can be rewritten as

�u = λUα1∞ f α2
0 f α3

e dα4, (4.3)

where λ is a constant and α1, α2, α3 and α4 are the exponents obtained from nonlinear
regression. The accuracy of the fits is measured as the r.m.s. of the residual (Res.) between
the experimental values and data-driven model. For each scaling law, 96 data points are
used as shown in figure 7(a). The fitted coefficients, the r.m.s. of the residuals as well as
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Scaling λ α1 α2 α3 α4 Res.

Equation (4.1) 0.19 −3.64 — — — 0.03
(±0.01) (±0.16)

Equation (4.3) 0.34 0.75 2.82 −2.57 0.25 0.01
(±0.50) (±0.57) (±0.16) (±0.55) (±0.51)

Table 2. Fitted coefficients and residuals for proposed scalings. The 95 % confidence interval limits (CI95)
for the fitted parameters are also provided between brackets.

the 95 % confidence interval limits are presented in table 2. Prior to grouping the variables,
it is important to ensure that (4.3) satisfies dimensional consistency based on the values of
the coefficients computed in table 2. This can be achieved by expressing the dimensional
variables in terms of their respective SI units and equating both sides of the equation

[ms−1] = [][ms−1]α1[s−1]α2[s−1]α3[m]α4 . (4.4)

Comparing the left-hand side of the equation with the right-hand side results in two
inequalities for m and s,

m : 1 = α1 + α4 = 0.75 + 0.25 = 1, (4.5)

s : −1 = −α1 − α2 − α3 = −0.75 − 2.82 + 2.57 = −1. (4.6)

Since dimensional consistency is ascertained, the dimensional variables can be grouped
together. Following the Buckingham π theorem, a fixed number of non-dimensional
groups can be formed out of these five dimensional parameters. Hence, grouping these
parameters can be done in numerous different ways. Using the coefficients in table 2 and
following the literature, it is reasonable to firstly combine the amplitude of the velocity
fluctuations and the mean incoming flow velocity as �u/U∞, and secondly to group the
natural shedding frequency of the cylinder and the frequency of the velocity oscillations
as fe/f0. Using these choices, the scaling parameter has reduced to

�u
U∞

= 0.34
(

fe
f0

)−2.57

U−0.25
∞ f 0.25

0 d0.25. (4.7)

This indicates the emergence of another non-dimensional frequency term in comparison
with (4.1). Since the coefficients are the same, the remaining dimensional parameters can
be grouped together to form the cylinder-based Strouhal number, as ( f0d/U∞)1/4. The
final form of this data-driven model is shown as follows and a subsequent comparison
between predicted values and experimentally measured values of �u/U∞ displays good
agreement (figure 7c):

�u
U∞

= 1
3

(
fe
f0

)−5/2 (
f0d
U∞

)1/4

= 1
3

(
fe
f0

)−5/2

St1/4
0 . (4.8)

This novel data-driven model reveals that in addition to fe/f0, the value of �u/U∞ at
which lock-in begins also depends on the Strouhal number based on the natural shedding
frequency of the cylinder. This is because the Strouhal number is not a constant value, but
rather, it denotes a narrow range of values in this experiment as we vary the diameter of
the cylinder (0.19–0.23, see table 1).
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The emergence of the additional Strouhal number term in (4.8) also highlights the
limitations related to fitting predefined non-dimensional groups. It is important to note that
it is also a constant for the given configuration. The procedure adopted in this study avoids
any bias which occurs when fitting the scaling parameters against predefined groups, such
as fe/f0 and ε only, because the results are then only limited to these groups. In fact, table 2
shows that the r.m.s. of the residual of the fit was reduced when using the fitting method
of Berk et al. (2018) and Jankee & Ganapathisubramani (2021). Figure 7(b) appears to be
randomly distributed about the (�u/U∞)mod/(�u/U∞)expt = 1 line, thereby indicating
that the proposed scaling is adequate. Hence, using (4.8), the amplitude of the velocity
oscillations required to induce lock-in can be predicted for a known cylinder diameter, free
stream velocity, natural shedding frequency of the cylinder at that velocity and excitation
frequency. The new scaling holds well with data from the literature as shown in figure 7(c),
hinting at a universal scaling as the �u/U∞ values corresponding to the onset of lock-in
can be accurately predicted for other independent studies as well.

4.3. Velocity fields
While the scaling derived in (4.8) provides a reliable approach to determine the onset
of lock-in, the underlying dynamics captured by the scaling are investigated using PIV.
Firstly, the emergence of the Strouhal number can be associated with the vortex shedding
in a steady flow, which usually takes the form of the classical Kármán vortex street (2S
mode). Secondly, at the point of lock-in, since fs = 0.5fe, (4.8) can be rewritten using the
shedding frequency of the cylinder under the influence of the applied forcing, fs:

�u
U∞

= 1
3

(
2fs
f0

)−5/2 (
f0d
U∞

)1/4

. (4.9)

The rearranged (4.9) reveals that at the point of lock-in, the shedding frequency ( fs)
is also an important parameter which can be linked to the vortex dynamics when the
oscillating component of the flow becomes substantial. Ongoren & Rockwell (1988)
and Konstantinidis et al. (2007) have already highlighted the bimodal nature of vortex
shedding in forced conditions. An analysis of the instantaneous high-speed PIV snapshots
in this study also confirms that the 2S and 2P modes competed against each other
and the occurrence of one mode or another was random in time across all cases. Two
such snapshots can be seen in figure 8, where the swirl strength of the instantaneous
field coloured according to the sign of the corresponding vorticity is presented. Even
if forcing is applied, there are instances where the shedding is asymmetric, which
then manifests as the classical Kármán vortex street (2S mode) farther downstream as
illustrated in figure 8(a). There are other instances as shown in figure 8(b), where the
vortex shedding is symmetric. While it is not very clear in this figure, the occurrence of
opposite-sign vorticity concentration is an indication of a 2P mode based on the definition
of Konstantinidis et al. (2007). The random nature of the vortex shedding implies that
the PIV data is restrictive, and we cannot perform phase-locking since the latter is only
meaningful when the vortex roll-up process is synchronised with the imposed perturbation
at all instances of time.

To further investigate the mode switching behaviour, the statistics of the wake properties
behind the cylinder at various lock-in locations were compiled. As an example, a contour
plot of the normalised mean streamwise velocity component for the d = 1.7 mm cylinder
is shown in figure 9(a). The flow field shows the classical features of a flow around a
cylinder. Upstream of the front of the cylinder, the flow decelerates due to the blockage
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Figure 8. Swirl strength (λci(d/U∞)) of example instantaneous velocity fields for fe/f0 = 1.4 and
�u/U∞ = 0.15 showcasing mode competition in time between (a) AS and (b) SS.

effect caused by the cylinder, followed by an acceleration and separation of the flow
forming a wake at the rear of the cylinder. Profiles of the mean and r.m.s. velocity values
along the wake centreline for selected cases are shown in figure 9(b–e). From the centreline
mean velocity profiles (figures 9b,c), a minimum value corresponding to the maximum
velocity deficit is observed downstream of the cylinder within a distance of 2d. The
velocity then increases, followed by a slow recovery towards U∞. Also, as fe/f0 increases,
the location of the maximum velocity deficit moves closer to the cylinder. This indicates
that time-averaged wake structures become shorter with increasing fe/f0. Such a trend is
also evident as the velocity recovers to U∞ more rapidly for fe/f0 = 2.0 compared with
fe/f0 = 0.7.

Similar to Konstantinidis & Liang (2011), the profiles of r.m.s. fluctuations in the
transverse velocity component are plotted in figure 9(d,e). The peak in transverse velocity
fluctuations follows the same trend as the mean velocity deficit. As fe/f0 increases, the
peak r.m.s. moves closer to the cylinder which not only implies a faster wake recovery, but
also that vortex roll-up and shedding occurs closer to the cylinder. The r.m.s. profiles also
show that higher amplitudes of velocity oscillations generally result in higher ur.m.s./U∞
and more compact wakes. This occurs since there is a higher amount of energy transferred
from velocity fluctuations of the flow to the shear layers rolling up on the sides of the
cylinder. While the circulation contained in the vortex cores does not change significantly,
the concentration of vorticity in the vortex cores is increased by this phenomenon.
Subsequently, the shear layers react by retracting, resulting in a smaller vortex roll-up
region. This trend is clear for fe/f0 of 1.4 and 2.0, but more subtle for fe/f0 of 0.7, possibly
due to a higher amount of energy being required for synchronisation in the latter.

4.3.1. Spatial organisation of fluctuating fields
An effective way of elucidating the spatiotemporal features of the wake is through proper
orthogonal decomposition (POD). The POD represents an objective method to decompose
data into a minimal set of basis functions or modes which capture much of the flow’s total
energy. In the current framework, the snapshot-POD formulation proposed by Sirovich
(1987) is employed for this purpose. A detailed description of snapshot-POD can be found
in Sirovich (1987) or the review by Taira et al. (2017). By applying this technique, the
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Figure 9. (a) Contour plot of the normalised time-averaged streamwise velocity for fe/f0 of 0.7 and �u/U∞ of
0.075. The pink dotted line represents the location across which the profiles are taken. Note that for brevity, only
one case for d = 1.7 mm is shown here. (b,d) Profiles of the mean streamwise velocity and r.m.s. fluctuations
of the transverse velocity along the wake centreline for various combinations of fe/f0 and �u/U∞ = 0.075.
(c,e) Profiles of the mean streamwise velocity and r.m.s. fluctuations of the transverse velocity along the wake
centreline for various combinations of fe/f0 and �u/U∞ = 0.15.

fluctuating velocity fields (Ũ = [ũ; ṽ]) are decomposed in the following manner:

Ũ(x, y, t) =
∑

n

γnan(t)Ψ n(x, y), (4.10)

where Ψ n(x, y) are a set of empirical eigenfunctions (spatial POD modes) that contain
information regarding the spatial organisation of various fluctuations with corresponding
eigenvalues γn, which represent modal energy, and temporal coefficients an(t), where
n represents the mode number. This decomposition is used here to gain insight into
the contribution of the 2S and 2P shedding modes and the spatial organisation of the
corresponding fluctuating velocity fields, for the various test cases. The decomposition
was performed on all the acquired velocity fields (10 000 fields for the unforced case and
6000 fields for the acoustically forced cases).

The relative energy of the 10 most energetic POD modes for fe/f0 = 1.4 as the amplitude
of the velocity oscillations is increased is presented in figure 10. Note that the computed
POD modes for each case are sorted in descending order of their relative modal energy
(γn/(

∑
γn)). In the unforced case, the two most energetic POD modes contain ≈51 %

of the total energy. As the forcing level is increased, the relative dominance of these
modes are seen to reduce. As will be discussed later, this is expected to be the result of
flow dynamics related to the forcing frequency becoming more dominant with increasing
forcing level, and competing with the natural shedding mode of the cylinder. It is worth
noting that henceforth, any reference made to the mode number corresponds to its rank
based on its relative modal energy.
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Figure 10. Relative energy of the 10 most energetic POD modes for fe/f0 = 1.4 as the amplitude of the
velocity oscillations is varied.
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Figure 11. Power spectra of the six most energetic POD modes’ temporal coefficients for fe/f0 = 1.4 as the
amplitude of the velocity oscillations is varied: (a) the unforced case; (b) �u/U∞ = 0.075; (c) �u/U∞ = 0.15.
In these plots, spectra of POD modes n = 2 − 6 are shifted by 10−(n−1) for clarity.

Analysing the temporal coefficients of the POD modes provides insight regarding the
nature of the related coherent structures and the dominant frequency represented by the
modes. The power spectra of the six most energetic POD modes’ temporal coefficients
are shown in figure 11 for fe/f0 = 1.4 cases. In the unforced case shown in figure 11(a),
spectral content at the natural shedding frequency is found in the first and second most
energetic modes only. As �u/U∞ is increased to 0.075, the emergence of a peak at the
excitation frequency fe can be observed in the third and fourth modes in figure 11(b),
while there is a shift in the natural shedding frequency f0 in the first two most energetic
modes. Additionally, the fifth and sixth modes capture only one frequency which is at 0.5fe,
denoting lock-in. The fact that it is captured in lower energy modes suggests that lock-in
is not yet substantial. This corroborates well with the hot-wire anemometry measurements
where lock-in for this forcing condition was not observed until �u/U∞ = 0.10. At
�u/U∞ of 0.15 shown in figure 11(c), the excitation frequency is most energetic and
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Figure 12. The POD analysis of fluctuating fields for fe/f0 = 1.4 as �u/U∞ is varied between 0 and 0.15.
Panels (a–f ) show the transverse component of the first POD mode (Ψ 1

v ) for different cases, while (g–l) show
the corresponding third POD mode (Ψ 3

v ). Panels (m–r) show the amplitude of fluctuations related to AS (light
blue) and SS (dark blue) along the streamwise direction.

is found in the first and fourth modes. The second and third modes have a broadband
spectrum that contains both the natural shedding frequency and 0.5fe.

Across all cases, the first four POD eigenmodes account for approximately 40 %–60 %
of the total energy. It is a natural outcome of the POD procedure applied to a flow that
the eigenmodes occur in pairs which are orthogonal to each other in the mean advection
direction. Since the same applies to the current data-set, only one of these modes is
presented here for brevity. Figure 12(a–l) display the transverse component of the first and
third most energetic orthogonal modes (Ψ 1

v and Ψ 3
v ), as �u/U∞ is varied. In the unforced

case, mode pair 1–2 contains ≈51 % of the total energy while mode pair 3–4 contains
only ≈7 %. Therefore, for the unforced case only the spatial structures described by mode
pair 1–2 are relevant to the discussion. In fact, the spatial organisation of the structures in
figure 12(a) bears similitude to the results of Konstantinidis et al. (2007) which associated
these modes with the basic wake instability of the classical Kármán vortex street, i.e. the
asymmetric 2S pattern. This is consistent with the power spectra of the corresponding
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temporal coefficients as well, as shown in figure 11(a), where the frequency corresponding
to the natural shedding frequency of the cylinder was only captured in mode pair 1–2. In
the case of the highest forcing amplitude, �u/U∞ = 0.15, the power spectrum of the most
energetic eigenmode’s temporal coefficients, shown in figure 11(c), indicates frequency
content at only the forcing frequency. Given that Konstantinidis et al. (2007) showed
that symmetric roll-up occurs at this frequency and results in a 2P shedding pattern, the
corresponding spatial mode shown in figure 12( f ) can be associated with symmetric shear
layer roll-up. For clarity, the abbreviations AS and SS are included in the top right-hand
corner of figure 12(a–l) whenever the presented modes correspond to these. This is also
evident in the instantaneous snapshots in figure 8 and is further discussed in § 4.4.

Consequently, specific flow features can now be highlighted using the different
eigenmodes shown in figure 12. Firstly, from the eigenmodes corresponding to the
asymmetric shear layer roll-up, spatial structures are observed to persist across the entire
measured domain whereas the spatial structures in the eigenmodes indicative of symmetric
roll-up only extend downstream to x/d ≈ 3, consistent with the work of Konstantinidis
et al. (2007). Furthermore, as �u/U∞ is increased, it can be noted in figure 12 that the
mode corresponding to the SS increases in energy content. For instance, at �u/U∞ =
0.075, it is the third most energetic mode while at �u/U∞ = 0.15, it becomes the
most energetic mode. While the spatial modes generally indicate the locations where the
variation in the fluctuations occurs, the modes which dominate the flow field at any given
location cannot be established without considering the amplitude of the spatial variations.
The amplitude is computed to further understand the lock-in aspect, using the following
system of equations:

An = [
√

γn|Ψ n(x, y)|σ(an(t))]·
√

2, (4.11a)

Av =
√∑

n

A2
n. (4.11b)

The contribution from each of the eigenmodes is computed with (4.11a), where the
multiplication operation within the square brackets ([. . .]) provides the contribution of
each eigenmode to the total r.m.s. of the velocity in the flow field. The use of

√
2 in the

product results in an estimate of the amplitude (An), where n denotes the corresponding
eigenmode. Summation of the different contributing eigenmodes generates the total
amplitude (A) of the related fluctuations (4.11b). The procedure adopted in order to choose
the necessary modes describing each shedding pattern in each case is as follows. Firstly,
only the first n modes which contribute to 90 % of the total energy are considered. The
discrete Fourier transform of the temporal coefficients of each of these modes is then
computed and the frequency associated with the maximum amplitude is noted. Any mode
whose dominant frequency falls within a ±20 Hz band around the frequency of interest
(i.e. shedding mode frequency) is added together through (4.11b). Further, since the spatial
modes related to the AS and SS do not bear the same geometric pattern, especially along
the transverse ( y) direction (e.g. see figure 12a, f ), the comparison of the fluctuation
amplitude depends on the chosen y location. To circumvent this problem, a mask based
on ur.m.s/U∞ ≥ 0.12 was applied on the spatial modes (|Ψ n(x, y)|) in (4.11a) prior to
spatially averaging them along the y-direction. The resulting profile along the streamwise
direction can then be used to estimate the amplitudes.

The non-dimensional amplitude of fluctuations for the transverse component,
corresponding to AS and SS modes along the streamwise direction, Av(x)/U∞, for
different forcing levels at fe/f0 = 1.4, is presented in figure 12(m–r). In the unforced case,
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Figure 13. The POD analysis of fluctuating fields for fe/f0 = 2.0 as �u/U∞ is varied between 0 and 0.15.
Panels (a–f ) show the transverse component of the first POD mode (Ψ 1

v ) for different cases, while (g–l) show
the corresponding third POD mode (Ψ 3

v ).

only the amplitude of the fluctuations related to AS can be estimated. The maximum
amplitude attained by these fluctuations is observed to reduce linearly with increasing
�u/U∞. However, the streamwise location of the amplitude maxima shows no variation
and always occurs at ≈3.3d in figure 12(m–r). On the other hand, the amplification
of the fluctuations corresponding to the SS ends before x/d = 2 and approximately
coincides with the end of the reverse-flow region in the cylinder’s wake as shown in
figure 9(b,c). Prior to lock-in, e.g. �u/U∞ = 0.05 and 0.075 in figure 12(n,o), respectively,
the amplitude of both the symmetric and asymmetric fluctuations is similar in the wake
region while the AS dominates the entire measured domain. Once lock-in occurs, e.g.
�u/U∞ = 0.125 and 0.15 in figure 12(q,r), fluctuations due to SS amplify in the near wake
region which are more dominant than the fluctuations produced by AS until a downstream
location of x/d = 2.2, beyond which the opposite ensues. These computations hint at the
mode competition aspect mentioned in § 1.1.1 and indicate that the lock-in phenomenon is
only inherent in the near-wake region (i.e. up to x/d ≈ 2).

When fe/f0 = 2.0, the most energetic modes always correspond to spatial structures
representing the asymmetric 2S wake structure, irrespective of the amplitude of the
imposed velocity oscillations as shown in figure 13, while the spatial structures
corresponding to SS are always found in the lower energy contained mode pair 3–4. This
trend can be explained by comparing the time scales present in the flow. At fe/f0 ≥ 2,
fs/f0 ≥ 1. This implies that the period over which vortex shedding occurs is less than in the
unforced case. Konstantinidis et al. (2007) explained that under such a condition, the end
of the forward stroke in the imposed sinusoidal flow oscillation is reached before maximum
circulation is achieved in the shear layer, leading to the rolled-up shear layer pinching-off.
The vorticity then remains concentrated in one coherent structure and results in the 2S
mode of shedding as only one vortex is formed per cycle. Based on the observations in
figures 12 and 13, it appears that mode competition is more prevalent for cases where
fe/f0 < 2.
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Figure 14. Variation of the summed energy of paired modes corresponding to the symmetric and asymmetric
modes of shedding with �u/U∞ for (a) fe/f0 = 1.4 and (b) fe/f0 = 2.0.

To further investigate this, the variation of the cumulative energy of eigenmodes which
specifically correspond to either the AS or the SS as �u/U∞ is increased is presented in
figure 14. This plot shows which shedding pattern is more dominant in a global sense. In
figure 14(a), a crossover amplitude can be observed at which the added energy of the SS
modes exceeds that of the AS modes. This crossover amplitude correlates with the power
spectral density from figure 11 and denotes the value of �u/U∞ at which the influence
of the externally imposed excitation frequency dominates the flow field. Furthermore,
in the case of fe/f0 = 2 shown in figure 14(b), the crossover point is never achieved,
irrespective of the forcing amplitude, and this implies that the most dominant spatial
structure corresponds to the 2S mode of shedding throughout. These findings support the
observations of Konstantinidis et al. (2005), who also identified the occurrence of two
vortex shedding patterns at fe/f0 = 1.74 but only the asymmetric 2S mode at fe/f0 ≥2.

4.4. Mode competition and emergence of the lock-in frequency
The POD analysis of the fluctuating fields for the fe/f0 = 1.4 case illustrates the mode
competition between the AS and SS pattern that ensues when flow oscillations with
sufficiently high amplitude are imposed. The primary consequences of such mode
competition are the emergence of the 2P vortex shedding pattern and also, vortex lock-in
(i.e. frequency content at 0.5fe). While the manifestation of the 2P mode was explained
in the previous section, the dynamics of vortex lock-in itself are not particularly clear
and an attempt is made here to explain the appearance of the 0.5fe frequency content.
To this end, a reduced-order reconstruction of the instantaneous velocity fields from
selected POD eigenmodes is carried out using (4.10). Three reconstructions of the flow
fields are performed for fe/f0 = 1.4 at �u/U∞ = 0.15 as shown in figure 15. The first
two reconstructions utilise modes corresponding to the AS and SS separately. It should
be highlighted here that the set of POD modes used is the same as the one previously
used for the amplitude computation in figure 12(r). The third reconstruction uses all these
POD modes combined together to reconstruct the flow field. The swirl strength of two
consecutive snapshots from these reconstructions is presented in figure 15.

The contribution of the asymmetric and symmetric modes (representing 18 % and
31 % of the total energy, respectively) is shown in figure 15, where the shedding pattern
of the cylinder also corresponds to these specific modes at both instances of time.
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Figure 15. (a–f ) Swirl strength (λci(d/U∞)) of reconstructed velocity fields using AS modes, SS modes and
both of them together for fe/f0 = 1.4 and �u/U∞ = 0.15. Two consecutive snapshots in time are shown.
The green and purple contours represent λci(d/U∞) = ±0.15 × 10−3 from the asymmetric and SS modes
reconstruction, respectively. Black (dashed) line at x/d = 2.1 represents location where asymmetric mode
becomes dominant (see figure 12r). (g) Variation of the normalised mean velocity profile at y/d = 0 with
downstream distance x for the case decoupled in (a–f ).

The subsequent impact of these two sets of modes on the flow field can be seen in the
combined reconstruction in figure 15(e, f ). The superposed fields show that the features
associated with the forcing frequency control the shear layer roll-up until x/d = 2.1,
consistent with trends from the variation in amplitude of the fluctuations in figure 12(r).
Within this region, the vortex roll-up on either side of the cylinder (in the transverse
direction) synchronises with the imposed forcing, causing a pair of counter-rotating
vortices (CVP) to be shed symmetrically (figure 15c,d). These results reveal that the
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forcing frequency controls the dynamics in the near field region, as demonstrated by the
similarity between the reconstructed fields when using all modes together and when only
using the SS modes. The CVP is then advected downstream by the mean streamwise
flow which leads to the formation of the so called 2P shedding, which is attributed to
the synchronisation of the initial shear layer roll-up to the applied forcing.

Beyond the x/d = 2.1 location, the influence of the asymmetric modes can be noted
in the flow field. Figure 15(e, f ) shows that these modes do not directly result in high
magnitude vortical structures in the combined flow field; rather, they alter the trajectory
of the CVP generated by symmetric rolling-up of the shear layers due to forcing. Such a
feature can be inferred through a comparison between the flow field reconstructed from the
symmetric modes in figure 15(d) and the one reconstructed from all the modes combined
together in figure 15( f ). Between x/d = 2 and 4, it is clear that the vortical structure in
y/d < 0 has been displaced by the asymmetric mode, leading to a skewed CVP. However,
it is important to note that there are instances in the current data-set where the flow field
bears more resemblance to the asymmetric-shedding-modes reconstruction and there are
others where the displacement of the CVP is marginal as in figure 15(e). This variation
could possibly be attributed to the relative phase between these two sets of modes. As the
current data-set has a limited number of samples along the phase-space ( fPIV/fe ≈ 4.1), no
clear pattern could be discerned from the instantaneous data. Nevertheless, this variation
in the shedding pattern resulting from the mode competition is expected to be the cause of
the broadband nature of the spectra measured behind the cylinder, even under conditions
of high forcing amplitude.

The reconstructed flow fields from POD modes are also used to explain the occurrence
of vortex lock-in (at 0.5fe). While in figure 15(e), the resulting shedding resembles the SS
mode induced by the forcing frequency ( fe), the streamwise separation distance between
two consecutive vortical structures of the same sign has increased with downstream
distance. More specifically, as denoted in figure 15(e), the distance between the first and
second vortex pair (λ1 = 1.6d) is half the distance between the second and third vortex
pair (λ1 = 3.2d). The vortex roll-up process itself ends before x/d = 2.1 and this location
also lies just downstream of where the flow reversal in the cylinder’s wake ends, which
leads to an acceleration, as shown by the mean streamwise velocity profile in figure 15(g).
It is expected that the CVP experiences this acceleration, resulting in the distance between
two subsequent pairs increasing by a factor of two. The increase in separation distance
between consecutive CVPs by this exact factor of two is hereby proposed as the source
of the 0.5fe lock-in since the near-field and shear layer roll-up is modulated by fe. While
only two timestamps are shown in figure 15 for brevity, this factor of two was observed for
multiple timestamps and across other lock-in cases such as fe/fo = 1.4, �u/U∞ = 0.125
as well, highlighting a generalised feature.

5. Conclusion

A parametric study was conducted in order to investigate the concept of vortex lock-in for
circular cylinders in an oscillatory flow. Cylinders of various diameters were positioned
at the velocity node and velocity antinode in a standing wave, and hot-wire anemometry
was performed to determine the dominant frequencies present in the flow field. Planar
high-speed PIV measurements were subsequently carried out for selected cases in order to
better understand the physical mechanisms driving lock-in.

The results demonstrated good agreement with the previous findings of Barbi et al.
(1986) and the significance of the velocity perturbations was also established by comparing
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the shedding frequency at the velocity antinode and the velocity node. This led to the
derivation of a novel scaling based on the experimental data, which encapsulates both the
fluidic properties of the flow and the geometrical properties of the cylinder. This newly
established data-driven model allows the prediction of the flow perturbations required to
trigger lock-in, given the cylinder diameter, excitation frequency, steady mean velocity
and the corresponding natural shedding frequency are known. While the model and
experimental data showed good agreement with an r.m.s. error of only 0.01, the new
scaling was also validated with data obtained from the literature. The scaling established
the Strouhal number of the cylinder as an important parameter, even at the point of
lock-in. The non-dimensional parameters established by the scaling were also used to
provide an explanation for the bimodal nature of the vortex shedding, as observed from
PIV measurements. The POD analysis of the vortex shedding patterns was carried out
and the time-averaged wake properties were assessed, with any sensitivity on the flow
perturbations and/or fe/f0 discussed. The amplitude of the fluctuations, obtained from
POD modes, and the subsequent flow field reconstructions enabled the dynamics of the
shedding mode competition and the emergence of lock-in (0.5fe) to be established. In
particular, a wavelength doubling was measured between the vortical structures in the
flow field and coupled with an acceleration of the flow after the cylinder’s wake, this
was advocated as the source of lock-in (0.5fe). Finally, the results and scaling law derived
herein were determined for a Reynolds number range between 500 and 7200 and additional
experiments are required to assess the universality of the results when applied to other
Reynolds number ranges.
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