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The term ‘Asymmetric Propeller’ and studies on it appeared first in [1]
by Bankoff, Erdos and Klamkin, it was in [2] by Alexanderson, and more
recently in [3] by Gardner. The original propeller theorem refers to three
congruent equilateral triangles that share the same vertex.

More expansions in turn are given, since equilateral triangles are not
necessarily congruent [1], and they do not even need to have a common
vertex, but only need to be erected at the vertices of an equilateral triangle
[2]. Finally, Gardner gives a further generalisation by using three similar
triangles erected at the vertices of a fourth triangle similar to the three given
triangles [3] (see Figure 1).

Theorem 1 (Generalisation of the asymmetric propeller by Gardner [3]).
If , ,  and  are similar triangles, all labelled in the

same sense and situated so that corresponding angles meet at the vertices of
triangle , then ,  and  are the midpoints of ,  and , are
vertices of a triangle similar to the other four.
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FIGURE 1: Further generalisation of the asymmetric propeller by Gardner

In [3] Gardner also mentions a propeller theorem which is not only with
triangles, so for this paper, we propose a propeller theorem with four initial
squares erected at the vertices of an initial square. We shall continue
Gardner's idea, propose the asymmetric propeller for squares, and give
additional generalisations and extensions. Interestingly, Theorem 2 would
seem to form a bridge between the asymmetric propeller theorem (for
squares), Van Aubel's theorem and Napoleon's theorem.
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Theorem 2
Let  be a square. Attach at vertices , ,  and  four random

squares , ,  and  (labelled in the opposite
sense to ), with centres , ,  and , respectively. Let , ,
and  be midpoints of segments , ,  and , respectively.
Then

ABCD A B C D
AA1A2A3 BB1B2B3 CC1C2C3 DD1D2D3
ABCD Oa Ob Oc Od X Y Z

W A1B3 B1C3 C1D3 D1A3

(i)  and .XZ = YW XZ ⊥ YW
(ii) Midpoints of the segments , ,  and  are vertices

of a square (see Figure 2).
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FIGURE 2: Asymmetric propeller with squares

Proof (see Figure 3): 

(i) Throughout this Article, using the notation of [4], let  show the
Euclidean vector connecting an initial point  with a terminal point .

PQ
→

P Q
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Let  be the  counter clockwise rotation of the plane (see [4]).
Assume that the square  has a clockwise direction, we have

� 90°
ABCD

XZ
→

= XA1

⎯⎯→
+ A1A

⎯⎯→
+ AD

→
+ DD3

⎯⎯→
+ D3Z

⎯⎯→
(1)

and

XZ
→

= XB3

⎯⎯→
+ B3B

⎯⎯→
+ BC

→
+ CC1

⎯⎯→
+ C1Z

⎯⎯→
. (2)
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FIGURE 3: Proof of Theorem 2

Since ,  are the midpoints of , , respectively,
and , combining with (1) and (2), we have

X Z A1B3 C1D3 XA1
⎯⎯→

+ XB3
⎯⎯→

= 0
→

ZC1
⎯⎯→

+ ZD3
⎯⎯→

= 0
→

2XZ
→

= A1A
⎯⎯→

+ AD
→

+ DD3

⎯⎯→
+ B3B

⎯⎯→
+ BC

→
+ CC1

⎯⎯→
. (3)
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Similarly we have

2WY
⎯⎯→

= A3A
⎯⎯→

+ AB
→

+ BB1

⎯⎯→
+ D1D

⎯⎯→
+ DC

⎯⎯→
+ CC3

⎯⎯→
. (4)

Since  is a linear mapping, from (3) we have�

2� (XZ
→) = � (2XZ

→) = � (A1A
⎯⎯→

+ AD
→

+ DD3

⎯⎯→
+ B3B

⎯⎯→
+ BC

→
+ CC1

⎯⎯→)
= �(A1A

⎯⎯→) + �(AD
→) + �(DD3

⎯⎯→) + �(B3B
⎯⎯→) + �(BC

→) + �(CC1

⎯⎯→)
= AA3

⎯⎯→
+ AB

→
+ D1D

⎯⎯→
+ BB1

⎯⎯→
+ DC

⎯⎯→
+ CC3

⎯⎯→
= 2WY

⎯⎯→
 (using (4)).

This implies that . Since  is a rotation of , we obtain
 and . This completes the proof of part (i).

WY
⎯⎯→

= � (XZ
→) � 90°

XZ = WY XZ ⊥ WY
(ii) Let , ,  and  be the midpoints of segments , ,  and

, respectively. Since ,  are the midpoints of  and
respectively, we have

E F G H XZ YW ObOd
OaOc G E ObOd XZ

4GE
⎯⎯→

= 2ObX
⎯⎯→

+ 2OdZ
⎯⎯→

= B1A1

⎯⎯⎯ →
+ D1C1

⎯ ⎯⎯ →

= (B1B
⎯⎯→

+ BA
→

+ AA1

⎯⎯→) + (D1D
⎯⎯→

+ DC
⎯⎯→

+ CC1

⎯⎯→) .

Using  , we obtain�

4� (GE
⎯⎯→) = � (4GE

⎯⎯→) = � ((B1B
⎯⎯→

+ BA
→

+ AA1

⎯⎯→) + (D1D
⎯⎯→

+ DC
⎯⎯→

+ CC1

⎯⎯→))
= (�(B1B

⎯⎯→) + �(BA
→) + �(AA1

⎯⎯→)) + (�(D1D
⎯⎯→) + �(DC

⎯⎯→) + �(CC1

⎯⎯→))
= (B3B

⎯⎯→
+ BC

→
+ AA3

⎯⎯→) + (D3D
⎯⎯→

+ DA
→

+ CC3

⎯⎯→)
= (B3C

⎯⎯→
+ AA3

⎯⎯→) + (D3A
⎯⎯→

+ CC3

⎯⎯→)
= B3C3

⎯⎯⎯ →
+ D3A3

⎯⎯⎯ →

= 2ObY
⎯⎯→

+ 2OdW
⎯ ⎯⎯ →

= 4GF
⎯⎯→

.
From this identity, triangle  is half of a square. Similarly,  is also
half of a square, therefore  is a square. This completes the proof of
part (ii).

GEF HEF
EFGH

 We can further extend part (ii) of Theorem 2 as follows:
Theorem 3:

Let  be a quadrilateral. Attach at vertices , ,  and  four
parallelograms , ,  and  with centres ,

,  and , respectively. Let , ,  and  be midpoints of segments
, ,  and , respectively. Then  and , which are the

ABCD A B C D
AA1A2A3 BB1B2B3 CC1C2C3 DD1D2D3 Oa

Ob Oc Od X Y Z W
A1B3 B1C3 C1D3 D1A3 E, F, G H
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midpoints of the segments , ,  and  respectively, are the
vertices of a parallelogram (see Figure 4).

XZ YW OaOc ObOd

Proof :
We have

4GF
⎯⎯→

= 2OdW
⎯ ⎯⎯ →

+ 2ObY
⎯⎯→

= D3A3

⎯⎯⎯ →
+ B3C3

⎯⎯⎯ →

= D3C3

⎯ ⎯⎯ →
+ B3A3

⎯⎯→

= 2ZOc
⎯⎯→

+ 2XOa
⎯⎯→

= 4EH
⎯⎯→

.
From this identity,  is a parallelogram. This completes the proof of
Theorem 3.
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 FIGURE 4: Further generalisation of the asymmetric propeller with parallelograms

The asymmetric propeller for squares and extension to parallelograms
reminds me of erecting four squares outside an arbitrary quadrilateral.
Meanwhile, we notice that erecting squares on the sides of a quadrilateral is
Van Aubel's theorem [5, 6, 7, 8, 9, 10]. Formally, Theorem 2 looks pretty
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close to Van Aubel's theorem. This is also quite similar to Napoleon's
theorem and its extensions (see [5, 8, 11]). The surprising thing is that it
generates a square from any quadrilateral (see [9, 10]). Rotating vectors is
still a useful tool to prove this.

It remains to consider the concept of the centroid of the n-point system
in [12]: Given  points, identified by vectors, define their centroid to be the
vector which is the average of the  points. So in the theorem below, the
centroid of a quadrilateral can be understood as the centroid of a set of four
points (vertices of this quadrilateral).

n
n

Theorem 4: Let  be an arbitrary quadrilateral. Erect four squares
, ,  and  outside . Let , ,  and  be the

centroid of quadrilaterals , ,  and , respectively.
Then

ABCD
ABEF BCGH CDKL DAPQ ABCD X Y Z W

PFEH EHGL GLKQ KQPF

(i) quadrilateral  is a square,XYZW
(ii) the centre of the square  coincides with the centroid of

quadrilateral  (see Figure 5).
XYZW

ABCD

Proof :
(i)  Assume that the quadrilateral  has a clockwise direction. Since ,

,  and  are the centroids of quadrilaterals , ,  and
, respectively, we have

ABCD X
Y Z W PFHE EHGL GLKQ
KQPF

4XY
→

= EE
→

+ HH
⎯⎯→

+ FG
⎯⎯→

+ PL
→

= FG
⎯⎯→

+ PL
→

(5)
and

4XW
⎯⎯→

= FF
→

+ PP
→

+ EQ
⎯⎯→

+ HK
⎯⎯→

= EQ
⎯⎯→

+ HK
⎯⎯→

. (6)

Because , ,  and  are square, soABEF BCGH CDKL DAPQ

� (FB
→) = AE

→
, � (BG

→) = CH
⎯⎯→

, � (PD
→) = QA

→
, � (DL

→) = KC
⎯⎯→

. (7)

Since  is a linear mapping, using (5), (6) and (7), we have�

4� (XY
→) = � (4XY

→)
= � (FG

⎯⎯→
+ PL

→)
= � (FG

⎯⎯→) + � (PL
→)

= � (FB
→

+ BG
→) + � (PD

→
+ DL

→)
= (� (FB

→) + � (BG
→)) + (� (PD

→) + � (DL
→))

= (AE
→

+ CH
⎯⎯→) + (QA

→
+ KC

⎯⎯→)
= (AE

→
+ QA

→) + (CH
⎯⎯→

+ KC
⎯⎯→)
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= QE
⎯⎯→

+ KH
⎯⎯→

= −4XW
⎯⎯→

. (8)
Because  is the rotation through angle  counter-clockwise and from (8)
we find that  is the image of  in a counter clockwise, rotation by
centre . Thus  is half of a square. Similarly, we see that  is the
other half of a square so that  is a square.

� 90°
W Y 90°

X XYW ZWY
XYZW

(ii) Let  be the centre of the square . We will prove that  is also the
centroid of  We have

I XYZW I
ABCD.

� (AB
→

+ BC
→

+ CD
⎯⎯→

+ DA
→) = 0

→
(9)

which is equivalent to

� (AB
→) + � (BC

→) + � (CD
⎯⎯→) + � (DA

→) = 0
→

(10)
or

AF
→

+ BG
→

+ CL
→

+ DQ
⎯⎯→

= 0
→
. (11)
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Z

W

K L

FIGURE 5: Proof of Theorem 4
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It is easily seen that

FE
→

+ HG
⎯⎯→

+ LK
→

+ QP
→

= AB
→

+ BC
→

+ CD
⎯⎯→

+ DA
→

= 0
→
. (12)

From (12), we have

IE
→

+ IG
→

+ IK
→

+ IP
→

= IF
→

+ IH
→

+ IL
→

+ IQ
→

. (13)

From (11) and (13), we get that

IE
→

+ IG
→

+ IK
→

+ IP
→

= IF
→

+ IH
→

+ IL
→

+ IQ
→

− 0
→

= IF
→

+ IH
→

+ IL
→

+ IQ
→

− (AF
→

+ BH
→

+ CL
→

+ DQ
⎯⎯→)

= IA
→

+ IB
→

+ IC
→

+ ID
→

. (14)
From (13) and (14), we see that

IA
→

+ IB
→

+ IC
→

+ ID
→

= 1
2 (IE→ + IG

→
+ IK

→
+ IP

→
+ IF

→
+ IH

→
+ IL

→
+ IQ

→). (15)
Since ,  are the centroids of quadrilaterals , , respectively,
and  is the midpoint of , we obtain

X Z PFEH GLKQ
I XZ

IE
→

+ IG
→

+ IK
→

+ IP
→

+ IF
→

+ IH
→

+ IL
→

+ IQ
→

= (IP→
+ IF

→
+ IE

→
+ IH

→) + (IG→ + IL
→

+ IK
→

+ IQ
→)

= 4IX
→

+ 4IZ
→

= 4 (IX→ + IZ
→) = 0

→
. (16)

From (15) and (16), we have that

IA
→

+ IB
→

+ IC
→

+ ID
→

= 0
→

(17)
i.e.  is also the centroid of quadrilateral . This completes the proof of
Theorem 4.

I ABCD

Remark: The vector proofs are general, and also apply when the attached
figures lie towards the inside as well as when the base quadrilateral is
concave or crossed.
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