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The Richtmyer–Meshkov instability on a three-dimensional single-mode light/heavy
interface is experimentally studied in a converging shock tube. The converging shock
tube has a slender test section so that the non-uniform feature of the shocked flow
is amply exhibited in a long testing time. A deceleration phenomenon is evident in
the unperturbed interface subjected to a converging shock. The single-mode interface
presents three-dimensional characteristics because of its minimum surface feature,
which leads to the stratified evolution of the shocked interface. For the symmetry
interface, it is quantitatively found that the perturbation amplitude experiences a
rapid growth to a maximum value after shock compression and finally drops quickly
before the reshock. This quick reduction of the interface amplitude is ascribed to
a significant Rayleigh–Taylor stabilization effect caused by the deceleration of the
light/heavy interface. The long-term effect of the Rayleigh–Taylor stabilization even
leads to a phase inversion on the interface before the reshock when the initial
interface has sufficiently small perturbations. It is also found that the amplitude
growth is strongly suppressed by the three-dimensional effect, which facilitates the
occurrence of the phase inversion.

Key words: compressible flows, shock waves

1. Introduction
The Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969) occurs

when an arbitrarily perturbed interface separating two different fluids is impulsively
accelerated by a shock wave. It shares similarities with the Rayleigh–Taylor (RT)
instability (Rayleigh 1883; Taylor 1950) where initial perturbations at the interface
grow and eventually evolve into a turbulent flow field through the transfer of potential
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to kinetic energy when the interface experiences a constant acceleration pointing
from the lighter fluid to the heavier one. RM and RT instabilities play a central
role in the performance degradation of spherical implosions in inertial confinement
fusion (Lindl et al. 2014). The perturbation in RM instability is always unstable
regardless of the shock direction, while the RT effect may be unstable or stable
depending on whether the acceleration is directed from the lighter fluid to the
heavier one or vice versa. The RM instability is mainly governed by the production
of baroclinic vorticity (ω) which results from the misalignment of the pressure
gradient (∇p) associated with the shock wave and the density gradient (∇ρ) of the
material interface: Dω/Dt = (∇ρ × ∇p)/ρ2. The perturbations grow linearly until
their amplitudes become comparable to their wavelengths. Eventually, the interface
develops into a turbulent mixing layer (Mohaghar et al. 2017; Zhou 2017). The RM
instability has become increasingly significant in many areas of scientific research
such as inertial confinement fusion (ICF) (Lindl et al. 2014), supersonic combustion
(Yang, Kubota & Zukoski 1993) and astrophysical problems (Arnett et al. 1989), and
several comprehensive reviews on the RM instability have been made (Zabusky 1999;
Brouillette 2002; Ranjan, Oakley & Bonazza 2011; Luo et al. 2014b).

During the past few decades, the interaction of a planar shock wave with a
two-dimensional (2-D) single-mode interface was discussed extensively. The 2-D
incompressible impulsive model proposed by Richtmyer (1960) was verified to
be applicable in the light/heavy configuration at the early linear stage (Collins &
Jacobs 2002). More accurately, the compressible linear model has been proposed
by Wouchuk (2001a,b), considering the ripples around the interface when a shock
or refraction wave is reflected. When the amplitude-to-wavelength ratio approaches
one, the perturbation growth goes through a nonlinear process, showing a distinct
discrepancy from the linear prediction (Rikanati et al. 2003). Many theoretical and
empirical models were developed to predict the nonlinear growth and the following
turbulent mixing, and a relatively exhaustive review has been conducted by Abarzhi
(2008). In recent years, the planar RM instability induced by strong shocks has also
attracted much attention (Dell, Stellingwerf & Abarzhi 2015).

Compared with the planar RM instability, the converging RM instability is more
closely related to the reality of ICF. In the converging RM instability, both the radial
(r) and the angular (θ ) directions are involved. Bell (1951) and Plesset (1954) firstly
analysed the early time growth of the RT instability in cylindrical and spherical
geometries, and found that the growth rate of perturbations varies with the radius
of the interface, which is later called the Bell–Plesset (BP) effect. Several nonlinear
models (Mikaelian 2005; Matsuoka & Nishihara 2006; Liu, He & Yu 2012; Liu et al.
2014; Wang et al. 2015) revealed that the BP effect suppresses the nonlinearity and
extends the linear stage longer than that in the planar configuration, as demonstrated
in a laser driven experiment (Fincke et al. 2005). Besides, for the continuously radial
flow after the converging shock, the interface as a whole is in a non-uniform pressure
field, which inevitably introduces the RT effect. The RT effect in the converging RM
instability has been reported in experiments on the OMEGA laser (Lanier et al. 2003)
and in numerical simulations (Lombardini, Pullin & Meiron 2014). Therefore, the
coupling of BP effect, RT effect and multiple impacts (shock reflects back and forth
between the interface and the convergence centre) greatly increases the complexity
of the converging RM instability. In previous work (Meshkov, Nevmerzhitsky &
Zmushko 1997a; Meshkov, Nikiforov & Tolshmyakov 1997b), investigations on
turbulent mixing development in spherical and cylindrical geometries were attempted,
and the interface mixing width as well as the RT effect were simply analysed.
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However, the initially convergent shock wave was disturbed, and only limited data
were extracted from the experiments. Kumar, Hornung & Sturtevant (2003) studied
the growth of a multi-mode initial interface, formed by sandwiching a polymeric
membrane between wire-mesh frames, in a conical geometry, and found that the
turbulent mixing zone at very late time has a relatively larger growth rate than
the planar counterpart. These studies focused on the turbulent mixing stage, and a
direct experimental observation of the very complex process of the converging RM
instability is still desirable.

The converging RM instability has rarely been studied in a shock tube circumstance
mainly due to the difficulty of generating a stable converging shock in laboratory
conditions. There are only few works on the cylindrically converging shock (Perry &
Kantrowitz 1951; Takayama, Kleine & Grönig 1987; Dimotakis & Samtaney 2006;
Zhai et al. 2010; Luo et al. 2015) and, consequently, shock tube experiments on the
converging RM instability are scarce (Hosseini & Takayama 2005; Si, Zhai & Luo
2014; Biamino et al. 2015; Si et al. 2015). Recently, two quantitative shock tube
experiments were, respectively, reported in a semi-annular converging shock tube
(Ding et al. 2017) and a coaxial converging shock tube (Lei et al. 2017), in which
a reduction of growth rate was found and was ascribed to the RT stabilization effect
caused by the interface deceleration motion existing in the converging circumstance.
However, these shock tubes have a very short test length (RT 6 50 mm) such that
only few data points were acquired and the BP effect is significant. As a result,
the effective time of the RT stabilization effect was limited (less than 70 µs),
and the intensive coupling of the BP and RT effects made the analysis difficult.
Therefore, more experiments on the single-mode interface are needed to explore
physical mechanisms in the converging RM instability in a relatively long time scale.

2. Experimental method

In this work, the converging RM instability is quantitatively studied in a cylindrically
converging shock tube which has already verified its feasibility and reliability for the
studies of the converging RM instability in our previous work (Luo et al. 2014a;
Si et al. 2014) and, therefore, only a brief description of this facility is given here.
This shock tube consists of a 1.7 m driver section, a 2.0 m driven section and a
1.2 m test section. The incident planar shock Mach number is Ms = 1.2 and the
cross-sectional area is 140 mm × 20 mm. Both the driver and driven gases are air.
As sketched in figure 1(a), the converging section for testing is very slender (radial
length RT = 212 mm, with a convergent angle of 15◦ and a height of 140 mm)
so that the physical mechanisms in the converging RM instability can be amply
exhibited for a sufficiently long time scale. The soap film technique is used to
generate the discontinuous gaseous interface in the converging shock tube. As shown
in figure 1(b), the interface generation device consists of several acrylic sheets (fixed
A and C, moveable B2, supplementary B1 and B3 pasted on C) and two sinusoidal
wires embedded on A and B2. Before each experiment run, liquid soap (made of
78 % distilled water, 2 % sodium oleate and 20 % glycerine by mass) is injected
from holes in A into the sinusoidal wires and then the interface is generated by
pulling B2 down to C. As indicated in figure 1(c), these two sinusoidal channels are
perpendicular to the edges, keeping symmetric on the edge for its consistency with
completely cylindrical shock experiments. To guarantee a stable generation of the
interface, the two sinusoidal wires are both 1 mm beyond the acrylic sheets, thus
the effective height of the interface is d0 = 18 mm. The initial interface position is
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FIGURE 1. (Colour online) Schematics of the test section of the converging shock tube
(a), the device to generate soap film interface (b) and the interface location on the lower
window (consisting of three acrylic sheets: B1, B2 and B3 (c). CZ: convergent zone, TZ:
transition zone. Numbers are in mm except the Mach number.

set as R0 = 195 mm, and the incident shock Mach number is 1.26 at R0 = 195 mm.
In order to generate an air/SF6 interface, as shown in figure 2(a), an inflow conduit
is inserted from the side wall to fill SF6 into the test section. The original air is
exhausted from the outflow hole, and a sealpad is placed behind the interface to
prevent SF6 spreading to the former planar section. When the SF6 at the outflow hole
has been detected by a gas concentration detector to be pure enough, the interface
is quickly generated, followed by the block of the inflow hole and the pumping out
of the residual SF6 between the interface and sealpad. Subsequently, the sealpad is
quickly taken out and an air/SF6 interface is formed. It is well known that the initial
conditions are crucial for development of the RM instability. During the generation
of the initial interface, both sides of the interface are connected to keep the pressures
at both sides of interface in balance. When the interface is formed, there might be
a little bit difference in pressure just based on how one closes the valve. However,
this difference (∼several Pa) is so small that it can be ignored. Moreover, after the
interface formation and before the experiment start, the time interval allows for the
diffusion of gases at both sides, and the pressures tended to be more stable. As a
result, the shape of the interface with the minimum surface feature is unchanged as
long as the experimental apparatus is kept. Of course, the gas concentration cannot
be guaranteed to be the same for each experimental run. However, the differences
among the experimental runs are not significant, and the slight diversity of the gas
concentration will not greatly affect the interface morphology and perturbation growth.

A Z-fold schlieren system is adopted to visualize the flow field through two
observation windows mounted in the test section, as sketched in figure 2(a).
Illuminated by a mercury lamp light source, the flow field is captured by a
high-speed video camera (FASTCAM SA5, Photron Limited) with the shutter at
1 µs. The temporal and spatial resolutions respectively are 20 µs frame−1 and
∼ 0.29 mm pixel−1.

The formed interface has a zero mean curvature because the gases on both sides are
at ambient pressure. Therefore, it is characterized as a minimum surface (Luo, Wang
& Si 2013) and presents a three-dimensional (3-D) feature. In a cylindrical coordinate
system (r, θ, z), with r, θ and z being the radius, angle and height, respectively, the
minimum surface can be described as a vector R = (r cos θ, r sin θ, z). Deduced by
differential geometry in an arbitrary curved surface, the zero mean curvature equation
can be expressed as follows (Isenberg 1992):

H =
GL− 2FM + EN

2(EG− F2)
= 0 (2.1)
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FIGURE 2. (Colour online) Schematic of schlieren photography system (a), and the three
sinusoidal interfaces with a sketch of the minimum surface feature and a top view of the
interface (b). BI: boundary interface, SI: symmetry interface.

where

E= Rz · Rz, G= Rθ · Rθ , F= Rz · Rθ , (2.2a−c)

L=
1
D
(Rz × Rθ) · Rzz, N =

1
D
(Rz × Rθ) · Rθθ , M =

1
D
(Rz × Rθ) · Rzθ ,

(2.3a−c)

with subscripts denoting partial derivatives and D =
√

EG− F2. From (2.1), the
interface surface can be described as:

r2
+ 2rzrθrrzθ + 2r2

θ + r2r2
z = rrzzr2

θ + r3rzz + rrθθr2
z + rrθθ . (2.4)

Three interfaces (Cases a, b and c) with different sinusoidal boundary constraints
are formed in the present study. The initial amplitude (a0 defined as the half-width
from crest to trough) and azimuthal wavenumber (n) of the three configurations are,
respectively, (a0, n)= (2 mm, 36), (4 mm, 36) and (2 mm, 72). The boundary of the
sinusoidal constraint, r= R0 + a0 sin(nθ −π/2), generates a minimum surface as

r(z, θ)= Ri cosh(z/Ri)+ a(z) sin(nθ −π/2), (2.5)

where the amplitude, a(z), in each height (z) can be acquired by numerically solving
equation (2.4) with Ri the symmetry radius (at z = 0). Therefore, the interfacial
amplitude at each cross profile is different, as shown in figure 2(b). Specifically, the
minimum amplitudes, ai, are all located at the symmetry plane and are, respectively,
0.722 mm, 1.391 mm and 0.136 mm. Therefore, the boundary interface (BI, the
cross-profile at the boundary plane) has a larger amplitude than the symmetry
interface (SI, the cross-profile at the symmetry plane), i.e. the BI and SI have a
sinusoidal shape with the same wavenumber but with different amplitudes.
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FIGURE 3. Schlieren pictures showing the evolution of an unperturbed air/SF6 interface
subjected to a cylindrically converging shock wave. TS, transmitted shock; RTS, reflected
shock of TS from the focusing centre; TRTS, transmitted shock of RTS from the interface.
Numbers denote time in µs.

3. Unperturbed interface

To obtain the flow characteristics after the shock–interface interaction in the
convergent geometry, the unsteady moving feature of an unperturbed (i.e. the
amplitude of the initial interface is a0 = 0) air/SF6 cylindrical interface is first
studied. As shown in figure 3, owing to the limited range of observation and light
blocking of the interface generation device, only the central part of the test section is
visualized. A circular constraint at the boundaries (r=R0) is used, which generates a
minimum surface of r=Ri cosh(z/Ri), where z∈ (−d0/2, d0/2) and Ri= 194.79 mm at
z= 0. Because the symmetry radius Ri is almost identical to the boundary radius (R0),
the 3-D characteristics of the unperturbed interface are negligible, coinciding with
the schlieren images. As can be seen from the movement of an unperturbed interface
accelerated by a cylindrically converging shock wave, the interface thickness has no
obvious increase. Moreover, under the conditions of the incident shock Ms = 1.2 and
the experimental duration of approximately 1 ms, the thickness of the boundary layers
on the top and bottom walls of the test section is estimated to be of the order of 0.5
mm (∼4.9 ×

√
µt/ρ, where the viscosity of air is µ = 1.79 × 10−5 Pa s−1 and the

density of air is ρ= 1.2 kg m−3 at the pressure of 101 325 Pa and the temperature of
293 K), which is far smaller than the thickness of the shock tube test section. These
indicate that the boundary layer effects are not significant and can be ignored at least
for the time studied in the present work.

The initial time (t = 0 µs defined as the moment when the incident shock arrives
at R0) is deduced from the location and velocity of the transmitted shock (TS). Time
variations of radii of the interface and shock waves including the TS, the reflected
shock of TS from the convergence centre (RTS) and the transmitted shock of RTS
from the interface (TRTS) are acquired. As plotted in figure 4, the interface movement
is classified by three regions of I, II and III based on different time zones. In regions
I and II, the interface first experiences a nearly constant movement and then a
deceleration process before the reshock (defined as the impact by the RTS). When
the TS has moved far away from the interface, an inward deceleration process of the
interface is clearly captured, denoted by the red dashed line in figure 4. As we know,
when the convergent shock moves inwards, the post-shock flow velocity is increasing.
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FIGURE 4. (Colour online) The r–t diagram showing the locations of the interface and
shock waves in unperturbed air/SF6 case. The labels are the same as those in figure 3.

Before the convergent shock approaches the centre, the post-shock flow velocity is
subsonic, and the subsonic flow will be accelerated during the propagation along
a convergent tube. As a result, the interface will be accelerated. When the shock
approaches the convergent centre, the shock Mach number exceeds approximately
2.1 (Zhai et al. 2012), and the post-shock flow velocity will exceed the local sound
speed. For a supersonic flow travelling in a convergent tube, the flow velocity will
be decreasing. Consequently the flow will be blocked, resulting in the deceleration of
the interface. The blockage of the flow is ascribed to the distribution of high pressure.
Under the assumption of strong shock wave, Chisnell (1998) theoretically deduced
that when the specific heat ratio is smaller than 2, the maximum pressure behind
the shock is distributed in the region away from the shock front, but not the region
just behind the shock front. The higher of shock intensity, the longer the distance
of the maximum pressure away from the shock front. In this work, when the shock
approaches the convergent centre, the assumption of a strong shock is satisfied, and
the maximum pressure zone is formed away from the shock front, resulting in the
block of the flow, and further the deceleration of the interface. After the reshock in
region III, the interface moves outwards with a deceleration. During this stage, the
post-shock flow is subsonic. For a shock wave travelling in a divergent tube, the shock
intensity is decreasing, accompanied by the decrease of the flow velocity. Also for
the propagation of subsonic flow along a divergent tube, the post-shock flow velocity
is also decreasing. The reduction of flow velocity before the interface will result in
the deceleration of the interface movement. These decelerations would introduce RT
effects on the interface evolution if the initial interface is weakly perturbed, which
has been reported in experiments on the OMEGA laser (Lanier et al. 2003) and in
converging shock tube experiments (Ding et al. 2017; Lei et al. 2017). It is clear that
the transition between regions II and III is the reshock impact by the reflected shock
from the convergence centre. The transition between regions I and II is classified by
whether the whole interface enters the deceleration stage. Note that in the experiment,
this classification is not accurate enough and has a certain amount of error. However,
the deceleration process of the interface will not be influenced.
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FIGURE 5. (Colour online) Schlieren photographs showing the evolution of the sinusoidal
minimum air/SF6 interface subjected to the cylindrically converging shock. The inset
pictures represent the interface detail when the RTPI has occurred with the white dashed
lines denoting the location of the inverted SI. Red dashed lines indicate the locations of
the SI and BI. PI, phase inversion; RTPI, phase inversion caused by RT stabilization effect.
Dotted lines denote the symmetry interface when the RTPI occurs in Cases a and c. Other
labels are the same as those in figure 3. Numbers denote time in µs.

4. Single-mode interface
The schlieren frames illustrated in figure 5 provide the representative moments in

the three perturbed cases, all showing a 3-D feature of the minimum surface. As
sketched in figure 2(b), the interfaces can be separately described as a symmetry
interface (SI, at z = 0) and two boundary interfaces (BIs, at z = ±d0/2). For
SIs, the crest and trough develop symmetrically at early times due to small
amplitude–wavelength ratios (0.0212, 0.0409 and 0.008, respectively). The BIs
quickly develop into the nonlinear stage with the appearances of bubble structure
pointing inward and spike structure pointing outward because of their larger
amplitude–wavelength ratios (0.0588, 0.1175 and 0.1175, respectively). The reshock
occurs at different times in three cases for slight differences of SF6 concentration in
the test section (volume fractions of SF6 are 79.4 %, 89.7 % and 80.1 %, respectively).
The interface amplitudes increase for the SI and BIs after the impact. After a certain
period, a reduction of the SI amplitude is observed before the reshock in all cases.
A phase inversion (PI, the crest and trough exchange their positions) before the
reshock is observed on the SI in Cases a and c. Usually, the PI in the RM instability
occurs when a shock wave collides with a heavy/light interface. This is the first time
this phase inversion in a light/heavy case has been observed, and it is attributed to
the strong and long-term effect of RT stabilization (this phase inversion is called
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RTPI for differentiating it from the PI when a shock moves from heavy to light).
The absence of the RTPI in Case b indicates that the strength and effective time of
the deceleration cannot trigger the RTPI on the interface with such a large initial
amplitude. However, the SI in Case b experiences a PI after the reshock. Finally, the
interface enters a turbulent state after the reshock in all cases.

Because the BIs in the schlieren images are so faint that it is difficult to extract
reliable data, we shall focus on the SI evolution. Note that in our previous work (Luo
et al. 2013) which dealt with the same type interface impacted by a planar shock, the
evolution of the inner layer was also captured by the schlieren technique and reliable
data were extracted. Using the same method, the SI evolution after the converging
shock impact is obtained here. Due to the very slender test section, the geometry
convergence effect may be insignificant at early times. Therefore, the early variations
of the SI amplitude with time can be described by a 3-D impulsive model extended
from the 2-D impulsive model (Luo et al. 2013).

Based on the previous work (Luo et al. 2013), an arbitrary 3-D multi-mode initial
interface can be described as,

η(x, z, t0)=
∑
kx,kz

a(kx, kz) cos(kxx+ φkx) cos(kzz+ φkz), (4.1)

where η represents the coordinate of the interface based on the moving coordinate
system, kx and kz are wavenumbers in the x and z directions, respectively, a(kx, kz),
φkx and φkz are, respectively, the corresponding perturbation amplitude and phases, and
t0 is the initial time.

During the linear stage, the multi-mode disturbance can be treated as a linear
superposition of each single-mode disturbance. Therefore, the linear growth of a 3-D
multi-mode disturbance can be expressed as,

η(x, z, t)= zcη(x, z, t0)+ zcA+1v(t− t0)f (x, z), (4.2)

where
f (x, z)=

∑
kx,kz

a(kx, kz)

√
kx

2
+ kz

2 cos(kxx+ φkx) cos(kzz+ φkz). (4.3)

Here, t+0 is the time just after the impact of incident shock, zc is the compression ratio
and A+ is post-shock Atwood number.

In this work, the change of growth rate at early times can be neglected due to the
large initial interface radius, and the 3-D multi-mode impulsive model can be applied.
Therefore, kx is replaced by n/R0 in (4.1) and (4.3), neglecting the weak BP effect at
early times and approximately regarding this converging RM configuration as a planar
RM configuration. In the converging minimum surface equation (i.e. (2.5)), the first
term plays an insignificant role, and it is regarded as a constant in the calculation of
the linear growth rate. Based on these assumptions, the disturbance of the minimum
surface can be treated as

η(θ, z, t0)= a(z) sin(kxx−π/2), kx =
n
R0
, x= R0θ. (4.4)

Obviously, there is only one mode in the x direction, and we can use a discrete Fourier
transform to analyse the multi-mode in the z direction. Then, the influence on the
symmetry plane (z= 0) caused by the minimum surface feature can be evaluated as

g=

∑
kz

a(kx, kz)

√
kx

2
+ kz

2 cos(φkz)

a(z= 0)kx
. (4.5)
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Case a0 n ai a0/λ ai/λ ϕ (%) A+ 1v v
exp
i v3D

i v2D
i τlinear

a 2 36 0.722 0.0588 0.0212 79.4 0.655 90.098 2.998 3.440 6.047 0.646
b 4 36 1.391 0.1175 0.0409 89.7 0.683 87.709 5.756 6.833 12.186 0.789
c 2 72 0.136 0.1175 0.008 80.1 0.657 89.931 0.966 0.972 2.327 0.410

TABLE 1. Physical parameters of the three cases studied: a0 and ai are respectively the
initial amplitudes of the boundary plane and the symmetry plane, n and λ are azimuthal
wavenumber and wavelength, respectively, ϕ is the volume fraction of SF6, A+ is the post-
shock Atwood number, 1v is the velocity jump of the interface, vexp

i is the linear growth
rate of the symmetry interface from experiment, v3D

i and v2D
i are linear growth rates of

the symmetry interface from three-dimensional and two-dimensional theories, respectively,
τlinear = nvi

expt/R is the dimensionless time of the linear stage. Amplitude is in mm and
growth rate is in m s−1.

The interface geometry factors g at the symmetry plane are calculated to be 0.569,
0.561 and 0.418 for Cases a, b and c according to their initially principal curvatures,
respectively.

Thus, the 3-D impulsive growth rate is acquired as

ȧ3D
= gȧ2D

= ga+i nA+1V/Ri, (4.6)

where ȧ denotes the growth rate of the SI amplitude, a+i and 1V are respectively
the post-shock amplitude and interface velocity. The related physical parameters in
the three cases are listed in table 1. Perturbation amplitude and time are, respectively,
normalized by the initial amplitude and the duration for the density interface moving
from Ri to the geometry centre at its initial velocity obtained by the shock impact,
i.e. τ = t1V/Ri. It can be clearly seen in figure 6 that the amplitude growth with
the minimum surface feature is much slower than that obtained by the 2-D impulsive
model, and agrees very well with the prediction by the 3-D impulsive model (Luo
et al. 2013) which considers the 3-D effect (supplementary data are available at
https://doi.org/10.1017/jfm.2018.424). This slowness can be ascribed to the opposite
principal curvatures in vertical and horizontal directions of the minimum surface,
which induce opposite pressure gradients and baroclinic vorticity. The good agreement
between the experimental result and the 3-D impulsive model also confirms that the
BP effect in this slender situation is so weak that it can even be neglected.

After the linear stage, the amplitude starts to drop quickly, which indicates that the
RT stabilization effect becomes effective. By using the end time of the linear stage
from the 3-D impulsive model as the starting point, and considering the RT effect,
Bell’s theory can be modified as

ȧ=
R2
∗

R2
ȧ3D
+ Z

nA− 1
R2

∫ t

t+∗

aRR̈ dt′, (4.7)

where R is the mean radius of the interface, R̈ is its second derivative with time,
t+
∗

stands for the time just after the linear stage, R∗ is the interfacial radius at this
moment (t+

∗
) and A is the pre-shock Atwood number. The first term in the right-hand

side of equation (4.7) corresponds to the 3-D RM instability, and the second term to
the RT effect related to the non-uniform motion of interface with a decay factor Z
(Ding et al. 2017). The factor 1/R2 appearing in both terms represents the BP effect.
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Theo
2D

Exp-a
Exp-b
Exp-c
Theo3D
Theo3D+RT

II

RTPI

Reshock

I

0.0 0.1 0.2 0.3 0.4
†

0.5 0.6 0.7

0.24

0.18

0.12

0.06a-

0

-0.06

-0.12

FIGURE 6. (Colour online) Time variations of amplitude from experiment with error
bars and theoretical predictions for symmetry interfaces in three cases (a, b and c). Exp,
experimental result; Theo2D, 2-D theoretical result for Case a; Theo3D, 3-D theoretical
result for Case a; Theo3D+RT, 3-D theoretical result including the RT effect.

The decelerations are calculated by performing a second derivative of the interface
trajectory and the decay factor Z is closely related to the flow compressibility.
Note that although the initial shock Mach number is only 1.2, the numerical result
(Zhai et al. 2012) showed that the shock Mach number can exceed 2.0 when the
shock approaches the convergence centre. As a result, the flow compressibility is
believed to be considerable and cannot be ignored, especially when the shock wave
approaches the convergence centre. Moreover, as evident in the schlieren images,
many disturbance waves, following the transmitted shock, continuously interact with
the deformed interface at early stages. The flow compressibility caused by these
disturbance waves can also inhibit the growth rate of the perturbation amplitude,
which has not been considered in the Bell’s theory analysis.

As shown in figure 6, the new model describes the amplitude growing behaviour
reasonably well in all cases by using a suitable decay factor Z (0.55, 0.35 and 0.4
for Cases a, b and c, respectively) and correctly predicts the RTPI in Cases a and
c. Because the nonlinearity and 3-D effect can only slow down the growth rate
of amplitude, which facilitates the RTPI occurrence but cannot result in a negative
growth rate, we believe that they only play a secondary role compared with the RT
stabilization effect. As discussed before, the BP effect also plays a minor role on
the amplitude variation. Therefore, the RT stabilization effect is the primary factor
that results in the amplitude decrease and the RTPI. As a whole, the RM instability
promotes the amplitude growth, while the RT stabilization effect inhibits the amplitude
growth in this process. The RTPI is a result of the strong and long-term effect of
the RT stabilization. In fact, the effective time of RT stabilization effect in Case
a is approximately 700 µs, which is almost ten times as long as the one in the
semi-annular converging shock tube (Ding et al. 2017) or in the coaxial converging
shock tube (Lei et al. 2017). Therefore, the RTPI was absent in such a short-term
case and only the amplitude reduction was observed in previous studies. However, it
should be clearly stated that the theoretical model is a simple model that does not
account for the important details of shock–interface interaction, the non-local character
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and the statistically unsteadiness of the RT/RM dynamics, and further investigations
are required. Also, it should be noted that the interface amplitude will start to grow
after a certain time because the amplitude a is negative after the RTPI and the growth
rate of the amplitude becomes positive according to equation (4.7). Therefore, it is
expected that the interface amplitude will oscillate around zero for a sufficiently long
time of deceleration. However, in our experiment, the deceleration time is limited by
the length of the converging section of the facility so that only the RTPI is observed
and the oscillation of interface amplitude is absent.

5. Conclusions
The evolution of perturbed air/SF6 interfaces subjected to a cylindrically converging

shock wave is investigated experimentally in a converging shock tube with a very
slender test section. Bounded by the cylindrically sinusoidal boundary, the generated
single-mode interface presents 3-D characteristics because of its minimum surface
feature, which leads to the stratified evolution of the shocked interface. For the
symmetry interfaces, the development of perturbation amplitude is nearly linear at
early stages and is much slower than the prediction of the 2-D impulsive model,
but coincides well with the prediction of the 3-D linear model which considers
the effects of the opposite principal curvatures of the initial interface. A RTPI is
found at the symmetry interface with a small initial amplitude, which is the result
of the strong and long-term effect of the RT stabilization. This is the first time
this RTPI in a light/heavy configuration has been observed and the RTPI may be
helpful to find a freezing interface in the ICF. A model combining the 3-D effect and
the RT stabilization effect is proposed, which well describes the amplitude growth
behaviour including the RTPI by using a suitable decay factor. It is also noted that
the nonlinearity and 3-D effect contribute to the reduction of growth rate.

The experimental duration in this work is longer compared with the previous
converging RM instability experiments; it seems, however, far from the best duration.
The present work is only a starting point, and further investigations are required to
understand the properties of the RT/RM dynamics in a convergent geometry. In our
laboratory, a converging shock tube with a stronger shock and a larger test section,
which can provide a longer duration of test, is under construction. Combined with
the particle image velocimetry and planar laser induced fluorescence techniques, more
interesting results are expected.
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