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Abstract. Attaining the limit of sub-microarcsecond optical resolution 
will completely revolutionize fundamental astrometry by merging it with 
relativistic gravitational physics. Beyond the sub-microarcsecond thresh­
old, one will meet in the sky a new population of physical phenomena 
caused by primordial gravitational waves from the early universe and/or 
different localized astronomical sources, space-time topological defects, 
moving gravitational lenses, time variability of gravitational fields of the 
solar system and binary stars, and many others. Adequate physical inter­
pretation of these yet undetectable sub-microarcsecond phenomena can­
not be achieved on the ground of the "standard" post-Newtonian ap­
proach (PNA), which is valid only in the near-zone of astronomical ob­
jects having a time-dependent gravitational field. We describe a new, 
post-Minkowskian relativistic approach for modeling astrometric obser­
vations having sub-microarcsecond precision and briefly discuss the light-
propagation effects caused by gravitational waves and other phenomena 
related to time-dependent gravitational fields. The domain of applicabil­
ity of the PNA in relativistic space astrometry is outlined explicitly. 

1. Theoretical principles of relativistic astrometry 

For a long time the basic theoretical principles of general relativistic astrome­
try in the solar system were based on using the post-Newtonian approximate 
solution of the Einstein equations (Soffel, 1989; Brumberg, 1991; Will, 1993). 
The metric tensor of the post-Newtonian solution is an instantaneous function 
of coordinate time t. It depends on the field point, x, and the coordinates, 
xa(t), and velocities, v0(/), of the gravitating bodies, and is valid only inside 
the near zone of the solar system because it involves expansion of retarded field 
integrals with respect to the small parameter va/c (Fock, 1959). This expan­
sion restricts the domain of validity for which the propagation of light rays can 
be considered from the mathematical point of view in a self-consistent manner 
by the boundary of the near zone. Finding a solution of the equations of light 
propagation in the near zone of the solar system, for instance, can be achieved 
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by expanding the positions and velocities of the solar system bodies in a Taylor 
series around some fixed instant of time t*, their substitution into the equa­
tions of motion of photons, and their subsequent integration with respect to 
time. Such an approach is theoretically well-justified for a proper description of 
radar (Reasenberg et a/., 1979) and lunar laser ranging (Williams et a/., 1996) 
experiments, and interpretation of the Doppler tracking of satellites. However, 
this static-in-time approach meets with unsurpassable difficulties if one wants 
to integrate the equations of light propagation from any object lying beyond the 
limits of the solar system, where the gravitational field cannot be considered as 
static if one decides to search for sub-microarcseconds astrometric effects. This 
is because planets are moving around the Sun and, hence, the gravitational field 
is changing. 

An additional problem arising in expansion about a single instant of time 
t* is how to determine that fiducial instant of time to which the coordinates and 
velocities of gravitating bodies should be anchored. The answer is obscured if 
one works in the framework of the PNA scheme, which disguises the hyperbolic 
character of the Einstein equations for the gravitational field, and does not allow 
us to distinguish between advanced and retarded solutions of the field equations 
(Damour et al., 1991). For this reason, propagation of light rays, which always 
takes place along the null characteristics of a light cone, differs in the post-
Newtonian scheme from that of the gravitational field itself, which propagates 
(in the framework of this scheme) instantaneously with infinite speed. Thus, 
the true causal relationship between the position of the light particle and the 
location of the light-deflecting bodies in the system is violated, which leads to 
a need for artificial assumptions about the initial values of the positions and 
velocities of the bodies for integration of equations of light propagation. One 
reasonable choice is to fix the coordinates and velocities of the body at the mo­
ment of the closest approach of the light ray. Such an assumption was used 
by Klioner & Kopeikin (1992), who proved that it minimizes the magnitude of 
residual terms of the post-Newtonian solution of the equations of light propa­
gation. Among other difficulties in the application of the PNA to solving the 
problem of propagation of light rays beyond its domain of applicability is the 
logarithmic divergence of the post-Newtonian metric tensor at large distances 
from the solar system. Almost all extra-solar luminous objects visible in the sky 
lie far beyond the allowed distance and, hence, the results of integration of the 
equations of light propagation from, e.g., stars in our galaxy or extra-galactic 
objects performed previously by various authors on the premise of the imple­
mentation of the post-Newtonian metric tensor cannot be considered as rigorous 
and conclusive, because the magnitude of residual terms of such an integration 
were never discussed. 

A real breakthrough in the problem of integration of equations of light prop­
agation in time-dependent gravitational fields has been achieved only recently 
by Kopeikin et al. (1999), where astrometric and timing effects of the near, 
intermediate, and far regions of localized gravitational source emitting gravita­
tional waves were precisely calculated and thoroughly discussed on the basis of 
the post-Minkowskian approximation (PMA) scheme that is free of the draw­
backs of the standard PNA. Further progress in solving this problem was made 
in the paper by Kopeikin & Schafer (1999), where propagation of light in the 
field of arbitrary-moving massive monopole particles was described in detail. All 
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possible astrometric effects in VLBI, pulsar timing, Doppler tracking, and so on 
were considered, including all retardation phenomena in the propagation of a 
gravitational field from the particles to the photon. We will present a precise de­
scription of the gravitomagnetic effects of particles due to their translational and 
rotational motion in an upcoming publication (Kopeikin k Mashhoon, 2000). 
The model we are using now is so flexible and physically meaningful that it can 
be applied for the treatment of any modern astrometric observation as well as 
for the prediction of numerous physical effects caused by time-dependent grav­
itational fields including gravitational waves from the early universe, localized 
sources of gravitational waves like supernova explosions or binary stars, moving 
and rotating bodies, oscillations of stars, topological defects, and many others. 

2. Advanced relativistic model of light propagation 

In this section we briefly describe the relativistic model of light propagation used 
in our calculations (Kopeikin k Schafer, 1999; Kopeikin et al, 1999; Kopeikin k 
Mashhoon, 2000) and its application for the calculation of some effects that are 
important in gravitational physics. The relativistic model of light propagation 
includes three main constituents: (1) equations of the gravitational field, (2) 
equations of light propagation, and (3) initial and/or boundary conditions. We 
formulate the equations of gravitational field in a harmonic coordinate system 
with arbitrary origin in space. For convenience it can be put at the center-of-
mass of the source of gravitational field, but this is not essential. We also work in 
the linear approximation with respect to the universal gravitational constant G 
without expansion in the velocities of bodies. The metric tensor of the gravita­
tional field can be found immediately from the energy-momentum tensor of the 
source of the gravitational field. The metric tensor is a function of the retarded 
time argument s related to the running time t and to the coordinates x of the 
photon, as well as the retarded coordinates xa(s) of the light-deflecting body by 
the light-cone equation s = t - |x - xa(s)| . With the metric tensor in hand we 
calculate the Christoffel symbols and derive the equations of light propagation, 
which are second-order ordinary differential equations with retarded argument 
s. Exact solutions of such equations became available only after we found a 
series of transformations which brought the equations to the integrable form 
(Kopeikin k Schafer, 1999; Kopeikin et al., 1999). 

Assuming that the light is emitted at a point xo at time to, and that its 
direction of propagation is given at past null infinity as a unit vector k, we 
integrate the equations of light propagation with no other restrictions. The result 
is the trajectory of the light ray perturbed by the time-dependent gravitational 
field, and written as a function of spatial coordinates of the photon, x, with 
parametric dependence on the coordinates of the light-deflecting bodies, taken 
at the retarded time 5. All predictions of possible relativistic effects (time delay, 
deflection angle, intensity, polarization angle, etc.) follow directly from the 
parametric representation of the trajectory. For more details see Kopeikin et al. 
(1999), Kopeikin k Schafer (1999), and Kopeikin k Mashhoon (2000). 
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3. Sub-microarcsecond astrometry and relativistic gravitational ef­
fects 

In this section we briefly describe what kind of predictions one can make be­
yond the sub-microarcsecond level using the aforementioned advanced inte­
gration technique. Sub-microarcsecond space-interferometry optical technology 
along with the advanced post-Minkowskian theory of light propagation in time-
dependent gravitational fields, particularly including plane and multipolar grav­
itational waves, opens outstanding new perspectives for experimental gravita­
tional physics. Here we briefly outline some of the relativistic effects that could 
be precisely calculated and measured. These effects include: 

1. Deflection of light in the higher-order PMA quadratic in G, allowing a 
static-gravitational-field test of alternative theories of gravity with much 
better precision than in the weak-gravitational-field regime linear in G. 

2. Deflection of light caused by gravitational waves emitted by binary stars 
and other periodic and/or non-periodic sources of gravitational waves, 
which may allow tests of alternative theories of gravity in the radiative 
gravitational-wave regime. 

3. Various effects caused by a pre-assumed hypothetical difference in the 
speeds of propagation of gravity and electromagnetic waves. This dif­
ference may arise, for example, as a result of propagation of light rays 
through the interstellar medium with the refraction index different from 
unity or within the framework of an alternative theory of gravity. Differ­
ence in these speeds would bring about deviation of the gravitational null 
cone from the electromagnetic one, which can be tested in observations of 
the deflection of light by giant planets of the solar system or extra-solar 
gravitational lenses. 

4. Specific pattern of proper motions of quasars over the whole sky caused by 
primordial gravitational waves from the early universe. Certain progress 
in solving this problem both theoretically and observationally has been 
achieved by Pyne et al. (1996) and by Gwinn et al. (1997). However, 
a step over the sub-microarcsecond threshold would make the research in 
this direction much more profound. 

5. Relativistic effect of secular aberration caused by the circular motion of the 
solar system with respect to the galactic barycenter. Visualization of the 
secular aberration effect requires calculation of a light-ray trajectory in the 
galactic reference frame with the subsequent relativistic space-time trans­
formation from this frame to the proper reference frame of the observer. 
Some details of calculations are given by Kopeikin (1992) and Klioner & 
Kopeikin (1992). 

6. Cosmological gravitational lens effects for deflectors with variable parame­
ters such as mass, spin, quadrupole moment, etc. A super-massive binary 
black hole in an AGN emitting gravitational waves on a cosmological time-
scale is an example of such a source. 
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7. Testing astrometric effects caused by relic space-time topological defects 
like vibrating cosmic strings, oscillating cosmic loops, gases of monopoles, 
textures, etc. 

8. Study of limitations on the precision of fundamental astrometric reference 
frames imposed by gravitational lensing events due to flybys of stars in 
our galaxy (Sazhin et a/., 1998), gravitational waves from an ensemble of 
galactic binary stars (Kopeikin, 1999), and other related phenomena. 

We are now critically examining these effects in order to work out an appropriate 
observational strategy which might be used for their detection by VLBI and/or 
FAME, SIM, and GALA, space-astrometric missions. 
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