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Abstract

Let Y be a homology sphere which contains an incompressible torus. We show that Y
cannot be an L-space, i.e. the rank of ĤF(Y ) is greater than 1. In fact, if the homology
sphere Y is an irreducible L-space, then Y is S3, the Poincaré sphere Σ(2, 3, 5) or
hyperbolic.

1. Introduction

1.1 Background and main results
Heegaard Floer theory, defined by Ozsváth and Szabó [OS04a], has been powerful in extracting
topological properties of three-manifolds. Surprisingly, in rare cases homology spheres have the
Heegaard Floer homology of S3. The Poincaré sphere Σ(2, 3, 5) is an example of an irreducible

homology sphere with ĤF(Σ(2, 3, 5)) = ĤF(S3) = Z. It is thus not true in general that Heegaard
Floer homology is capable of distinguishing S3 from other homology spheres. However, a
conjecture of Ozsváth and Szabó predicts that Σ(2, 3, 5) is the only non-trivial example of an
irreducible homology sphere with trivial Heegaard Floer homology. In this paper, we address the
case of a three-manifold which contains an incompressible torus. Throughout the paper, we let
F = Z/2Z.

Theorem 1.1. If a homology sphere Y contains an incompressible torus, then

ĤF(Y ;F) 6= F = ĤF(S3;F).

By Thurston’s geometrization conjecture/Perelman’s theorem (see [Thu82, Per03], see also
[MT07, MT14]), Theorem 1.1 reduces the Ozsváth–Szabó conjecture to the homology spheres
which are either Seifert fibered or hyperbolic. It is shown that Σ(2, 3, 5) and S3 are the only Seifert
fibered homology spheres with trivial Heegaard Floer homology [Rus04, Eft09]. The Ozsváth–
Szabó conjecture is thus reduced to the following.

Conjecture 1.2. If the homology sphere Y is hyperbolic, then ĤF(Y ;F) 6= F.

Besides Seifert fibered homology spheres, the Ozsváth–Szabó conjecture was also proved for
graph manifolds by Boileau and Boyer [BB15].

If the homology sphere Y includes an incompressible torus, it is obtained by splicing the
complements of a pair of non-trivial knots K1 and K2 in the homology spheres Y1 and Y2,
respectively. In this case, we write Y = Y (K1,K2). Theorem 1.1 may then be re-stated as the
following.
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Bordered Floer homology and incompressible tori

Theorem 1.3. If K1 and K2 are non-trivial, then ĤF(Y (K1,K2);F) 6= F.

When both Y1 and Y2 are L-spaces, Theorem 1.3 is the main result of [HL16]. When Y1 = S3

and K1 is the trefoil, Theorem 1.3 is [Eft15, Corollary 1.3].

The reduced Khovanov homology of a knot K ⊂ S3 is related to the Heegaard Floer homology

of the double cover of S3 branched over K [OS05]. The Ozsváth and Szabó Conjecture 1.2

thus implies that the reduced Khovanov homology (and thus Khovanov homology) detects the

unknot; a theorem of Kronheimer and Mrowka [KM11]. The result of this paper re-proves a few

special cases of the aforementioned theorem. A knot K ⊂ S3 is π-hyperbolic if S3 −K admits a

Riemannian metric with constant negative curvature which becomes singular folding with angle

π around K.

Corollary 1.4. Suppose that K ⊂ S3 is either a prime satellite knot or it is not π-hyperbolic.

Then the rank of the reduced Khovanov homology K̃h(K) is greater than 1.

1.2 Bordered Floer homology for a knot complement

Let K be an oriented knot inside the homology sphere Y and Y (K) denote the bordered manifold

determined from the knot complement Y −nd(K) by parametrizing its boundary using a meridian

µ and a zero-framed longitude λ for K. The proof of Theorem 1.1 rests heavily on a construction

of the bordered Floer module ĈFD(Y (K)) using the knot Floer complex CFK•(Y,K), which we

will now describe. Consider a doubly pointed Heegaard diagram (Σ,α,β;u, z) for K, and let Tα
and Tβ denote the totally real tori in the symmetric product Symg(Σ) which correspond to α

and β, respectively. The markings u and z determine the map

s = su,z : Tα ∩ Tβ −→ Spinc(Y,K),

where s(x) denotes the relative Spinc class assigned to x in the sense of [Ni09], which is defined by

assigning a nowhere-vanishing vector field on Y − nd(K) to x which is tangent to the boundary.

Multiplying the vector fields by −1 gives an involution map J on Spinc(Y,K), and the map

s 7→ 1

2
(c1(s)− PD[µ]) =

s− J(s)− PD[µ]

2
∈ H2(Y,K;Z)

and the evaluation of cohomology classes over a Seifert surface for the knot K give an

identification of Spinc(Y,K) with Z, which will be implicit in this paper. In this convention,

although the set of relative Spinc structures only depends on the knot complement, the

identification with Z depends on the meridian of K. If s ∈ Spinc(Y,K) is a relative Spinc structure

and i ∈ Z is an integer, we will abuse the notation and denote s + iPD[µ] by s + i. Under the

aforementioned identification of relative Spinc structures with Z, this is of course a compatible

(abuse of) notation. Moreover, we will write s = i if s ∈ Spinc(Y,K) is identified with i ∈ Z
under the above correspondence.

If x,y ∈ Tα ∩ Tβ are given, and φ ∈ π2(x,y) is a Whitney disc connecting them, we have

s(x)− s(y) = nz(φ)− nu(φ).

Consider the Z⊕ Z filtered chain complex

C = 〈[x, i, j] | x ∈ Tα ∩ Tβ, s(x)− i+ j = 0〉Z
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associated with K. The differential d of C is defined by

d[x, i, j] =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#(M(φ)/R)[y, i− nz(φ), j − nu(φ)].

Following [OS08], we may consider the submodules

C{i = a, j = b}, C{i = a, j 6 b} and C{i 6 a, j = b}, a, b ∈ Z ∪ {∞}

with the induced structure as a chain complex. Set

C{i = a} = C{i = a, j 6∞} and C{j = b} = C{i 6∞, j = b}.

Note that the order of i and j filtrations used in this paper is the opposite of the ordered one
used in [OS04b]. For every relative Spinc class s ∈ Spinc(Y,K), define

isn = isn(K) : C{i 6 s, j = 0} ⊕ C{i = 0, j 6 n− s− 1} −→ C{j = 0},
isn([x, i, 0], [y, 0, j]) := [x, i, 0] + Ξ[y, 0, j],

where Ξ : C{i= 0}→ C{j = 0} is the chain homotopy equivalence corresponding to the Heegaard

moves which change (Σ,α,β; z) to (Σ,α,β;u). It may be interesting to note that

C{i = 0, j 6 n− s− 1} = C{i = 0, j 6 J(s) + n}.

Let Yn(K) denote the three-manifold obtained from Y by n-surgery on K and let Kn denote the

corresponding knot inside Yn(K), determined by the aforementioned surgery.

Proposition 1.5. For every s ∈ Spinc(Yn(K),Kn) = Spinc(Y,K), the homology of the mapping

cone M(isn) gives

Hn(K; s) = ĤFK(Yn(K),Kn; s).

A few warnings are necessary here. The set of relative Spinc classes associated with (Yn(K),

Kn), as defined here, is naturally identified with Spinc(Y,K). However, the identification of this

latter space with Z, which was fixed above, can be different from the identification induced by

Kn. In particular, we do not see the symmetry in knot Floer homology groups corresponding to

the integers s,−s (or to s,−s ∈ 1
2 +Z), unless an appropriate shift in the Spinc grading is used.

The resulting ‘symmetric’ grading, which we may call the Alexander grading, takes its values

in Z or 1
2 + Z, depending on whether n is odd or even. If H′n(K; s) denotes the Heegaard Floer

homology group ĤFK(Yn(K),Kn) in Alexander grading s, we will have

H′n(K; s) = Hn

(
K; s+

n− 1

2

)
' H∗(M(is+(n−1)/2

n )).

It is then easier to understand the symmetry of Heegaard Floer homology from the surgery

formula of Proposition 1.5. In particular, the difference between our convention for relative

Spinc structures in this paper and the convention used in [Eft05] and [Eft15] is a result of these

two different points of view.
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Note that M(is0) is a subcomplex of both M(is+1
1 ) and M(is1). We denote the embedding maps

by F s+1
∞ = F s+1

∞ (K) and F
s
∞ = F

s
∞(K), respectively. The quotient of M(is1) by F s

∞(M(is−1
0 )) is

isomorphic to ĈFK(K; s) ' C{i = s, j = 0}. Denote the quotient map by F s
0 = F s

0 (K). We thus

obtain a short exact sequence

0 - M(is−1
0 )

F s
∞- M(is1)

F s
0- ĈFK(K; s) - 0.

Similarly, the quotient map F
s
0 = F

s
0(K) from M(is1) to M(is1)/Im(F

s
∞) sits in the short exact

sequence

0 - M(is0)
F

s
∞- M(is1)

F
s
0- ĈFK(K; s) - 0.

Let C•(K) =
⊕

s∈ZC•(K; s), where C•(K; s) = M(is•) for • = 0, 1 and C∞(K; s) =

C{i = s, j = 0}. Denote the differential of C•(K) by d• for • ∈ {0, 1,∞}. Set M(K) =

C0(K) ⊕ C1(K) and L(K) = C1(K) ⊕ C∞(K). The maps F• = F•(K) and F • = F •(K),

obtained by putting all F s
• and F

s
• together, will be called the bypass homomorphisms.

A differential graded algebra A(T 2, 0) is associated with the torus boundary of Y − nd(K),

which will be denoted by −T 2. The bordered Floer module ĈFD(Y (K)) is then a module over

A(T 2, 0). Following the notation of § 4.2 from [LOT14], A(T 2, 0) is generated, as a module over F,

by the idempotents ı0 and ı1 and the chords ρ1, ρ2, ρ3, ρ12 = ρ1ρ2, ρ23 = ρ2ρ3 and ρ123 = ρ1ρ2ρ3.

Theorem 1.6. The bordered Floer complex ĈFD(Y (K)) is quasi-isomorphic to the left module

over A(T 2, 0), which is generated by ı0.L(K) and ı1.M(K) and is equipped with the differential

∂ : ĈFD(Y (K)) → ĈFD(Y (K)) defined by

∂

(
x
y

)
=


(

d0(x)

F∞(x) + d1(y)

)
+

(
ρ1F∞(x)

ρ3F 0(y) + ρ123F 0(F∞(x))

)
if

(
x

y

)
∈M(K),(

d1(x)

F0(x) + d∞(y)

)
+ ρ2

(
0

x

)
if

(
x

y

)
∈ L(K).

(1)

This theorem should be compared with Theorem 11.26 from [LOT08], which addresses the

case where Y = S3.

The paper is organized as follows. In § 2, we study the surgery formulas for Heegaard

Floer homology and prove Proposition 1.5. In [Eft15], a splicing formula for a pair of knots

K1 and K2 is presented in terms of the groups H•(Ki), • ∈ {0, 1,∞}, i = 1, 2, and a number

of homomorphisms between them (the bypass homomorphisms). In § 3, we study the bypass

homomorphisms and obtain explicit formulas for them which are compatible with the surgery

formula of Proposition 1.5. Together with the results proved in [Eft15], this gives a very explicit

splicing formula in terms of knot Floer homology and, in particular, proves Theorem 1.6.

Sections 2 and 3 contain the main technical arguments of the paper. With the aforementioned

splicing formula in place, we prove a number of basic linear algebra properties of bypass

homomorphisms in § 4 and use these properties in § 5 to obtain strong restrictions on the

bypass homomorphisms associated with the pairs (K1,K2) such that Y (K1,K2) are L-spaces.

These restrictions are further studied in § 6 to complete the proof of Theorem 1.1. A number of

applications are also discussed in § 6.
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2. Surgery on null-homologous knots

2.1 The Heegaard diagram
By a Heegaard n-tuple we mean the data

(Σ,α1, . . . ,αn;u1, . . . , ur),

where Σ is a Riemann surface of genus g, each αi is g-tuples of disjoint simple closed curves for
i = 1, . . . , n and uj are markings in Σ−

⊔n
i=1αi. Let Ti ⊂ Symg(Σ) denote the torus associated

with αi. Choose xi ∈ Ti ∩Ti+1 for i = 1, . . . , n− 1 and xn ∈ T1 ∩Tn. Let π2(x1, . . . ,xn) denote
the set of homotopy classes of n-gons connecting x1, . . . ,xn and

πj2(x1, . . . ,xn;u1, . . . , ur) ⊂ π2(x1, . . . ,xn)

denote the subset of classes with Maslov index j which have zero intersection number with the
codimension-2 subvarieties Lu1 , . . . , Lur of Symg(Σ) corresponding to the markings u1, . . . , ur.
Associated with the Heegaard diagram (Σ,αi,αj ;u1, . . . , ur) we obtain a hat Heegaard Floer
complex, which will be denoted by

ĈF(Σ,αi,αj ;u1, . . . , ur).

Let K ⊂ Y be an oriented knot inside a homology sphere Y . Consider a Heegaard diagram

H = (Σ,α = {α1, . . . , αg},β = {β1, . . . , βg−1, βg = λ∞})

for Y so that (Σ,α, β̂ = β−{λ∞}) is a Heegaard diagram for Y −nd(K). Below, we will describe
a Heegaard 5-tuple, together with several markings on it, which will be used throughout this
section. Figure 1 illustrates a tubular neighbourhood of λ∞ in this Heegaard diagram, which
is called the winding region, and contains the markings. In Figure 1, the winding region is the
cylinder which is obtained by identifying the upper and lower edges of the illustrated rectangle
using a reflection.

We assume that αg is the only curve in α which cuts λ∞, and that the rest of the curves

in α do not enter the winding region. Suppose that the oriented curve λ ⊂ Σ − β̂ represents a
zero-framed longitude for K, which cuts λ∞ transversely in a single point. Choose the orientation
on λ∞ so that λ · λ∞ = 1. Let λn be a small perturbation of the juxtaposition λ+ nλ∞ and βni
denote a small Hamiltonian isotope of βi for i = 1, . . . , g − 1. The Heegaard diagram

Hn = (Σ,α,βn = {βn1 , . . . , βng−1, λn}, pn)

gives a marked diagram for (Yn(K),Kn), where pn ∈ λn is a marking at the intersection of
λn and λ∞ which distinguishes λn from other curves in βn. With the integers m > 0 and n
fixed and βn,βn+m constructed as above, we assume that λn and λn+m intersect each other
in m transverse points and that, for an intersection point q of these latter curves, the points
q, pn and pm+n are the vertices of a triangle ∆a, which is one of the connected components in
Σ− (α ∪ β ∪ {λn, λn+m}). We place our first marking a in ∆a. From the four quadrants which
have q as a corner, two of them belong to the neighbours of ∆a. Place a pair of markings u
and v in these two quadrants. Let b denote another marking which is placed in the remaining
quadrant around q which is opposite to the quadrant containing a. Label u and v so that the
four quadrants surrounding q which contain the markings a, u, b and v appear in clockwise order.
We may assume that when we follow the orientation of λn and λn+m, the marked point v is on
the right and the marked point u is on the left.
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Figure 1. The winding region and the arrangement of the curves λn, λn+m, λ∞, λ
′
∞ and αg

in this region, as well as the markings a, b, t, u, v and z, are illustrated. The winding region is
obtained after we identify the upper edge of the rectangle with its lower edge using a reflection.
The intersection points of αg with each one of the curves λn, λn+m, λ∞, λ

′
∞ is labelled. A triangle

with vertices pn, q and pn+m containing the marked point a, and another triangle with vertices
q, xi and xni missing the marked points a, u and v, are shaded.

Let β′ = {β′1, . . . , β′g−1, λ
′
∞} denote a set of g simple closed curves which are obtained from

β by a very small Hamiltonian isotopy in the Heegaard diagram (Σ,β,βn,βn+m;u, v). Thus, βi
and β′i intersect each other is a pair of cancelling intersection points. We assume that the small
area bounded between the two curves λ∞ and λ′∞ is a union of two bigons; a small bigon which
is a subset of one of the connected components of Σ◦ = Σ− α− β − βn+m and is cut into two
triangles by λn, and a long and thin bigon which is stretched along λ∞. For small Hamiltonian
perturbations, the chain complex ĈF(Σ,α,β′;u) may be identified with ĈF(Σ,α,β;u). Choose
the marking z in the winding region so that there is an arc connecting z to u on Σ which cuts
each one of the curves λ∞ and λ′∞ in a single transverse point and stays disjoint from all other
curves in α∪β∪β′∪βn∪βn+m. Similarly, choose the marking t so that there is an arc connecting
v to t on Σ which cuts each one of λ∞ and λ′∞ in a single transverse point and stays disjoint
from all other curves in α∪β∪β′ ∪βn ∪βn+m; see Figure 1. In the forthcoming discussions, we
will use u and v as the main marked points (punctures) in the Heegaard diagram, while the rest
of the markings help us keep track of the coefficients of holomorphic polygons in the domains
containing them.

Let us denote the intersection point of λ∞ with αg by x. Every generator x ∈ Tα ∩ Tβ
is then forced to include x ∈ αg ∩ λ∞. Associated with every generator x for the Heegaard

diagram (Σ,α,β;u), which in turn is a generator of ĈF(Y ), we obtain n + m generators for

ĈF(Σ,α,βn+m;u, v). These n+m generators will be denoted by

x1−l,x2−l, . . . ,xm+n−l, where l =

⌈
m

2

⌉
.
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The generator xi is obtained from x by replacing x with xi ∈ αg ∩ λm+n. The points

x1−l, x2−l, . . . , xm+n−l

are all the intersection points between αg and λn+m in the winding region, and appear with
this order on αg. We may assume that xi is on the right of λ∞ if i 6 0 and is on the left of λ∞
otherwise. The rest of the generators for the complex ĈF(Σ,α,βn+m;u, v) are in correspondence

with the generators y of ĈF(Σ,α,β0;u, v). Every such generator will be denoted by ŷ. Similarly,
associated with a generator x ∈ Tα ∩ Tβ we obtain the generators

x
(n)
i ∈ Tα ∩ Tβn , i = 1, . . . , n,

where x
(n)
i is obtained from x by replacing x with xni ∈ αg ∩λn in the winding region. We assume

that xn1 , . . . , x
n
n appear on the left of λ∞. Note that there is a triangle with small area in the

Heegaard diagram with vertices xni , q and xi, which misses the markings u, v and a, provided
that i = 1, . . . , n.

Lemma 2.1. With the above notation fixed, we have

s(xi) =

{
s(x)− i if i 6 0,

s(x) + n+m− i if i > 0
and s(ŷ) = s(y) +

⌈
m

2

⌉
.

Proof. The doubly pointed Heegaard diagram (Σ,α,βn+m;u, v) is obtained from the marked
Heegaard diagram (Σ,α,βn+m; pn+m) by replacing pn+m ∈ λn+m with the two markings u, v on
its two sides.

Choose a self-indexing Morse function h : Y → [0, 3] with unique critical points of indices 0
and 3, and compatible with the Heegaard diagram (Σ,α,βn+m;u, v). Modify the Morse function
so that its critical points remain unchanged, but so that the value of h over the index-2 critical
point corresponding to λn+m becomes 8/3. The pre-images of 3/2 and 7/3 under h are then the
surface Σ and a torus T , respectively. If we use the flow of a gradient-like vector field ζ for h,
from the curve λn+m ⊂ Σ we obtain a curve λ◦n+m ⊂ T which corresponds to a meridian for
the knot Kn+m. Moreover, the knot complement Y \nd(K) = Yn+m\nd(Km+n) may be identified
with U = h−1[0, 7/3]. For such Heegaard diagrams, the map

su,v : Tα ∩ Tβn+m → Spinc(Yn+m,Kn+m) = Spinc(Y,K)

may be defined using the Morse function h as follows.
For a generator z ∈ Tα ∩ Tβn+m , we may write z = {z1, . . . , zg}, where zi ∈ βn+m

i for
i = 1, . . . , g. The points zi determine a set of g flow lines for ζ connecting the critical points
of index 1 to the critical points of index 2. One of these flow lines leaves U and the rest stay
inside U . Modify ζ in a neighbourhood of the latter g − 1 flow lines so that the zeros of ζ at
the end-point critical points are cancelled against each other. After these modifications, the new
vector field ζ ′ will have two zeros in U . One of these zeros is at the unique critical point of
index 0 and the other one is at a critical point of index 1, which corresponds to the α-curve
containing zg, i.e. αg. The flow line of ζ which passes through zg starts from the latter index-1
critical point and connects it to zg ∈ λn+m to give an oriented arc δ1. There is an oriented
arc δ1 on λn+m which connects zg to pn+m in the direction of λn+m. Finally, the flow line of
−ζ which passes through pn+m determines another oriented arc δ3 from pn+m ∈ λn+m to the
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critical point of index 0. Putting the three arcs δ1, δ2 and δ3 together, we obtain a path δ in the
interior of U which connects the remaining two critical points. These two critical points have
indices 0 and 1 which are of different parity. Thus, the vector field ζ ′ may further be modified
in a neighbourhood of δ to arrive at a nowhere-vanishing vector field ζ ′′ which restricts to the
outward normal of T = ∂(Y \nd(K)). The restriction of this nowhere-vanishing vector field to
the boundary is naturally isotopic to the translation-invariant vector field, and we thus obtain
an element su,v(z) of Spinc(Y,K).

Let us now assume that z = x0 for some x ∈ Tα∩Tβ. Then s(x) is defined by modifying ζ ′ in
a neighbourhood of a path δ′, which is obtained by putting the arcs δ′1, δ

′
2 and δ3 together. Here,

δ′1 is the flow line from x to the critical point corresponding to αg and δ′2 is an arc connecting x
to pn+m on λ∞. The domain containing the marking t gives an isotopy between δ and δ′ which
is supported away from the other arcs, and the vector fields representing s(x) and s(x0) are thus
isotopic relative to the boundary.

For an intersection point xi with i < 0, the path δ′′ which corresponds to xi connects
the same critical points as δ does, while it differs from δ in a closed curve isotopic to i times the
curve λ∞, which represents the meridian µK of the knot K. It follows that

s(xi) = s(x0)− iPD[µK ] = s(x)− i.

For xi with i > 0, note that δ′′1 first goes out from the winding region and then returns to it from
the right-hand side. It follows that the difference between δ′′ and δ is −PD[λn+m] + iPD[µK ],
which gives

s(xi) = s(x0) + PD[λn+m]− iPD[µK ] = s(x) + n+m− i.

Finally, if we choose p0 and pn+m close to each other, the difference between the path δn+m

associated with the intersection point ŷ ∈ Tα∩Tβn+m and the path associated with y ∈ Tα∩Tβ0
is in dm/2ePD[µK ], implying the last claim. 2

2.2 A triangle of chain maps

The complex associated with the Heegaard diagram (Σ,α,β;u, v) is denoted by ĈF(Σ,α,β;u, v).
Note that the punctures u and v are in the same domain in the complement of the curves in
α and β. The corresponding chain complex may thus be denoted by ĈF(Y ) when there is
no confusion. The complex associated with (Σ,α,βn;u, v) and a given relative Spinc class s

is denoted by ĈF(Σ,α,βn;u, v; s) (and when there is no confusion by ĈF(Kn; s)), while the
complex associated with (Σ,α,βn+m;u, v) and the classes s and s +m is denoted by

Cn,m(s) = ĈF(Σ,α,βn+m;u, v; s)⊕ ĈF(Σ,α,βn+m;u, v; s +m).

Let Θf denote the top generator associated with ĈF(Σ,βn+m,β;u, v). Consider the holomorphic
triangle map

f s : Cn,m(s) → ĈF(Σ,α,β;u, v)

which is defined by

f s(x) :=
∑

z∈Tα∩Tβ

∑
∆∈π0

2(x,Θf ,z;u,v)

#(M̂(∆)) · z. (2)

The diagram (Σ,α,βn,βn+m;u, v) determines a cobordism from Yn(K)
∐
L to Yn+m(K), where

L = L(m, 1)#(#g−1S1 × S2). The intersection point q determines a canonical Spinc class
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sq ∈ Spinc(L) in the sense of [OS08, Definition 3.2]. Let Θg denote the top generator of

ĈF(Σ,βn,βn+m;u, v) which corresponds to sq or equivalently to the intersection point q. Define

gs : ĈF(Σ,α,βn;u, v; s) → ĈF(Σ,α,βn+m;u, v)

by

gs(x) :=
∑

z∈Tα∩Tβn+m

∑
∆∈π0

2(x,Θg ,z;u,v)

#(M̂(∆)) · z.

If ∆ ∈ π0
2(x,Θg, z;u, v) is a triangle class which contributes to the coefficient of z in gs(x), the

equalities nu(∆) = nv(∆) = 0 imply that

na(∆) + nb(∆) = 1 ⇒

{
(i) na(∆) = 1 and nb(∆) = 0,

(ii) na(∆) = 0 and nb(∆) = 1.

We may thus write gs(x) = gsa(x)+gsb(x), where gsa(x) and gsb(x) correspond to the contributions
from holomorphic triangles of types (i) and (ii), respectively.

Lemma 2.2. If s(x) = s for a generator x ∈ Tα ∩ Tβn , then

gsa(x) ∈ ĈF(Σ,α,βn+m;u, v; s) and gsb(x) ∈ ĈF(Σ,α,βn+m;u, v; s +m).

Proof. Let us first assume that x = z
(n)
i for some z ∈ Tα ∩Tβ and some i = 1, . . . , n. Then there

is a small triangle class missing u, v and a connecting x = z
(n)
i ,Θg and zi ∈ Tα ∩ Tβn+m . The

intersection of the domain Di of this triangle with the winding region is the small triangle with
vertices xni , q and xi, which is shaded in Figure 1 (for i = 3). If y is a generator in the image of
gsb(x), then there is a domain D (corresponding to the difference between Di and the domain of a
holomorphic triangle contributing to gsb) connecting y and zi with boundary on α,βn and βn+m

and missing the marked points u, v and a. Subtracting an appropriate multiple of the periodic
domain bounded by βni and βn+m

i (for i = 1, . . . , g− 1), we may assume that the boundary of D
is on α ∪ βn+m ∪ λn. Moreover, since we know that

na(D) = nu(D) = nv(D) = 0,

it follows that nb(D) = 0. In particular, D does not have any boundary on λn and is thus the
domain of a Whitney disc in the Heegaard diagram Hn+m which misses u and v, and connects
y and zi. In particular,

s(y) = s(zi)

= s(z) +m+ n− i
= s(z

(n)
i ) +m

= s +m.

Let us now assume that x is an arbitrary generator and that y appears in gsb(x). Let D1 denote
the domain of a Whitney disc for the Heegaard diagram Hn connecting x to a generator of the

form z
(n)
i with i ∈ {1, . . . , n} and missing the markings u, v, and thus the markings a, b. Let

D2 denote the domain of a Whitney disc for Hn+m connecting y to a generator of the form zj
and missing u, v (and thus a, b). If D0 is the domain of the triangle which corresponds to the
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contribution of y in gsb(x), and D3 denotes the domain of a triangle class connecting z
(n)
i to zi,

the domain

D = D0 −D1 +D2 −D3

is a domain connecting zi to zj which misses u, v and a, and has its boundary on α∪βn∪βn+m.
Subtracting appropriate multiples of the periodic domains bounded by βni and βn+m

i (for i = 1,
. . . , g − 1), we may assume that the boundary of D is on α ∪ βn+m ∪ λn. Again, since na(D) =
nu(D) = nv(D) = 0, we conclude that nb(D) = 0 and D has no boundary on λn. It follows that D
is the domain of a Whitney disc which corresponds to the punctured Heegaard diagram Hn+m.
It is implied that s(zi) = s(zj) and, consequently, i = j. We thus find that

s(y) = s(z
(n)
j )

= s(z) +m+ n− i
= s(z

(n)
i ) +m

= s +m,

and the proof of the second claim is complete. For the first claim, let ya denote a generator which
appears in gsa(x) while yb denotes a generator which appears in gsb(x). Let Da and Db denote the
domains of the corresponding triangle classes. Then D = Da −Db is a domain with coefficient 0
at u, v, which connects yb to ya and has boundary on α ∪ βn ∪ βn+m. Once again, subtracting
appropriate multiples of the periodic domains bounded by βni and βn+m

i (for i = 1, . . . , g − 1),
we may assume that the boundary of D is on α∪βn+m∪λn. Furthermore, nb(D) = −na(D) = 1.
It follows that

s(ya) = s(yb) + (nv(D)− nb(D))PD[λn+m] + (nb(D)− nu(D))PD[λn]

= s +m− (n+m) + n = s.

This completes the proof of the lemma. 2

The top generator Θh ∈ ĈF(Σ,β,βn;u, v) and the triple (Σ,α,β,βn;u, v) determine the

holomorphic triangle map

hs : ĈF(Σ,α,β;u, v) → ĈF(Σ,α,βn;u, v; s)

which is defined by

hs(x) :=
∑

z∈Tα∩Tβn
s(z)=s

∑
∆∈π0

2(x,Θh,z;u,v)

#(M̂(∆)) · z.

We thus arrive at the following triangle of chain maps:

(3)
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2.3 Exactness of triangle
Let M(f s) denote the mapping cone of f s = f sn,m.

Theorem 2.3. For m� 1, there is a map

Hs
hn,m : ĈF(Σ,α,βn;u, v; s) → ĈF(Σ,α,β;u, v)

which satisfies the relation

d ◦Hs
hn,m +Hs

hn,m ◦ d = f sn,m ◦ gsn,m.

Moreover, the map

sn,m : ĈF(α,βn;u, v; s) → M(f sn,m),

which is defined by sn,m(x) := (gsn,m(x), Hs
hn,m

(x)) for x ∈ ĈF(Σ,α,βn;u, v; s), is a quasi-
isomorphism.

Proof. The proof is almost identical to the proof used in [AE15, § 8]. We outline the proof to set
up the notation. Define the map

Hs
f : ĈF(Σ,α,β;u, v) → Cn,m(s)

by setting

Hs
f (x) :=

∑
y∈Tα∩Tβn+m

s(y)≡s (mod m)

∑
�∈π−1

2 (x,Θh,Θg ,y;u,v)

#(M(�)) · y.

The condition s(y) ≡ s (mod m) implies that s(y) ∈ {s; s + m}, since m is large. Considering
all possible boundary degenerations of the one-dimensional moduli space corresponding to the
class � ∈ π0

2(x,Θh,Θg,y;u, v), we find that

d ◦Hs
f +Hs

f ◦ d = hs ◦ gs.

For this, one should note that the contributing boundary degenerations of the form � = ∆ ?∆′

with

∆ ∈ π0
2(Θh,Θg,Θ;u, v), ∆′ ∈ π0

2(x,Θ,y;u, v)

and Θ ∈ Tβn+m∩Tβ come in cancelling pairs. In fact, corresponding to each ∆′ the corresponding
triangles ∆ come in cancelling pairs, where the difference between the coefficients of every
cancelling pair at the marking z is always a multiple of m. Similarly, define

Hs
g : Cn,m(s) → ĈF(Σ,α,βn;u, v)

by setting

Hs
g(x) :=

∑
y∈Tα∩Tβn

∑
�∈π−1

2 (x,Θf ,Θh,y;u,v)
nz(�)≡0 (mod m)

#(M(�)) · y.

The contributing holomorphic triangles for (Σ,βn+m,β,βn;u, v) which correspond to the
closed top generators Θf ,Θh and Θ ∈ Tβn+m ∩ Tβn come in cancelling pairs. The condition
nz(�) ≡ 0 (mod m) implies that if y appears in Hs

g(x), then s(y)− s(x) is a multiple of m. If m
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is sufficiently large, it follows from s(x) ∈ {s, s +m} that s(y) = s. Thus, the image of Hs
g is in

ĈF(Σ,α,βn;u, v; s). Consider the degenerations of a square class

� ∈ π0
2(x,Θf ,Θh,y;u, v) with nz(�) ≡ 0 (mod m).

In degenerations of the form � = ∆ ?∆′ with

∆ ∈ π0
2(Θf ,Θh,Θ;u, v) and ∆′ ∈ π0

2(x,Θ,y;u, v),

the corresponding triangles ∆ come in cancelling pairs. From these observations, we find that

d ◦Hs
g +Hs

g ◦ d = hs ◦ f s.

Finally, define the homotopy map

Hs
h : ĈF(Σ,α,βn;u, v; s) → ĈF(Σ,α,β;u, v)

by setting

Hs
h(x) =

∑
y∈Tα∩Tβ

∑
�∈π−1

2 (x,Θg ,Θf ,y;u,v)

#(M(�)) · y.

Employ the same argument again to show that d ◦Hs
h +Hs

h ◦ d = f s ◦ gs.
We next introduce the pentagon maps. Let β′n denote a g-tuple of simple closed curves

which are small Hamiltonian isotopes of the curves in βn. Choosing the Hamiltonian isotopy

sufficiently small, we may assume that the chain complex ĈF(Σ,α,β′n;u, v; s) associated with

(Σ,α,β′n;u, v) and the Spinc class s may be identified with ĈF(Σ,α,βn;u, v; s). We assume
that the top intersection point qn between λn and λ′n is in the winding region, and appears on
the common edge between ∆a and the domain containing the marked point u; see Figure 2.
Corresponding to the intersection point pn we obtain p′n ∈ λ∞ ∩λ′n. There is a top generator Θ′h
for ĈF(β,β′n;u, v) which uses p′n and is in correspondence with Θh.

Define the map

P s
f : ĈF(Σ,α,βn;u, v; s) → ĈF(Σ,α,β′n;u, v; s) = ĈF(Σ,α,βn;u, v; s)

by setting

P s
f (x) :=

∑
y∈Tα∩Tβn

∑
D∈π−2

2 (x,Θg ,Θf ,Θ
′
h,y;u,v)

nz(D)≡0 (mod m)

#(M(D)) · y.

The condition nz(D) ≡ 0 (mod m) implies that the image of P s
f is supported in relative Spinc

class s. Five types of the 10 possible degenerations in the boundary of the one-dimensional moduli
space associated with a class D ∈ π−1

2 (x,Θg,Θf ,Θ
′
h,y;u, v) with nz(D) a multiple of m, which

correspond to a degeneration to a bigon and a pentagon, contribute to the coefficient of y in
(d◦P s

f +P s
f ◦d)(x). The remaining five types correspond to the degenerations of D into a square

� and a triangle ∆. Note that:

– there is a unique contributing class � ∈ π−1
2 (Θg,Θf ,Θ

′
h,Θ;u, v) which corresponds to the

quadruple (Σ,βn,βn+m,β,β
′
n;u, v). Moreover, Θ = Θn is the top generator for the diagram

(Σ,βn,β
′
n;u, v). The intersection of the domain of this class with the winding region is a

rectangle with vertices q, pn+m, p
′
n and qn, which is illustrated in Figure 2. This class has

a unique holomorphic representative;

1233

https://doi.org/10.1112/S0010437X18007054 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007054


E. Eftekhary

Figure 2. The curves λ′∞ and λ′n are Hamiltonian isotopes of the curves λ∞ and λn, respectively.
The triangle ∆a is decomposed to two small triangles [pnqnp

′
n] and [q∞p

′
n+mpn+m] and a

pentagon. The union of the pentagon with the first triangle is a rectangle with vertices q, pn+m, p
′
n

and qn, which is lightly shaded, and its union with the second triangle is a rectangle with vertices
pn, q, p

′
n+m, q∞, which is strongly shaded.

– the contributing triangle classes

∆ ∈ π0
2(Θg,Θf ,Θ;u, v) and ∆′ ∈ π0

2(Θf ,Θ
′
h,Θ;u, v)

corresponding to the triples (Σ,βn,βn+m,β;u, v) and (Σ,βn+m,β,β
′
n;u, v) come in

cancelling pairs.

These observations imply that d ◦ P s
f + P s

f ◦ d+ Js
f = hs ◦Hs

h +Hs
g ◦ gs, where

Js
f (x) =

∑
y∈Tα∩Tβ′n

∑
∆∈π0

2(x,Θn,y;u,v)

#(M(∆)) · y.

Similarly, define the holomorphic pentagon map

P s
g : ĈF(Σ,α,β;u) → ĈF(Σ,α,β;u) = ĈF(Σ,α,β′;u)

by setting

P s
g (x) :=

∑
y∈Tα∩Tβ′

∑
D∈π−2

2 (x,Θh,Θg ,Θ
′
f ,y;u,v)

nz(D)+s(x)≡s (mod m)

#(M(D)) · y.

Five types of the 10 possible degenerations in the boundary of the one-dimensional moduli space
associated with a pentagon class D ∈ π−1

2 (x,Θh,Θ
q
g,Θ′f ,y;u, v) contribute to the coefficient of y

in (d◦P s
g +P s

g ◦d)(x). The remaining five types correspond to the degenerations of D into a square
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and a triangle. The choice of the markings implies that two of these degeneration types contribute
to the coefficient of y in (f s ◦ Hs

f + Hs
h ◦ hs)(x). There is a unique contributing square class,

corresponding to (Σ,β,βn,βn+m,β
′;u, v) and the intersection points Θh,Θg,Θ

′
f ,Θ∞, where Θ∞

denotes the top generator for (Σ,β,β′;u, v), which includes the top intersection point q∞ of λ∞
and λ′∞. The intersection of the domain of this class with the winding region is the rectangle
with vertices pn, q, p

′
n+m and q∞, which is illustrated in Figure 2. Moreover, the triangles which

contribute in π2(Θh,Θg,Θf ) and π2(Θg,Θ
′
f ,Θ

′
h) come in cancelling pairs. Thus, we obtain

d ◦ P s
g + P s

g ◦ d+ Js
g = f s ◦Hs

f +Hs
h ◦ hs,

where the map Js
g is defined by

Js
g(x) =

∑
y∈Tα∩Tβ′

∑
∆∈π0

2(x,Θ∞,y;u,v)

#(M(∆)) · y.

Let β′n+m denote a g-tuple of simple closed curves which are small Hamiltonian isotopes of
the curves in βn+m. Once again, we assume that the Hamiltonian isotope λ′n+m of λn+m intersects
it in a pair of cancelling intersection points, and that the top intersection point is located on
the common edge of ∆a with the domain containing the marking v. Again, we assume that the
chain complex associated with (Σ,α,β′n+m;u, v) and the Spinc classes s, s+m is identified with
Cn,m(s). There is a top generator Θ′g for (βn,β

′
n+m) which is in correspondence with Θg. Define

P s
h : Cn,m(s) → Cn,m(s) by

P s
h(x) :=

∑
y∈Tα∩Tβ′n+m

∑
D∈π−2

2 (x,Θf ,Θh,Θ
′
g ,y;u,v)

nz(D)≡0 (mod m)

#(M(D)) · y.

A similar argument implies that d ◦ P s
h + P s

h ◦ d+ Js
h = gs ◦Hs

g +Hs
f ◦ f s, where

Js
h(x) =

∑
y∈Tα∩Tβ′n+m

∑
∆∈π0

2(x,Θn+m,y;u,v)

#(M(∆)) · y,

and Θn+m is the top generator of (Σ,βn+m,β
′
n+m;u, v). Since Js

f , J
s
g , J

s
h are quasi-isomorphisms,

[AE15, Lemma 3.3] completes the proof. 2

Let Ξ : ĈF(Σ,α,β; z) → ĈF(Σ,α,β;u) denote the chain homotopy equivalence given by the
Heegaard moves which change (Σ,α,β; z) to (Σ,α,β;u). Define

f
s

: Cn,m(s) → ĈF(Σ,α,β; z)

by setting

f
s
(x) =

∑
y∈Tα∩Tβ

∑
∆∈π0

2(x,y;z,t)

#(M(∆)) · y.

Lemma 2.4. The chain maps f s and Ξ ◦ f s are chain homotopic.

Proof. Note that the aforementioned Heegaard moves consist of 2g − 2 handle slides (composed
with isotopies) on β, supported away from the markings z, t. Denote the corresponding g-tuples

of curves by β0 = β,β1, . . . ,β2g−2, where ĈF(α,β2g−2; z) may be identified with ĈF(Σ,α,β;u).
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The triple (Σ,α,βi−1,βi; z) and the top generator Θi of the diagram (Σ,βi−1,βi; z, t) determine

a chain map Ξi : ĈF(α,βi−1; z) → ĈF(α,βi; z). The triple (Σ,α,βn+m,β
i; z, t) and the top

generator Θi
f of (Σ,βn+m,β

i; z, t) determine f i : ĈF(α,βn+m; z, t) → ĈF(α,βi; z). Finally, the

quadruple (Σ,α,βn+m,β
i−1,βi; z, t) together with Θi−1

f and Θi determines a homomorphism

H i : ĈF(Σ,α,βn+m; z, t) → ĈF(Σ,α,βi; z). Considering different boundary degenerations of
the one-dimensional moduli space associated with a square class of index 0, we find that

d ◦H i +H i ◦ d = f i + Ξi ◦ f i−1, i = 1, . . . , 2g − 2. (4)

Let us define Ξ = Ξ2g−2 ◦ · · · ◦ Ξ1 and set

H = H2g−2 + Ξ2g−2 ◦H2g−3 + Ξ2g−2 ◦ Ξ2g−3H2g−4 + · · ·+ (Ξ2g−2 ◦ · · · ◦ Ξ2) ◦H1.

Using (4), d ◦H + H ◦ d = f2g−2 + Ξ ◦ f0. To complete the proof, note that f s and f
s

are the
restrictions of f2g−2 and f0 to Cn,m(s), respectively. 2

2.4 Surgery formulas
Theorem 2.3 implies that the chain complex

ĈFK(Kn; s) = ĈF(Σ,α,βn;u, v; s)

is quasi-isomorphic, for m sufficiently large, to the mapping cone of

f s = f sn,m : Cn,m(s) → ĈF(Σ,α,β;u).

Lemma 2.1 tells us that, with the notation fixed at the beginning of this section, we have

s(xi) =

{
s(x)− i if i 6 0,

s(x) + n+m− i if i > 0,
and s(ŷ) = s(y) +

⌈
m

2

⌉
.

Restricting our attention to the relative Spinc classes s and s +m, we find that

ĈF(Σ,α,βn+m;u, v; s) = 〈xs−s(x) | x ∈ Tα ∩ Tβ and s(x) 6 s〉,
ĈF(Σ,α,βn+m;u, v; s +m) = 〈xs−s(x)−n | x ∈ Tα ∩ Tβ and s(x) > s− n〉.

If the curve λn+m is sufficiently close to the juxtaposition λ ? (m + n)λ∞, the first complex is
identified with the subcomplex

〈x | x ∈ Tα ∩ Tβ and s(x) 6 s〉

of ĈF(Σ,α,β;u), while the restriction of the map f s to ĈF(Σ,α,βn+m;u, v; s) is identified with

the inclusion of the above subcomplex in ĈF(Σ,α,β;u) (cf. proof of Theorem 4.4 in [OS04b]).
Similarly, the second complex is identified with the subcomplex

〈x | x ∈ Tα ∩ Tβ and s(x) > s− n〉

of ĈF(Σ,α,β; z), while the restriction of the map f
s

to ĈFK(Kn+m; s + m) is identified with

the inclusion of the aforementioned subcomplex in ĈF(Σ,α,β; z).
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Let C = CK denote the Z ⊕ Z-filtered chain complex generated by triples [x, i, j] with x ∈
Tα ∩ Tβ, i, j ∈ Z and s(x)− i+ j = 0. The differential of C is defined by

d[x, i, j] =
∑

y∈Tα∩Tβ
φ∈π1

2(x,y)

#(M̂(φ))[y, i− nz(φ), j − nu(φ)]

=:
∞∑

a,b=0

[da,b(x), i− a, j − b].

Since d ◦ d = 0, we conclude that d0,0 ◦ d0,0 = 0, while

d0,1 ◦ d0,0 + d0,0 ◦ d0,1 = 0, d1,0 ◦ d0,0 + d0,0 ◦ d1,0 = 0,

d1,1 ◦ d0,0 + d0,0 ◦ d1,1 + d0,1 ◦ d1,0 + d1,0 ◦ d0,1 = 0. (5)

Following [OS08] (or the notation of the introduction), ĈF(Y ) = ĈF(Σ,α,β;u) is identified as
C{j = 0}, while

ĈFK(Kn+m; s) = ĈF(Σ,α,βn+m;u, v; s)

and

ĈF(Kn+m; s +m) = ĈF(Σ,α,βn+m;u, v; s +m)

are identified with C{i 6 s, j = 0} and C{i = 0, j 6 n − s − 1}, respectively. There is a chain
homotopy equivalence Ξ from C{i = 0} to C{j = 0}. The following is thus a re-statement of
Theorem 2.3.

Theorem 2.5. For every s ∈ Z = Spinc(Y,K) and every n ∈ Z, the chain complex ĈFK(Kn; s)
is quasi-isomorphic to the mapping cone M(isn) of

isn : C{i 6 s, j = 0} ⊕ C{i = 0, j 6 n− s− 1} −→ C{j = 0},
isn([x, i, 0], [y, 0, j]) := [x, i, 0] + Ξ[y, 0, j].

3. The splicing formula for knot complements

3.1 The Heegaard diagram
Throughout this section, we will use a Heegaard diagram which is closely related to the Heegaard
diagram used in the previous section, and is in fact constructed from it when n = 0. In particular,
the Heegaard surface Σ and the sets β,β0,βm,β

′ and α of simple closed curves are chosen
as before. Moreover, we include β1, which consists of the Hamiltonian isotopes β1

i of βi for
i = 1, . . . , g − 1 and the 1-framed longitude λ1 for K in the Heegaard diagram. We thus obtain
a Heegaard 6-tuple

(Σ,α,β0,β1,βm,β,β
′),

which will be studied through this section. As before, we assume that there is a winding region
on Σ, which is a subsurface of Σ that is a tubular neighbourhood of λ∞ = βg. This winding
region is a cylinder which is obtained from the rectangle illustrated in Figure 3 after we identify
the upper edge with the lower edge using a reflection. The only curves which enter this cylinder
are λ0, λ1, λm, λ∞, λ

′
∞ and αg. Furthermore, the intersection pattern and the markings a, b, c, e,

u, v, w and z on the Heegaard diagram are chosen following the pattern illustrated in Figure 3.
Note that the Hamiltonian isotopy which changes β to β′ now crosses the marked point u.

We assume that there is a triangle in the Heegaard diagram, with vertices

q ∈ λ0 ∩ λm, q0 ∈ λ0 ∩ λ1 and qm ∈ λ1 ∩ λn
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Figure 3. The arrangement of the curves in the winding region. The upper edge and the lower
edge of the rectangle are identified by a reflection to form the winding region. The shaded area

on the right is the intersection of the domain of a square class �0, which is in π0
2(w

(0)
0 ,Θ0,1,Θg1 ,

w0;u, v, w, b), with the winding region. It is a 4-gon with vertices x0
0, q0, qm and x0. The shaded

area on the left is the intersection of the domain of a triangle class ∆0 ∈ π0
2(w

(0)
1 ,Θ′g0 ,w1;u, v, w)

with the winding region, which is a triangle with vertices x0
1, q
′ and x1.

containing the marked point c, which is one of the connected components in

Σ◦ = Σ\(α ∪ β ∪ β′ ∪ β0 ∪ β1 ∪ βm).

The curves λ0 and λm intersect each other in m points, which are all located in the winding
region. One of these intersection points, which is next to q and is denoted by q′, is characterized
with the property that q0 is the only intersection of the interval (qq′) ⊂ λ0 with the curves (other
than λ0) in the Heegaard 6-tuple. We will assume that λ• cuts λ∞ in p• and cuts λ′∞ in p′• for
• ∈ {0, 1,m}. We denote the top intersection point in λ∞ ∩λ′∞ by p′∞ and the other intersection
point by p∞.

As before, we assume that αg cuts λ∞ and λ′∞ in unique transverse points, which are denoted
by x and x′, respectively. We label the intersection points between λm and αg in the winding
region by

xi ∈ αg ∩ λm, i = 1−
⌈
m

2

⌉
, 2−

⌈
m

2

⌉
, . . . ,m−

⌈
m

2

⌉
=

⌊
m

2

⌋
,

while the intersection of λ1 with αg inside the winding region is in a unique point denoted by x1
1.

Finally, we assume that αg cuts λ0 right outside the winding region at x0
0 and x0

1, as illustrated
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in Figure 3, although they may have other intersection points away from the winding region. Our
convention is that xi and x•i are on the left-hand side of λ∞ if i > 0, and are on its right-hand side
otherwise. Corresponding to each generator x ∈ Tα ∩ Tβ we may thus consider the generators

x′ ∈ Tα ∩ Tβ′ , x
(0)
0 ,x

(0)
1 ∈ Tα ∩ Tβ0 , x

(1)
1 ∈ Tα ∩ Tβ1

and

xi ∈ Tα ∩ Tβm , i = 1−
⌈
m

2

⌉
, 2−

⌈
m

2

⌉
, . . . ,m−

⌈
m

2

⌉
.

Moreover, associated with every generator y ∈ Tα∩Tβ0 , we have a generator y(1) ∈ Tα∩Tβ1 and
a generator y(m) ∈ Tα ∩ Tβm which are not supported in the winding region. Lemma 2.1 tells us
how to compute the relative Spinc class associated with any of these generators. An argument
similar to the argument used to prove Lemma 2.1 implies that

s(x
(0)
0 ) = s(x

(0)
1 ) = s(x).

The chain complex associated with the Heegaard diagram (Σ,α,β•;u, v, w) is the same as
the chain complex associated with (Σ,α,β•;u, v), since w is always in the same domain as one
of u and v in Σ\(α ∪ β•). We will sometimes abuse the notation and write

ĈF(K•; s) = ĈF(Σ,α,β•;u, v, w; s).

It is important to note that the markings u and v are used to define the map from the set of
generators to the set of relative Spinc classes, and w is only used to define some of the chain
maps and homomorphisms in the upcoming discussions.

The intersection point q0 ∈ λ0 ∩ λ1 (together with the top intersection points between β0
i

and β1
i for i = 1, . . . , g − 1) determines a top generator Θ0,1 for the chain complex ĈF(Σ,β0,

β1;u, v, w). Similarly, qm and pm determine the top generators Θg1 and Θf1 which belong to the

chain complexes ĈF(Σ,β1,βm;u, v, w) and ĈF(Σ,βm,β;u, v, w), respectively.
For compatibility of the notation, let us further assume that m is a large even integer.

In Figure 4, we consider a subdiagram of our main diagram, namely the Heegaard 4-tuple
(Σ,α,β,β0,βm;u, v, w). The shaded area, which contains the marking w, may be removed from
the surface Σ, and the left-hand-side boundary in the resulting surface may be shifted to the
right, so that the two boundary components are identified. The complex structure on Σ induces
a complex structure on the resulting closed surface, provided that the winding region carries
the quotient complex structure induced from the complex structure on the rectangle, and the
curves λ0 and λm are straight lines. Let us denote the resulting Riemann surface by Σ′. Clearly,
Σ′ is diffeomorphically identified with Σ, while the complex structure it carries slightly differs
from the complex structure on Σ in the winding region. We may slightly abuse the notation
and denote the resulting Heegaard diagram by (Σ′,α,β,β0,βm−1;u, v). By choosing the shaded

area thin enough, we may assume that ĈF(Σ′,α,β•;u, v) is identified with ĈF(Σ,α,β•;u, v) for
• ∈ {0,∞}. Correspondingly, we obtain the top generators Θf0 ,Θg0 and Θh0 . The top generators
Θf0 and Θh0 are in correspondence with top generators for the complexes

ĈF(Σ,βm,β;u, v, w) and ĈF(Σ,β,β0;u, v, w),

respectively, which will also be denoted by Θf0 and Θh0 . Corresponding to Θg0 , we have a pair of

top generators in ĈF(Σ,β0,βm;u, v, w) which use the intersection points q and q′, respectively.
We will denote these generators with Θg0 and Θ′g0 , respectively.
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Figure 4. In the Heegaard diagram (Σ,α,β,β0,βm;u, v, w), we may take out the shaded area
from the winding region and glue back the boundaries after shifting the left-hand-side part to
the right to obtain a Heegaard diagram which may be identified with (Σ′,α,β,β0,βm−1;u, v),
where Σ′ is the surface Σ but with a different complex structure.

From the Heegaard 4-tuple (Σ′,α,β,β0,βm−1;u, v), we obtain the exact triangle

as well as the square maps Hs
f0
, Hs

g0 and Hs
h0

, as discussed in § 2. Similarly, from the Heegaard
4-tuple (Σ,α,β,β1,βm;u, v), we obtain the exact triangle

as well as the square maps Hs
f1
, Hs

g1 and Hs
h1

.
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Moreover, we have gs0 = (gs0,a, g
s
0,b) and gs1 = (gs1,a, g

s
1,b), where

gs0,a : ĈF(Σ′,α,β0;u, v; s) → ĈF(Σ′,α,βm−1;u, v; s),

gs0,b : ĈF(Σ′,α,β0;u, v; s) → ĈF(Σ′,α,βm−1;u, v; s +m− 1),

gs1,a : ĈF(Σ,α,β1;u, v; s) → ĈF(Σ,α,βm;u, v; s),

gs1,b : ĈF(Σ,α,β1;u, v; s) → ĈF(Σ′,α,βm;u, v; s +m− 1).

Other than gs•, the square maps Hs
f•

and Hs
h•

, which are defined using the top generator Θg• ,
may also be decomposed into two summands:

Hs
f• = Hs

f•,a +Hs
f•,b and Hs

h• = Hs
h•,a +Hs

h•,b for • = 0, 1.

Here, Hs
f•,a

and Hs
f•,b

record the contributions to Hs
f•

from the square classes which miss the
markings b and a, respectively. Similarly, Hs

h•,a
and Hs

h•,b
record the contributions to Hs

h•
from

the square classes which miss the markings b and a, respectively.
Having fixed the relative Spinc class s, by choosing m sufficiently large we may identify

ĈF(Σ′,α,βm−1;u, v; s) with ĈF(Σ,α,βm;u, v; s), as they both have the same set of generators
(all supported in the winding region), the corresponding Whitney discs are in correspondence
and their domains are supported in subsurfaces of Σ′ and Σ where the complex structures match.
Moreover, for such sufficiently large values of m, the complex

ĈF(Σ′,α,βm−1;u, v; s +m− 1)

is identified with the subcomplex of ĈF(Σ,α,βm;u, v; s +m− 1) which is generated by xi with
x ∈ Tα ∩ Tβ, i > 2 and s(xi) = s +m− 1. We will denote the inclusion of this subcomplex by

Js : ĈF(Σ′,α,βm−1;u, v; s +m− 1) → ĈF(Σ,α,βm;u, v; s +m− 1).

3.2 The homomorphisms in the surgery triangle
The top generators Θ0,1, Θg1 and Θf1 determine the holomorphic pentagon map

P s : ĈFK(K0; s) = ĈF(Σ,α,β0;u, v, w; s) → ĈF(Y ) = ĈF(Σ,α,β;u, v, w),

which is defined by setting

P s(x) :=
∑

y∈Tα∩Tβ

∑
D∈π−2

2 (x,Θ0,1,Θg1 ,Θf1 ,y;u,v,w)

#(M(D)) · y.

Every pentagon class D ∈ π−1
2 (x,Θ0,1,Θg1 ,Θf1 ,y;u, v, w) corresponds to a one-dimensional

moduli space with boundary. The boundary points are in correspondence with the degeneration
of the domain of D into two parts. Since the generators Θ0,1,Θg1 and Θf1 are closed, the
degenerations into a bigon and a pentagon correspond to the coefficient of y in (d◦P s+P s◦d)(x).
The remaining degenerations are the degenerations D = �?∆ to a triangle ∆ with Maslov index
0 and a square � with Maslov index −1 which miss u, v and w. The possibilities are:

(1) � ∈ π2(z,Θg1 ,Θf1 ,y) and ∆ ∈ π2(x,Θ0,1, z);

(2) � ∈ π2(x,Θ0,1,Θg1 , z) and ∆ ∈ π2(z,Θf1 ,y);

(3) � ∈ π2(x,Θ0,1,Θ,y) and ∆ ∈ π2(Θg1 ,Θf1 ,Θ);
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(4) � ∈ π2(x,Θ,Θf1 ,y) and ∆ ∈ π2(Θ0,1,Θg1 ,Θ);

(5) � ∈ π2(Θ0,1,Θg1 ,Θf1 ,Θ) and ∆ ∈ π2(x,Θ,y).

Degenerations of type 1 correspond to the coefficient of y in (Hs
h1
◦ fs∞)(x), where the map

induced by

f
s
∞ : ĈFK(K0; s) = ĈF(Σ,α,β0;u, v, w; s) −→ ĈFK(K1; s) = ĈF(Σ,α,β1;u, v, w; s)

in homology is the homomorphism f
s
∞ : H0(K; s) → H1(K; s), which appears in the splicing

formula of [Eft15]. We abuse the notation and denote both the chain map and the induced map
on homology by f

s
∞. Degenerations of type 2 correspond to the coefficient of y in f s1 ◦ Hs(x),

where
Hs : ĈFK(K0; s) = ĈF(Σ,α,β0;u, v, w; s) → ĈF(Σ,α,βm;u, v, w)

is defined by setting

Hs(x) =
∑

z∈Tα∩Tβm

∑
�∈π−1

2 (x,Θ0,1,Θg1 ,z;u,v,w)

#(M(�)) · z.

If � ∈ π−1
2 (x,Θ0,1,Θg1 , z;u, v, w) is a square class which contributes to Hs, from nu(�) =

nv(�) = nw(�) = 0 it follows that

nc(�) = nb(�) + 1 and ne(�) = nu(�) + 1 = 1.

Furthermore, since qm is one of the corners of the domain D(�), we find that

na(�) = ne(�) + nv(�)− nc(�) + 1

= 1− nb(�).

From here, we are left with two possibilities:

na(�) + nb(�) = 1 ⇒

{
(i) na(�) = 1 and nb(�) = 0,

(ii) na(�) = 0 and nb(�) = 1.

We may thus write Hs(x) = Hs
a(x) + Hs

b (x), where Hs
a(x) and Hs

b (x) correspond to the
contributions from holomorphic squares of types (i) and (ii), respectively.

Lemma 3.1. For every generator x ∈ ĈF(Σ,α,β0;u, v, w; s), we have

Hs
a(x) ∈ ĈF(Σ,α,βm;u, v, w; s)

and

Hs
b (x) ∈ ĈF(Σ,α,βm;u, v, w; s +m− 1).

Proof. Choose w ∈ Tα ∩ Tβ so that s(w) = s. There are a particular square class

�0 ∈ π0
2(w

(0)
0 ,Θ0,1,Θg1w0;u, v, w, b)

and a corresponding domain D0 = D(�0) which intersects the winding region in a 4-gon with
one obtuse angle. This 4-gon, which is shaded in Figure 3, has vertices at q0, qm, x0 and x0

0, and

its obtuse angle is at qm. Since the relative Spinc class associated with both x and w
(0)
0 is s,

there is a Whitney disc φ ∈ π2(x,w
(0)
0 ;u, v), which corresponds to a domain D1 = D(φ). Since
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b, w and u are not separated by α∪β0, it follows that nb(D1) = nw(D1) = 0. Finally, associated
with every square class

� ∈ π−1
2 (x,Θ0,1,Θg1 , z; b, u, v, w)

which contributes to Hs
a(x) we obtain a domain D2 = D(�). From these three domains, we obtain

the domain D = D2−D1−D0 with boundary on the union α∪β0 ∪β1 ∪βm. After subtracting
suitable multiples of periodic domains bounded between the curves in β•\{λ•}, • ∈ {0, 1,m},
we may in fact assume that

∂D ⊂ α ∪ βm ∪ {λ0, λ1}.

Since D connects w0 to y, the boundary of D on each one of λ0 and λ1 is an integer multiple
of these two closed curves. From nv(D) = nw(D) = 0, it follows that D has no boundary on λ0

and, from nw(D) = nb(D) = 0, it follows that D has no boundary on λ1. In other words, D is the
domain of a Whitney disc ψ ∈ π2(w0,y;u, v, w, a). In particular, it follows that s(y) = s(w0) = s.

Let us now assume that �′ ∈ π−1
2 (x,Θ0,1,Θg1 , z; a, u, v, w) contributes to Hs

b (x) and,
correspondingly, we obtain a domain D′2 = D(�′). From the above discussion, we may find a
domain D′0 which corresponds to a class

�′0 ∈ π2(x,Θ0,1,Θg1 ,w0; b, u, v, w),

with s(w) = s. From the domains D′0 and D′2, we obtain a domain D′ = D′2−D′0 which misses the
markings u, v and w, and connects w0 to z. We may assume that this domain has its boundary
on α ∪ βm ∪ {λ0, λ1}. Moreover, from the equalities nv(D′) = nw(D′) = 0, we conclude that D′
has no boundary on λ0. The coefficient of λ1 is, however, equal to

nb(D′)− nw(D′) = nb(D′2) = 1.

Next, note that there is a domain D′′ with boundary on α∪βm ∪λ∞, which connects w1 to
w0 while n•(D′′) = 0 for • ∈ {a, b, u, v, w} and nz(D′′) = m− 1. There is also a periodic domain
P with boundary on λ1 ∪ λm ∪ λ∞ such that

nv(P) = nw(P) = nu(P) = 0, nb(P) = −na(P) = 1 and nz(P) = m− 1.

From the three domains D′,D′′ and P, we obtain the domain D̂ = D′ +D′′ −P which connects
w1 to z and

n•(D̂) = n•(D′) + n•(D′′)− n•(P) = 0 + 0− 0 = 0, • ∈ {u, v, w},
na(D̂) = na(D′) + na(D′′)− na(P) = −1 + 0− (−1) = 0,

na(D̂) = nb(D′) + nb(D′′)− nb(P) = 1 + 0− 1 = 0,

nz(D̂) = nz(D′) + nz(D′′)− nz(P) = 0 + (m− 1)− (m− 1) = 0.

We thus find that s(z) = s(w1) = s +m− 1. This completes the proof of the lemma. 2

In a degeneration of type 3, the contributing triangle classes ∆ come in cancelling pairs.
The total count of such degenerations is thus trivial. Furthermore, there are no holomorphic
representatives for the square classes of Maslov index −1 which appear in the boundary
degenerations of type 5. Note that there are positive square classes with Maslov index 0, but no
such square with Maslov index −1. It follows that there are no such degenerations.

In a degeneration of type 4, the moduli space corresponding to ∆ is trivial unless Θ includes
one of the two intersection points q or q′. In the former case, we need to have Θ = Θg0 while ∆
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Figure 5. A domain, which is an immersion of a triangle on the surface, is lightly shaded. This
domain has vertices q0, qm and q′. The coefficient of the shaded domain in the small triangle
with vertices q0, qm and q (which is strongly shaded) is 2, while its coefficient in the rest of the
shaded areas is 1. Moreover, a 4-gon with vertices qm, pm, p∞ and p′1 is strongly shaded.

corresponds to the union of the small triangle with vertices q0, qm and q in the winding region and
the small triangles with vertices at top intersection points of β0

i , β
1
i and βmi . In the latter case, Θ

is the generator Θ′g0 (which is obtained from Θg0 by replacing q with q′) and the intersection of
the domain of ∆ with the winding region is the region shaded in Figure 5. The total contribution
of the triangle classes in both these cases is 1. Such boundary degenerations thus correspond to
the coefficient of y in Hs

q(x) +Hs
q′(x), where

Hs
q(x) :=

∑
y∈Tα∩Tβ

∑
�∈π−1

2 (x,Θg0 ,Θf1 ,y;u,v,w)

#(M(�)) · y

and

Hs
q′(x) :=

∑
y∈Tα∩Tβ

∑
�∈π−1

2 (x,Θ′g0 ,Θf1 ,y;u,v,w)

#(M(�)) · y.

Lemma 3.2. With the above notation fixed, and under the identification of the chain complex
ĈF(Σ′,α,β•;u, v) with ĈF(Σ,α,β•;u, v, w) for • ∈ {0,∞}, we have

d ◦ P s + P s ◦ d+Hs
h0 = f s1 ◦Hs +Hs

h1 ◦ f
s
∞. (6)

Proof. As discussed in § 3.1, the holomorphic square map

Hs
h0 : ĈF(Σ′,α,β0;u, v, s) → ĈF(Σ′,α,β;u, v),
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which is defined from the Heegaard 4-tuple (Σ′,α,β,β0,βm−1;u, v), may be written as

Hs
h0 = Hs

h0,a +Hs
h0,b,

where Hs
h0,a

counts the squares with nb(�) = 0 and Hs
h0,b

counts the squares with na(�) = 0.

Under the identification of ĈF(Σ′,α,β•;u, v) with ĈF(Σ,α,β•;u, v, w) for • ∈ {0,∞}, we may
also identify Hs

q with Hs
h0,a

and Hs
q′ with Hs

h0,b
. In particular, Hs

q + Hs
q′ = Hs

h0
. Together with

the discussion preceding the lemma, this completes the proof of (6). 2

Next, we analyse Hs via degenerations of holomorphic squares. For a square class � ∈ π0
2(x,

Θ0,1,Θg1 ,y;u, v, w), the moduli space M(�) is one dimensional, and has six types of boundary
ends. Since Θ0,1 and Θg1 are closed, the four types of degenerations of the square class to a square
and a bigon correspond to the coefficient of y in (d ◦Hs +Hs ◦ d)(x). The remaining boundary
ends correspond to a degeneration of � to a pair of triangles. The degenerations � = ∆′ ? ∆
with ∆ ∈ π2(x,Θ0,1, z) and ∆′ ∈ π2(z,Θg1 ,y) correspond to the coefficient of y in (gs1 ◦ f

s
∞)(x).

As observed in the proof of Lemma 3.2, in degenerations of the form � = ∆′ ? ∆ with
∆′ ∈ π0

2(Θ0,1,Θg1 ,Θ;u, v, w) and ∆ ∈ π0
2(x,Θ,y;u, v, w), there are precisely two generators

Θ corresponding to a triangle class ∆′ = ∆Θ such that M(∆Θ) is non-empty. One of them
corresponds to Θ = Θg0 and the other one corresponds to Θ′g0 (see Figure 5). Such degenerations
thus correspond to the coefficient of y in the expression gs0,q(x) + gs0,q′(x), where

gs0,q(x) =
∑

y∈Tα∩Tβm

∑
∆∈π0

2(x,Θg0 ,y;u,v,w)

#(M(∆)) · y

and

gs0,q′(x) =
∑

y∈Tα∩Tβm

∑
∆∈π0

2(x,Θ′g0 ,y;u,v,w)

#(M(∆)) · y.

Lemma 3.3. With the above notation fixed, for every x ∈ Tα ∩ Tβ0 with s(x) = s, we have

gs0,q(x) ∈ ĈF(Σ,α,βm;u, v, w; s)

and

gs0,q′(x) ∈ ĈF(Σ,α,βm;u, v, w; s +m− 1).

Proof. Let us assume that ∆ ∈ π0
2(x,Θg0 ,y;u, v, w) is a triangle class which contributes to gs0,q

and let D1 = D(∆). Choose w ∈ Tα ∩ Tβ with s(w) = s and let φ ∈ π2(w
(0)
0 ,x;u, v, w) denote

a Whitney disc which connects w
(0)
0 to x. Set D2 = D(φ). There is a triangle in the Heegaard

diagram with vertices x0
0, q and x0 which is obtained from the shaded 4-gon in Figure 3 by

subtracting the small triangle with vertices q0, qm and q. This triangle may be paired with the
small triangles bounded between β0

i and βmi , i = 1, . . . , g−1, to give the domain of a distinguished
triangle class

∆0 ∈ π2(w
(0)
0 ,Θg0 ,w0;u, v, w).

We let D0 = D(∆0) and D = D0 − D1 − D2. It is then clear that D is a domain missing u, v
and w, which connects y to w0. After subtracting appropriate multiples of the periodic domains
in the Heegaard diagram (Σ,β0,βm;u, v, w), we may also assume that ∂D ⊂ α ∪ βm ∪ λ0. The
condition nv(D) = nw(D) = 0 implies that D does not have any boundary on λ0. It is thus the
domain of a Whitney disc ψ ∈ π2(y,w0;u, v, w). It follows that s(y) = s(w0) = s. The proof of
the second claim is quite similar. 2

1245

https://doi.org/10.1112/S0010437X18007054 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007054


E. Eftekhary

As before, one may identify ĈF(Σ′,α,βm−1;u, v; s) with ĈF(Σ,α,βm;u, v; s) and, under this
identification, it is clear that gs0,q = gs0,a. The complex

ĈF(Σ′,α,βm−1;u, v; s +m− 1)

is identified (via the inclusion map Js) with the subcomplex of

ĈF(Σ,α,βm;u, v; s +m− 1)

which is generated by xi with x ∈ Tα ∩ Tβ, i > 2 and s(xi) = s + m − 1. For a triangle class
∆ ∈ π0

2(x,Θ′g0 ,y;u, v, w) with non-trivial contribution to

gs0,q′ : ĈF(Σ,α,β0;u, v, w; s) → ĈF(Σ,α,βm;u, v, w; s +m− 1),

we have y = zi with z ∈ Tα ∩ Tβ and i > 2. Every such ∆ corresponds to a triangle class
∆′ ∈ π0

2(x,Θg0 , zi−1;u, v). Furthermore, M(∆) and M(∆′) may be identified if the complex
structures on Σ and Σ′ are chosen as described in § 3.1. Such ∆′ are the triangle classes which
contribute to the holomorphic triangle map gs0,b. This means that gs0,q′ = Js ◦ gs0,b (again, after

we identify ĈF(Σ′,α,β•;u, v) with ĈF(Σ,α,β•;u, v) for • ∈ {0,∞}).
Let us define

Gs
∞ : C0,m−1(s) → C1,m−1(s)

by setting

Gs
∞(x1,x2) := (x1, J

s(x2)), ∀

{
x1 ∈ ĈF(Σ′,α,βm−1;u, v; s),

x2 ∈ ĈF(Σ′,α,βm−1;u, v; s +m− 1).

Lemma 3.4. With the above notation fixed, we have:

(i) d ◦Hs +Hs ◦ d = gs1 ◦ f
s
∞ +Gs

∞ ◦ gs0;

(ii) f s1 ◦Gs
∞ = f s0 , ∀m� 1.

Proof. With our earlier considerations in place, the first claim already follows. We thus only
need to prove the second claim. If x ∈ Tα ∩ Tβm−1 satisfies s(x) = s, then the maps f s0 and f s1
are identical on x, by definition. Since Gs

∞(x) = x, the claim follows. Let us now assume that
s(x) = s + m − 1. It follows that x = zi for some i > 0, while s(z) = s + i. Thus, Js(x) = zi+1

and
f s1(Gs

∞(x)) = f s1(zi+1) = f s0(zi) = f s0(x).

The third equality follows, since every contributing triangle in π0
2(zi,Θf0 ,y;u, v) is in

correspondence with a contributing triangle in π0
2(zi+1,Θf1 ,y;u, v). 2

3.3 The bypass homomorphisms
Let us now consider the Heegaard 5-tuple H = (Σ,α,β1,βm,β,β

′;u, v, z). Since u and z are
not separated by α ∪ β′, by choosing the Hamiltonian isotopy which changes β to β′ close to
the identity, we may assume that the chain complex associated with the punctured Heegaard
diagram (Σ,α,β′;u, v, z) and s ∈ Spinc(Y,K) = Z is identified with

ĈFK(K; s) = ĈF(Σ,α,β;u, z; s).

Associated with (Σ,β,β′;u, v, z) there is a top generator, which may be denoted by Θ′∞. This
generator uses the intersection point p′∞. Unlike most of similar situations, Θ′∞ is not closed and
d(Θ′∞) = Θ∞ is the generator which is obtained from Θ′∞ by changing the choice of intersection
point in λ∞ ∩λ′∞ from p′∞ to p∞. By construction, Θ∞ is closed. The triple (Σ,α,β1,β

′;u, v, z)
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may be used to define a holomorphic triangle map

f
s
0 : ĈFK(K1; s) = ĈF(Σ,α,β1;u, v, z; s) −→ ĈF(Σ,α,β′;u, v, z; s) = ĈFK(K; s).

The map on homology induced by f
s
0 coincides with the map used in the splicing formula of

[Eft15]. We may also define a map

Is : C1,m−1(s) → ĈF(Σ,α,β′;u, v, z; s) = ĈFK(K, s),

which is defined by setting

Is(x) =
∑

y∈Tα∩Tβ′ ,s(y)=s

∑
�∈π−1

2 (z,Θf1 ,Θ∞,y;u,v,z)

#M(�) · y, ∀x ∈ Tα ∩ Tβm .

Lemma 3.5. The map Is is a chain map.

Proof. For x ∈ Tα ∩ Tβm and � ∈ π0
2(z,Θf1 ,Θ∞,y;u, v, z), the ends of the moduli space M(�)

are in correspondence with degenerations of �. Since Θf1 and Θ∞ are closed, degenerations into
a bigon and a square correspond to the coefficient of y in (d ◦ Is + Is ◦ d)(x). There are no
holomorphic triangles ∆ ∈ π0

2(Θf1 ,Θ∞,Θ;u, v, z), implying that there are no degenerations of
the form � = ∆ ?∆′ with

∆ ∈ π0
2(Θf1 ,Θ∞,Θ;u, v, z) and ∆′ ∈ π0

2(x,Θ,y;u, v, z).

Finally, by looking at local multiplicities around x, we may conclude that there are no positive
triangle classes ∆ ∈ π0

2(x,Θf1 , z;u, v, z). The contribution of degenerations of the form �= ∆?∆′

with
∆ ∈ π0

2(x,Θf1 , z;u, v, z) and ∆′ ∈ π0
2(z,Θ∞,y;u, v, z)

is thus trivial. From these observations, we conclude that (d◦Is+Is◦d)(x) = 0 for all x ∈ Tα∩Tβm ,
completing the proof of the lemma. 2

Lemma 3.6. With the above notation fixed, there is a map

Qs : ĈFK(K1; s) = ĈF(Σ,α,β1;u, v, z; s) −→ ĈF(Σ,α,β;u, v, z; s) = ĈFK(K; s)

which satisfies
d ◦Qs +Qs ◦ d = Is ◦ gs1 + f

s
0.

Proof. The diagram H defines a pentagon map

Qs : ĈFK(K1; s) = ĈF(Σ,α,β1;u, v, z; s) −→ ĈF(Σ,α,β;u, v, z; s) = ĈFK(K; s)

by setting

Qs(x) =
∑

y∈Tα∩Tβ′ ,s(y)=s

∑
D∈π−2

2 (x,Θg1 ,Θf1 ,Θ∞,y;u,v,z)

#(M(D)) · y.

For D ∈ π−1
2 (x,Θg1 ,Θf1 ,Θ∞,y;u, v, z), the ends of the moduli space M(D) which correspond

to the degenerations of the pentagon to a bigon and a pentagon contribute to the coefficient of
y in (d ◦ Qs + Qs ◦ d)(x). Other ends correspond to the degenerations of the form D = � ? ∆
of one of the following five types:

(1) � ∈ π2(z,Θf1 ,Θ∞,y) and ∆ ∈ π2(x,Θg1 , z);

(2) � ∈ π2(x,Θg1 ,Θf1 , z) and ∆ ∈ π2(z,Θ∞,y);

(3) � ∈ π2(x,Θg1 ,Θ,y) and ∆ ∈ π2(Θf1 ,Θ∞,Θ);
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(4) � ∈ π2(x,Θ,Θ∞,y) and ∆ ∈ π2(Θg1 ,Θf1 ,Θ);

(5) � ∈ π2(Θg1 ,Θf1 ,Θ∞,Θ) and ∆ ∈ π2(x,Θ,y).

Degenerations of types 1 and 2 correspond to the coefficient of y in (Is◦gs1)(x) and (Xs◦Hs
h1

)(x),
respectively, where

Xs(z) =
∑

y∈Tα∩Tβ′ ,s(y)=s

∑
∆∈π0

2(z,Θ∞,y;u,v,z)

#(M(∆)) · y.

Considering the local multiplicities around λ∞ ∩ λ′∞, one concludes that there are no triangle
classes ∆ ∈ π0

2(z,Θ∞,y;u, v, z) with positive domain. In particular, Xs is trivial. There are no
triangle classes which contribute in the degenerations of type 3. The contributing triangles in
degenerations of type 4 come in cancelling pairs. Thus, the total number of boundary ends
corresponding to degenerations of types 3 and 4 is zero. There is a unique square class in
π−1

2 (Θg1 ,Θf1 ,Θ∞,Θ;u, v, z) with non-trivial contribution to degenerations of type 5. The
intersection of the domain of this square class with the winding region is the rectangle with
vertices qm, pm, p∞ and p′1, which is shaded yellow in Figure 5. For this square class, Θ ∈ Tβ1∩Tβ′
is the top generator and � has a unique holomorphic representative. Using the generator Θ, we
define the map

f
s
0 : ĈFK(K1; s) = ĈF(Σ,α,β1;u, v, z; s) −→ ĈF(Σ,α,β′;u, v, z; s) = ĈFK(K; s),

which is again one of the maps which appeared in the splicing formula of [Eft15]. The contribution
of the degenerations of type 5 thus corresponds to the coefficient of y in f

s
0(x). These observations

complete the proof of the lemma. 2

Let ĈF(Y ) denote ĈF(Σ,α,β;u, v), as before. Define the maps

F
s
0 : M(f s1) → ĈFK(K; s) = ĈF(Σ,α,β′;u, v, z; s) and F

s
∞ : M(f s0) → M(f s1)

by setting

F
s
0(x1,x2) := Is(x1), ∀

{
x1 ∈ Tα ∩ Tβm , s(x1) ∈ {s, s +m− 1},
x2 ∈ Tα ∩ Tβ,

F
s
∞(x1,x2) := (Gs

∞(x1),x2), ∀

{
x1 ∈ Tα ∩ Tβm−1 , s(x1) ∈ {s, s +m− 1},
x2 ∈ Tα ∩ Tβ.

The outcome of the above observations, together with Lemmas 3.2, 3.4 and 3.6, is the following
theorem.

Theorem 3.7. With the above notation fixed and up to chain homotopy, the following diagram
is commutative:

ĈFK(K0; s)
f
s
∞- ĈFK(K1; s)

f
s
0- ĈFK(K; s)

M(f s0)

s0

? F
s
∞ - M(f s1)

s1

? F
s
0- ĈFK(K; s)

Id

?

(7)
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Proof. We first need to verify that F
s
∞ and F

s
0 are chain maps. Note that

(F
s
∞ ◦ d+ d ◦ F s

∞)(x1,x2) = ((Gs
∞ ◦ d+ d ◦Gs

∞)(x1), (f s1 ◦Gs
∞ + f s0)(x1))

= (0, (f s1 ◦Gs
∞ + f s0)(x1))

= 0,

where the last equality follows from the second part of Lemma 3.4. Since Is is a chain map by
Lemma 3.5, it follows that F

s
0 is also a chain map. Lemma 3.6 implies that

f
s
0 + F

s
0 ◦ s1 = d ◦Qs +Qs ◦ d.

This proves the commutativity of the right-hand-side square up to chain homotopy. To prove
the commutativity of the left-hand-side square, define

Rs : ĈF(Σ,α,β0;u, v, w; s) = ĈF(Σ′,α,β0;u, v; s) → M(f s1),

Rs(x) := (Hs(x), P s(x)), ∀x ∈ Tα ∩ Tβ0 with s(x) = s.

We thus find that

(d ◦Rs +Rs ◦ d)(x) = d(Hs(x), P s(x)) + (Hs(d(x)), P s(d(x)))

= ((Gs
∞ ◦ gs0 + gs1 ◦ f

s
∞)(x), (d ◦ P s + P s ◦ d+ f s1 ◦Hs)(x))

= ((Gs
∞ ◦ gs0 + gs1 ◦ f

s
∞)(x), (Hs

h1 ◦ f
s
∞ +Hs

h0)(x))

= (F
s
∞ ◦ s0 + s1 ◦ f

s
∞)(x).

The second equality follows from the first part of Lemma 3.4, while the third equality follows
from Lemma 3.2. This observation completes the proof of Theorem 3.7. 2

3.4 The proof of the splicing formula

We now turn to understanding the maps F
s
0 and F

s
∞ (which will be called the bypass

homomorphisms) under the identifications of Theorem 2.5. To understand F
s
0, one should identify

Is on
ĈFK(Km; s)⊕ ĈFK(Km; s +m− 1) = C{i 6 s, j = 0} ⊕ C{i = 0, j 6 −s}.

Let x ∈ Tα ∩ Tβ, xi be the corresponding generator in ĈFK(Km) and suppose that � ∈
π−1

2 (xi,Θf1 ,Θ∞,y;u, v, z) contributes to Is. Looking at local coefficients in the regions pictured
in Figure 3 implies that i = 1 and that the intersection of the domain of � with the winding
region is the rectangle with vertices x1, pm, p∞ and x, which contains the markings a, e and s.
In particular, s(x) = s(y) = s and x1 corresponds to the generator [x, 0,−s] ∈ C{i = 0, j 6 −s}.
There is a particular class � ∈ π2(x1,Θf1 ,Θ∞,x) with small domain and non-trivial contribution

to Is. Modifying ĈFK(K; s) = C{i = 0, j = −s} by the chain map Is|C{i=0,j=−s}, which is

a change of basis using the energy filtration, we may thus assume that F
s
0 is induced by

projecting the factor C{i = 0, j 6 −s} in the mapping cone of s1 over the quotient complex

C{i = 0, j = −s} = ĈFK(K; s). On the other hand, the image of

gs0,q′ = Js ◦ gs0,b : ĈFK(K0; s) → ĈFK(Km; s +m− 1)

is in the subcomplex

C{i = 0, j 6 −s− 1} ⊂ ĈFK(Km; s +m− 1) = C{i = 0, j 6 −s}.

The above observations imply the following theorem.
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Theorem 3.8. Under the identification of ĈFK(K•; s) with M(is•) for • = 0, 1, F
s
∞ is given

by the inclusion of M(is0) in M(is1) as a subcomplex, while F
s
0 is given by the quotient map

corresponding to this inclusion map. In particular, we have a short exact sequence

0 - M(is0)
F

s
∞ =↪→

- M(is1)
F

s
0- ĈFK(K; s) =

M(is1)

M(is0)
- 0.

Theorem 3.8 implies that the second row in (7) is part of a short exact sequence. The
discussion preceding [Eft15, Theorem 4.6] implies that the initial Heegaard diagram may be
chosen so that the first row is also completed to a short exact sequence. We thus have the
following commutative diagram (up to chain homotopy):

0 - ĈFK(K0; s)
f
s
∞- ĈFK(K1; s)

f
s
0- ĈFK(K; s) - 0

0 - M(is0)

s0

? F
s
∞ - M(is1)

s1

? F
s
0- ĈFK(K; s)

Id

?

- 0

(8)

In particular, in the level of homology, the connecting homomorphism of the short exact sequence
in the second row of (8) is identified with the connecting homomorphism f

s
1 of the first row, which

is used in the splicing formula of [Eft15]. A completely similar argument identifies fs∞ with the
inclusion map F s

∞ from M(is−1
0 ) to M(is1) and fs0 with the quotient map F s

0 from M(is1) to

ĈFK(K; s), while fs1 is identified with the connecting homomorphism of the short exact sequence

0 - M(is−1
0 )

F s
∞- M(is1)

F s
0- ĈFK(K; s) - 0. (9)

Proof of Theorem 1.6. Let C•(K) =
⊕

s∈ZC•(K; s), where C•(K; s) = M(is•) for • = 0, 1 and
C∞(K; s) = C{i = s, j = 0}. The maps F∞, F∞ : C0(K) → C1(K) and F0, F 0 : C1(K) → C∞(K)
sit in the short exact sequences

0 - C0(K)
F∞- C1(K)

F0- C∞(K) - 0

and

0 - C0(K)
F∞- C1(K)

F 0- C∞(K) - 0.

The maps induced by F• and F • in homology are f• and f•, respectively. Thus, [Eft15, Proposition
7.2] may be applied here to complete the proof of Theorem 1.6. 2

4. The linear algebra of bypass homomorphisms

4.1 Alternative compositions
Let K be a knot inside the homology sphere Y . Let (C, d) = (CK .dK) denote the chain complex
associated with K which was discussed in the previous two sections. Correspondingly, one may
define the maps F s

• and F
s
• for • ∈ {0,∞}. We will denote the maps induced by F s

• and F
s
• in

the level of homology by fs• and f
s
•, respectively, for • ∈ {0,∞}. The connecting homomorphisms

corresponding to the short exact sequences

0 - M(is−1
0 )

F s
∞- M(is1)

F s
0- ĈFK(K, s) - 0

and

0 - M(is0)
F

s
∞- M(is1)

F
s
0- ĈFK(K, s) - 0
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will be denoted by fs1 and f
s
1, respectively. By Theorem 3.8, this notation is compatible with the

notation of [Eft15].

Lemma 4.1. Let x ∈ ĈFK(K, s) be a closed element and [x] denote the class represented by x

in ĤFK(K, s). Then

(fs−1
0 ◦ fs−1

∞ ◦ fs1)[x] = [d1,0(x)] and (f
s+1
0 ◦ fs+1

∞ ◦ fs1)[x] = [d0,1(x)].

Proof. Since fs1 is the connecting homomorphism associated with the short exact sequence (9),
to compute fs1[x] note that x is the image of ([x, s, 0], 0, 0) ∈M(is1) under the quotient map. The
differential of M(is1) takes this element to( ∞∑

i=0

[di,0(x), s− i, 0], 0, [x, s, 0]

)
∈M(is1).

Since d0,0(x) = 0, this latter element is in M(is−1
0 ). The map F

s−1
∞ is the inclusion; thus,

(F
s−1
∞ ◦ F s

1 )(x) =

( ∞∑
i=1

[di,0(x), s− i, 0], 0, [x, s, 0]

)
∈M(is−1

1 ).

The projection map F s−1
0 takes this latter element to the closed element d1,0(x) in ĈFK(K; s−1).

This completes the proof of the first claim. The second claim is proved similarly. 2

Consider the Z ⊕ Z-filtered chain complexes C1 = CK1 and C0 = CK0 =
⊕

sC
s
0 associated

with the knots K1 and K0, respectively. Note that H1(K, s) and H0(K, s) may be identified with
the homology of the complexes C1{i = s, j = 0} and Cs

0{i = 0, j = 0}, respectively. It thus make
sense to talk about d1,0

• (x•) and d0,1
• (x•) for x ∈ H•(K, s). It is important to note that the chain

complexes Cs
0{i = a, j = b} for different integer values a and b are all isomorphic. In fact, the

longitude λ0 is homologically trivial and the condition

s(x) + (j − i)PD[λ0] = s

only means that s(x) = s, and does not put any restrictions on the pair (i, j). We can then prove
the following analogue of Lemma 4.1 .

Lemma 4.2. Let x• ∈ ĈFK(K•, s) be a closed element and [x•] denote the class represented by

x in ĤFK(K, s). Then

(fs+1
1 ◦ fs+1

0 ◦ fs+1
∞ )[x0] = [d1,0

0 (x0)], (f
s
1 ◦ fs0 ◦ f

s
∞)[x0] = [d0,1

0 (x0)],

(fs∞ ◦ f
s
1 ◦ fs0)[x1] = [d1,0

1 (x1)] and (f
s−1
∞ ◦ fs1 ◦ f

s
0)[x1] = [d0,1

1 (x1)].

Proof. We sketch the proof of the first statement, which is a combination of degeneration
arguments for holomorphic polygons, similar to the arguments used in §§ 2 and 3. The proof
of the other statements is similar.

Theorem 3.8 reduces the proof to showing the commutativity of the following diagram in the
level of homology groups:

ĈFK(K0; s)
d1,0

- ĈFK(K0; s)

M(is0)

s0

? fs+1
1 ◦ fs+1

0 ◦ fs+1
∞ - M(is0)

s0

?

(10)
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Let s0(x0) = (x, y, z) with x ∈ C{i 6 s, j = 0}, y ∈ C{i = 0, j 6 −s − 1} and z ∈ C{j = 0}.
One may then check that (f

s+1
0 ◦ fs+1

∞ )(x0) = [y1] ∈ H∞(K; s + 1), where y =
∑

i>1[yi, 0,−s− i].
Correspondingly, we may compute

(fs+1
1 ◦ fs+1

0 ◦ fs+1
∞ )(x0) = (d∗,0[y1, s + 1, 0], 0, [y1, s + 1, 0]).

Under the identification of ĈF(Σ,αm,β;u, v; s) with C{i 6 s, j = 0} and the identification of

ĈF(Σ,α,βm;u, v; s+m) with C{i = 0, j 6 −s−1}, we have y = gs+1
0,b (x0). We denote [yi, s+ i, 0]

by yi. To show the commutativity of the diagram in (10), we need to show that the map

Φ : ĈFK(K0; s) → M(is0),

Φ(x0) := (gs0,a(d
1,0
0 (x0)) + d∗,0(y1), gs0,b(d

1,0
0 (x0)), y1 +Hs

f0(d1,0
0 (x0)))

takes closed elements of ĈFK(K0; s) to exact elements. For this purpose, using the notation of
§ 3.1 and the labelling of Figure 3, define P s

a and P s
b by

P s
a , P

s
b : ĈFK(K0; s) → ĈF(Y )

P s
a(x0) =

∑
y∈Tα∩Tβ

∑
�∈π−1

2 (x0,Θq ,Θpm ,y;v)
nu(�)=na(�)=nb(�)=1

#M(�)y,

P s
b (x0) =

∑
y∈Tα∩Tβ

∑
�∈π−1

2 (x0,Θq ,Θpm ,y;v,a)
nu(�)=1,nb(�)=2

#M(�)y.

Here, Θq and Θpm are the top intersection points in Tβ0 ∩ Tβm and Tβm ∩ Tβ which use the
intersection points q and pm, respectively. Considering different possible degenerations of a square
with Maslov index 0, for a closed generator x0 ∈ CFK(K0; s) as above, we obtain

(Hs
h0 ◦ d

1,0
0 )(x0) + y1 = (d∗,0 ◦ P s

a)(x0) + (d∗,0 ◦ P s
b )(x0) + (f s0 ◦Qs)(x0),

where Qs = Qs
a +Qs

b is defined by

Qs
a : ĈFK(K0; s) → ĈF(Σ,α,βm;u, v; s)

Qs
a(x0) =

∑
y∈Tα∩Tβ

∑
∆∈π0

2(x0,Θpm ,y;v)
nu(∆)=na(∆)=nb(∆)=1

#M(∆)y,

Qs
a, Q

s
b : ĈFK(K0; s) → ĈF(Σ,α,βm;u, v; s +m)

Qs
b(x0) =

∑
y∈Tα∩Tβ

∑
∆∈π0

2(x0,Θpm ,y;v,a)
nu(∆)=1,nb(∆)=2

#M(∆)y

and f s0 ' Ξf0
s

give the identification of C0,m(s) with C{i 6 s, j = 0}⊕C{i = 0, j < −s} and are
also discussed in Lemma 2.4. Note that (f s0 ◦Qs)(x0) is equal to

(f s0 ◦Qs
a)(x0) + (Ξ ◦ f s0 ◦Qs)(x0)

up to an exact element denoted by d∗,0(Pc(x0)). Set P s = P s
a + P s

b + P s
c . Considering different

possible degenerations of a triangle of Maslov index 1, for a closed generator x0 as above, we
obtain

(gs0,a ◦ d
1,0
0 )(x0) + d∗,0(y1) = (d ◦Qs

a)(x0),

(gs0,b ◦ d
1,0
0 )(x0) = (d ◦Qs

b)(x0).
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Define the chain homotopy

Ψs
0 : Ker(d) ⊂ ĈFK(K0; s) → M(is0),

Ψs
0(x0) := (Qs

a(x0), Qs
b(x0), P s(x0)).

It is implied from the above considerations that

Φ(x0) = dΨs
0(x0) = ((d ◦Qs

a)(x0), (d ◦Qs
b)(x0), (d∗,0 ◦ P s + f s0 ◦Qs

a + Ξ ◦ f s0 ◦Qs
b)(x0)).

This completes the proof. 2

Corollary 4.3. For every relative Spinc class s ∈ Spinc(Y,K), the maps

F s
0 = f1 ◦ f0 ◦ f∞ ◦ f1 ◦ f0 ◦ f∞|ĤFK(K0;s)

: ĤFK(K0; s) −→ ĤFK(K0; s),

F s
1 = f∞ ◦ f1 ◦ f0 ◦ f∞ ◦ f1 ◦ f0|ĤFK(K1;s)

: ĤFK(K1; s) −→ ĤFK(K1; s),

F s
∞ = f0 ◦ f∞ ◦ f1 ◦ f0 ◦ f∞ ◦ f1|ĤFK(K;s)

: ĤFK(K; s) −→ ĤFK(K; s)

are nilpotent.

Proof. By Lemma 4.1, for every closed x ∈ ĈFK(K; s), we have

F s
∞[x] = [d1,0(d0,1(x))] ⇒ (F s

∞ ◦ F s
∞)[x] = [(d1,0 ◦ d0,1)2(x)] = [((d1,0)2 ◦ (d0,1)2)(x)] = 0,

where the last two equalities follow from (5). The other claims are proved similarly. 2

4.2 Block decomposition for bypass homomorphisms
Let us assume that the chain complex C is defined from the Heegaard diagram (Σ,α,β;u, z).
Changing the role of punctures gives the duality maps

τ• = τ•(K) : H•(K) → H•(K) for • ∈ {0, 1,∞},

where τ• takes H•(K; s) to H•(K,−s) if • = 1,∞ and to H0(K,−s − 1) when • = 0. Following
the notation of [Eft15], in a basis for H•(K) where f• takes the block form

(
0 0
I 0

)
, we assume that

τ• =

(
A• B•
C• D•

)
and τ−1

• =

(
A• B•
C• D•

)
, • ∈ {0, 1,∞}. (11)

It was observed in [Eft15] that

f0 = τ∞ ◦ f0 ◦ τ−1
1 , f1 = τ0 ◦ f1 ◦ τ−1

∞ and f∞ = τ1 ◦ f∞ ◦ τ−1
0 .

The maps B0, B1 and B∞ correspond to the induced maps

τ0 : Ker(f∞) →
H0(K)

Ker(f∞)
= Coker(f1),

τ1 : Ker(f0) →
H1(K)

Ker(f0)
= Coker(f∞),

τ∞ : Ker(f1) →
H∞(K)

Ker(f1)
= Coker(f0).

It follows that, up to a change of basis for the vector spaces Ker(f•) and Coker(f•), the matrices
B• are well defined and are invariants of K. In particular, their sizes, ranks, injectivity and
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surjectivity do not depend on the particular choice of the above presentation for τ•. Denote the
rank of f• by a• = a•(K). Thus, a1, a∞ and a0 + 1 have the same parity. Note that B0, B1 and
B∞ are matrices of sizes a∞×a1, a0×a∞ and a1×a0, respectively. Define X• = X•(K) by X0 =
B1B0B∞, X1 = B∞B1B0 and X∞ = B0B∞B1. Similarly, define X0 = B1B0B∞, X1 = B∞B1B0

and X∞ = B0B∞B1.

Lemma 4.4. With the above notation fixed, we have

A•(K) = A•(K), B•(K) = B•(K), D•(K) = D•(K) and X•(K) = X•(K)

for • ∈ {0, 1,∞}. Furthermore, X•(K)2 = 0 for • ∈ {0, 1,∞}.

Proof. Applying the homomorphism τ• twice gives an involution on H•(K) =
⊕

sH•(K, s) which
respects the decomposition by Spinc structures. The resulting isomorphism ς• = τ• ◦ τ• is an
involution (i.e. ς• ◦ ς• is the identity map on H•(K)), which was studied by Sarkar [Sar15] and
by Hendricks and Manolescu [HM15]. In particular, [Sar15, Theorem 1.1] implies that

ς• = Id + d1,0
• ◦ d0,1

•

for • ∈ {0, 1,∞}; cf. [HM15, Proposition 6.6]. Lemmas 4.1 and 4.2 imply that

τ2
∞ = Id + d1,0 ◦ d0,1 = Id + f0 ◦ f∞ ◦ f1 ◦ f0 ◦ f∞ ◦ f1 =

(
I 0

X0B1B0A∞ I +X0X0

)
= Id + d0,1 ◦ d1,0 = Id + f0 ◦ f∞ ◦ f1 ◦ f0 ◦ f∞ ◦ f1 =

(
I +X1X1 0

D∞B1B0X1 I

)
.

It follows that X0X0 = X1X1 = 0. Similarly, we can show that X∞X∞ = 0 and we conclude
that ς• =

(
I 0
Z• I

)
. This means, in particular, that

τ−1
• = ς•τ• =

(
A• B•

C• + Z•A• D• + Z•B•

)
= τ•ς• =

(
A• +B•Z• B•
C• +D•Z• D•

)
=

(
A• B•
C• D•

)
and that X• = X•. 2

Lemma 4.5. If K is a knot of genus g > 0, then B1 6= 0 and B∞ 6= 0. In particular, a• > 0 for
• ∈ {0, 1,∞}.

Proof. Since H∗(M(ig0)) = 0 by Theorem 2.5, the map f
g
0 : H1(K, g) → H∞(K, g) is an

isomorphism. From here and by duality, f−g0 is also an isomorphism and

H∗(M(i−g1 )) ' ĤFK(K,−g).

It follows from the proof of Proposition 5.3 from [Vaf15] (which may be extended to knots in
arbitrary homology spheres) that

H∗(M(ig−1
0 )) = H0(K, g − 1) ' ĤFK(K, g)⊕ ĤFK(K, g).
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This was also proved for fibered knots in [Eft05]. Thus, fg0 is trivial, fg1 is injective and fg∞ is
surjective. The triviality of fg0 implies that Ker(f0)\Ker(f0) and Im(f0)\Im(f0) are both non-empty.
Since Ker(f0)\Ker(f0) is non-empty, it follows that

∃
(
a
b

)
∈ H1(K) s.t.

(
0 0
I 0

)(
a
b

)
= 0 and

(
A∞ B∞
C∞ D∞

)(
0 0
I 0

)(
A1 B1

C1 D1

)(
a
b

)
6= 0.

Thus, a = 0 and
(
B∞B1b
D∞B1b

)
6= 0. In particular, B1 6= 0.

Similarly, from the condition Im(f0)\Im(f0) 6= ∅, it follows that Ker(f1)\Ker(f1) is non-empty
and thus B∞ 6= 0. 2

Lemma 4.6. For every knot K, X2
• = 0 for • ∈ {0, 1,∞}. In particular, if K is non-trivial, the

kernel and the cokernel of X• are non-trivial.

Proof. The first claim is already proved in the discussion preceding Lemma 4.5. The second
claim is a consequence of the first, since a• > 0 by Lemma 4.5. 2

If P• is an invertible a• × a• matrix and the matrices Y• are arbitrary matrices of correct
size, we may choose a change of basis for either of H0(K),H1(K) and H∞(K), which is given by
the invertible matrices

P0 =

(
P∞ 0
Y0 P1

)
, P1 =

(
P0 0
Y1 P∞

)
and P∞ =

(
P1 0
Y∞ P0

)
, (12)

respectively. The block forms f• =
(

0 0
I 0

)
remain unchanged under such a change of basis. A

simultaneous change of basis of the form illustrated in (12) is called an admissible change of
basis. The following lemma will be useful through our forthcoming discussions.

Lemma 4.7. Suppose that K is a knot in a homology sphere and, for • ∈ {0, 1,∞}, let τ• denote
τ•(K) and X• denote the matrix X•(K). Choose

(◦, •, ∗) ∈ {(0, 1,∞), (1,∞, 0), (∞, 0, 1)}.

(1) If B◦(K), B•(K) are injective and B∗(K) is surjective, after an admissible change of basis
we may assume that

τ◦ =

0 0 I

0 ? 0

I 0 0

 , τ• =


0 0 0 I 0

0 0 0 0 I

0 0 ? 0 0

I 0 0 0 0

0 I 0 0 0

 and τ∗ =


0 X• ? ?

? ? ? ?

? ? ? ?

? ? ? ?

 . (13)

(2) If B◦(K), B•(K) are surjective and B∗(K) is injective, after an admissible change of basis
we may assume that

τ◦ =


0 0 0 I 0

0 0 0 0 I

0 0 ? 0 0

I 0 0 0 0

0 I 0 0 0

 , τ• =

0 0 I

0 ? 0

I 0 0

 and τ∗ =


? ? ? ?

? ? ? ?

? ? ? X◦
? ? ? 0

 . (14)
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Proof. It is important to note that when B• is injective, we can assume that D• = 0 and Z•
is thus zero. This implies that τ−1

• = τ•. Similarly, when B• is surjective, we can assume that

A• = A• = 0 and Z• is thus zero. Again, this implies that τ−1
• = τ•. The rest of the proof consists

of straightforward linear algebra. 2

Definition 4.8. The knotK inside the homology sphere Y is called full-rank if all three matrices

B0(K), B1(K) and B∞(K) are full-rank.

If K is full-rank, it is implied that ς•(K) = τ•(K)2 is the identity. We may thus assume that

�• = �• for � ∈ {A,B,C,D,X} and • ∈ {0, 1,∞}.

5. Splicing and homology sphere L-spaces

5.1 Special pairs

Given an arbitrary matrix M , denote the rank of Ker(M) by k(M), denote the rank of Coker(M)

by c(M) and set h(M) = k(M) + c(M). The matrices M1 and M2 are called equivalent if

k(M1) = k(M2) and c(M1) = c(M2). If M? ∈ Mn?×m?(F) for ? = 1, 2 are a pair of matrices,

M1 ⊗M2 ∈ Mn1n2×m1m2(F) denotes the associated map from Fm1m2 = Fm1 ⊗ Fm2 to Fn1n2 =

Fn1 ⊗ Fn2 .

Let Y = Y (K1,K2) denote the three-manifold obtained by splicing the complements of

K1 ⊂ Y1 and K2 ⊂ Y2, where Y1 and Y2 are homology spheres. For � ∈ {A,B,C,D,X, τ},
• ∈ {0, 1,∞} and ? ∈ {1, 2}, let �?• = �•(K?). Proposition 5.4 from [Eft15] and the discussion

following it give the following.

Proposition 5.1. If Ki is a knot inside the homology sphere Yi for i = 1, 2,

rnk ĤF(Y (K1,K2);F) = h(D(K1,K2)),

where the matrix D = D(K1,K2) is given by

D =



B1
1 ⊗B2

1 B1
1 ⊗A2

1 0 A1
1 ⊗B2

1 0 0
0 A1

0 ⊗B2
∞ B1

0 ⊗B2
∞ 0 0 B1

0 ⊗A2
∞

D1
1 ⊗B2

1
D1

1 ⊗A2
1

+A1
0 ⊗D2

∞
B1

0 ⊗D2
∞ C1

1 ⊗B2
1 0 B1

0 ⊗ C2
∞

0 0 0 B1
∞ ⊗A2

0 B1
∞ ⊗B2

0 A1
∞ ⊗B2

0

B1
1 ⊗D2

1 B1
1 ⊗ C2

1 0
D1
∞ ⊗A2

0

+A1
1 ⊗D2

1
D1
∞ ⊗B2

0 C1
∞ ⊗B2

0

0 C1
0 ⊗B2

∞ D1
0 ⊗B2

∞ B1
∞ ⊗ C2

0 B1
∞ ⊗D2

0

A1
∞ ⊗D2

0

+D1
0 ⊗A2

∞
+X1

1 ⊗X2
1



.
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For the purposes of this paper, it is usually easier to work with a matrix D′(K1,K2), which
is equivalent to D(K1,K2) and is given by the block form



D1
∞B1

1 ⊗B2
1A

2
0 B1

1A
1
0 ⊗ I B1

1B
1
0 ⊗ I D1

∞A1
1 ⊗B2

1A
2
0 I ⊗B2

1B
2
0 0

I ⊗B2
∞B2

1 D1
1A

1
0 ⊗B2

∞A2
1 D1

1B
1
0 ⊗B2

∞A2
1 0 B1

0B
1
∞ ⊗ I B1

0A
1
∞ ⊗ I

I ⊗D2
∞B2

1
I ⊗ I+

D1
1A

1
0 ⊗D2

∞A2
1

D1
1B

1
0 ⊗D2

∞A2
1 0 0 0

B1
∞B1

1 ⊗ I 0 I ⊗B2
0B

2
∞ B1

∞A1
1 ⊗ I

D1
0B

1
∞ ⊗B2

0A
2
∞

+X1
1B

1
∞ ⊗B2

0X
2
1

D1
0A

1
∞ ⊗B2

0A
2
∞

+X1
1A

1
∞ ⊗B2

0X
2
1

D1
∞B1

1 ⊗D2
1A

2
0 0 0

I ⊗ I+

D1
∞A1

1 ⊗D2
1A

2
0

I ⊗D2
1B

2
0 0

0 0 I ⊗D2
0B

2
∞ 0

D1
0B

1
∞ ⊗D2

0A
2
∞

+X1
1B

1
∞ ⊗D2

0X
2
1

I ⊗ I+

D1
0A

1
∞ ⊗D2

0A
2
∞

+X1
1A

1
∞ ⊗D2

0X
2
1



.

A change of basis changes D(K1,K2) to D′(K1,K2), as discussed in [Eft15]. Here, it is important

to note that �
i
• = �i• for • ∈ {0, 1,∞}, i = 1, 2 and � ∈ {A,B,D,X}.

This is the original formulation of [Eft15, Proposition 5.4], which was proved based on the
incorrect assumption that τ•(Ki) is an involution for i = 1, 2 and • ∈ {0, 1,∞}. The above two
splicing formulas are corrected in [Eft17]. The first matrix presentation remains unchanged, while

in the second matrix presentation some of the matrices �i• are changed to �
i
• for � ∈ {A,B,C,

D,X}, • ∈ {0, 1,∞} and i ∈ {1, 2}. It is then important to note that the matrices C
i
• are not

used in the original and revised splicing formula. Lemma 4.4 thus implies that the above splicing
formulas are in fact valid.

There is a symmetry between K1 and K2 in the block presentation of D(K1,K2), which may
be made precise as follows. If we re-order the row blocks and the column blocks of D(K1,K2)
using the permutation

(1, 2, 3, 4, 5, 6) −→ (1, 4, 5, 2, 3, 6),

we obtain a new matrix with entries of the form X1 ⊗X2 (or a sum of such elements). We may
further change every such entry to X2⊗X1. The resulting matrix is D(K2,K1). This symmetry
shows that D(K1,K2) is equivalent to D(K2,K1). The disadvantage of using D′(K1,K2) is that
the symmetry between K1 and K2 is not seen in the splicing formula when we use D′(K1,K2).
Yet, the equivalence of D′(K1,K2) with D(K1,K2) implies that D′(K1,K2) is equivalent to
D′(K2,K1).

Definition 5.2. The pair (K1,K2) is called a special pair if ĤF(Y (K1,K2);F) = F.

Suppose, throughout this section, that (K1,K2) is a special pair. Let k•? = k(B•?) and c•? =
c(B•?) for ? ∈ {0, 1,∞} and • = 1, 2. Define ı : {0, 1,∞}→ {0, 1,∞} by ı(0) = ∞, ı(1) = 1 and
ı(∞) = 0. For D = D(K1,K2), the cokernel and kernel of D include subspaces C(D) and K(D)
(respectively), which are isomorphic to⊕

•∈{0,1,∞}

Coker(B1
•)⊗ Coker(B2

ı(•)) and
⊕

•∈{0,1,∞}

Ker(B1
•)⊗Ker(B2

ı(•)),
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respectively, and correspond to the first, second and fourth rows, and to the first, third and fifth

columns, respectively. Moreover, if A1
∞ ⊗D2

0 + D1
0 ⊗ A2

∞ = 0 (which may be assumed after an

admissible change of basis if c1
∞k

2
0 = k1

0c
2
∞ = 0), the cokernel also includes a subspace isomorphic

to Coker(B1
∞)⊗Coker(B2

∞) and the kernel includes a subspace isomorphic to Ker(B1
0)⊗Ker(B2

0).

These two subspaces correspond to the last row and the last column of the matrix D(K1,K2),

since Ker(B?
0) ⊂ Ker(X?

1 ) for ? = 1, 2, while Coker(B?
∞) is a quotient of Coker(X?

1 ).

Denote the ranks of K(D) and C(D) by k̂(D) and ĉ(D), respectively. Thus, k(D) + c(D) 6 1

and

k̂(D) =
∑

•∈{0,1,∞}

k1
•k

2
ı(•) 6 k(D) and ĉ(D) =

∑
•∈{0,1,∞}

c1
•c

2
ı(•) 6 c(D).

Proposition 5.3. If (K1,K2) is a special pair, then possibly after interchanging K1 and K2,

one of the following is the case.

(G) K1 is full-rank.

(S-1) The matrix B2
0 is invertible, B1

0 is surjective and B1
1 and B2

∞ are injective.

(S-2) The matrix B2
0 is invertible, B1

0 is injective and B1
1 and B2

∞ are surjective.

Proof. We assume that (K1,K2) is a special pair, while none of K1 and K2 is full-rank. Let

us first assume that both k̂(D) and ĉ(D) are zero. From the above assumption, we find that

k1
•k

2
ı(•) = c1

•c
2
ı(•) = 0 for • = 0, 1,∞. If B1

• is not a full-rank matrix, then both c1
• and k1

• are

non-zero. From here, k2
ı(•) = c2

ı(•) = 0, i.e. B2
ı(•) is invertible. Since the parity of a2

0 is different

from the parity of a2
1 and a2

∞, the matrices B2
1 and B2

∞ cannot be square matrices. Thus, ı(•) = 0

and • =∞. In other words, we conclude that B1
0 and B1

1 are full-rank and B2
0 is invertible, while

B2
∞ is not full-rank. Similarly, we may conclude that B2

1 is full-rank and B1
0 is invertible, while

B1
∞ is not full-rank. Moreover, since c1

1c
2
1 = k1

1k
2
1 = 0, precisely one of B1

1 and B2
1 is injective and

the other one is surjective. Without loss of generality, we may thus assume that:

– B1
0 and B2

0 are invertible, B1
1 is injective and B2

1 is surjective;

– none of B1
∞ and B2

∞ is full-rank.

In particular, k1
∞ > c1

∞ > 0 and c2
∞ > k2

∞ > 0. Since B1
0 and B2

0 are both invertible, we may

assume that D1
0 = 0 and D2

0 = 0. From here, the cokernel of D includes a subspace isomorphic to

Coker(B1
∞)⊗ Coker(B2

∞), which is of size c1
∞c

2
∞ > 2. This implies that (K1,K2) is not special.

From this contradiction, we conclude that one of k̂(D) and ĉ(D) is non-zero. Suppose that

ĉ(D) = 1 and k̂(D) = 0. For some • ∈ {0, 1,∞}, we thus have c1
• = c2

ı(•) = 1, while k1
•k

2
ı(•) = 0 and,

for ? 6= •, we have c1
?c

2
ı(?) = k1

?k
2
ı(?) = 0. Without loss of generality, we may assume that k1

• = 0.

Thus, B1
• is injective with a one-dimensional cokernel. In particular, the parities of the number

of rows and the number of columns for B1
• are different, i.e. • 6= 0. Thus, c1

0c
2
∞ = k1

0k
2
∞ = 0. Since

B2
∞ is not a square matrix, at least one of c2

∞ and k2
∞ is non-zero, implying that at least one of

c1
0 and k1

0 is zero, i.e. B1
0 is full-rank. The assumption that K1 is not full-rank implies that B1

? is

not full-rank, where {?} = {1,∞}\{•}. From here, c1
?, k

1
? > 0. Together with c1

?c
2
ı(?) = k1

?k
2
ı(?) = 0,

this implies that c2
ı(?) = k2

ı(?) = 0, i.e. B2
ı(?) is invertible. Thus, ı(?) = 0, ? = ∞ and • = 1. We

thus conclude that:

– B2
0 is invertible, B1

0 is full-rank, B1
1 is injective and B1

∞ is not full-rank;

– c1
1 = c2

1 = 1.
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Since B2
0 is invertible, we may assume that A2

0 = D2
0 = 0. If B1

0 is injective, we may also assume
that D1

0 = 0 and that Coker(D) includes a subspace isomorphic to Coker(B1
∞)⊗Coker(B2

∞) and
of size c1

∞c
2
∞. Since c1

∞ 6= 0, we conclude that B2
∞ is surjective. From here, a2

∞ = a2
1 6 a2

0 − 1
and 1 − k2

1 = c2
1 − k2

1 = a2
0 − a2

∞ > 1. We thus find that k2
1 = 0 and K2 is full-rank, which is a

contradiction. Thus, k1
0 > 0 and c1

0 = 0. From k1
0k

2
∞ = 0, we find that k2

∞ = 0, i.e. B2
∞ is injective

and the conditions of (S-1) are satisfied. A similar argument reduces the case k̂(D) = 1 and
ĉ(D) = 0 to (S-2). 2

Proposition 5.4. Given the pair of knots (K1,K2), where K1 is a full-rank knot and for any
(◦, •, ∗) ∈ {(0, 1,∞), (1,∞, 0), (∞, 0, 1)}:

(K) if B1
◦ , B

1
• are injective and B1

∗ is surjective, then

c(D) > c1
•c

2
ı(•) + c1

◦c
2
ı(◦) and k(D) > k(X1

• )k(B2
ı(∗)X

2
ı(•));

(C) if B1
◦ , B

1
• are surjective and B1

∗ is injective, then

k(D) > k1
•k

2
ı(•) + k1

◦k
2
ı(◦) and c(D) > c(X1

◦ )c(X
2
ı(◦)B

2
ı(∗)).

Proof. The first claim in either of cases (K) and (C) is already observed in our earlier discussions.
We thus need to prove the second claim in each case. The proofs are very similar. In fact, the
proof of claim (C) for (◦, •, ∗) is almost identical to the proof of claim (K) for (ı(•), ı(◦), ı(∗))
because of the symmetry in the block presentation of D′. We will only go through the proof for
(◦, •, ∗) = (0, 1,∞).

In case (K), after an admissible change of basis, we may assume that τ0(K1), τ1(K1) and
τ∞(K1) take the standard form of (13). Since D1

0 = D1
1 = A1

∞ = 0, the (3, 2) entry and the
(6, 6) entry of the matrix D′ = D′(K1,K2) are both the identity matrix. The matrix D′ is thus
equivalent to the matrix

D1
∞B

1
1 ⊗B2

1A
2
0+

B1
1A

1
0 ⊗D2

∞B
2
1

B1
1B

1
0 ⊗ I D1

∞A
1
1 ⊗B2

1A
2
0 I ⊗B2

1B
2
0

I ⊗B2
∞B

2
1 0 0 B1

0B
1
∞ ⊗ I

B1
∞B

1
1 ⊗ I I ⊗B2

0B
2
∞ B1

∞A
1
1 ⊗ I X1

1B
1
∞ ⊗B2

0X
2
1

D1
∞B

1
1 ⊗D2

1A
2
0 0

I ⊗ I+

D1
∞A

1
1 ⊗D2

1A
2
0

I ⊗D2
1B

2
0


. (15)

Replacing the block forms for τ?(K1) gives the following presentation of the above matrix:

? ? I ⊗ I 0 0 ? I ⊗B2
1B

2
0 0 0

? ? 0 0 0 ? 0 ? 0

? ? 0 0 0 ? 0 0 ?

? 0 0 0 0 0 X1
1 ⊗ I ? ?

0 ? 0 0 0 0 0 0 0

? ? I ⊗B2
0B

2
∞ 0 0 ? 0 ? ?

? ? 0 I ⊗ I 0 ? ? 0 0

? ? 0 0 I ⊗ I ? 0 ? 0

? ? 0 0 0 ? 0 0 ?


.
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After subtracting I ⊗B2
0B

2
∞ times the first row from the sixth row, the identity matrices which

appear in the entries (1, 3), (7, 4) and (8, 5) of the above matrix become the only non-zero entries
of their respective columns. They may thus be used for the cancellation of the third, the fourth
and the fifth columns against the first, the seventh and the eighth rows. We thus arrive at a 6×6
matrix equivalent to D, which is of the form

? ? ? 0 ? ?
? ? ? 0 ? ?
? ? ? X1

1 ⊗ I ? ?
? ? ? 0 ? ?
? ? ? I ⊗B2

0X
2
1 ? ?

? ? ? 0 ? ?

 .

Since the kernel of D′ includes a subspace which is isomorphic to the kernel corresponding to
the fourth column, we find that k(D) = k(D′) > k(X1

1 )k(B2
0X

2
1 ).

For case (C), using Lemma 4.7, choose the standard block form of (14) for K1. In particular,
A1

0, A
1
1 and D1

∞ are all zero. The entries (3, 2) and (5, 4) of D′ are thus identity matrices, which
may be used for cancellation. Add B1

∞B
1
1⊗B2

0X
2
1 times the second row of the resulting matrix to

its third row, add B1
∞B

1
1 ⊗D2

0X
2
1 times the second row to the last row and note that B1

1D
1
1 = 0

to arrive at the following matrix, which is equivalent to D′ and thus to D:

0 B1
1B

1
0 ⊗ I I ⊗B2

1B
2
0 0

I ⊗B2
∞B

2
1 D1

1B
1
0 ⊗B2

∞A
2
1 B1

0B
1
∞ ⊗ I B1

0A
1
∞ ⊗ I

B1
∞B

1
1 ⊗ I I ⊗B2

0B
2
∞ D1

0B
1
∞ ⊗B2

0A
2
∞ D1

0A
1
∞ ⊗B2

0A
2
∞

B1
∞B

1
1 ⊗D2

0X
2
1B

2
∞B

2
1 I ⊗D2

0B
2
∞ D1

0B
1
∞ ⊗D2

0A
2
∞

I ⊗ I+

D1
0A

1
∞ ⊗D2

0A
2
∞


. (16)

Replacing the block forms of (14) for τ0(K1), τ1(K1) and τ∞(K1), we arrive at a matrix of the
form 

0 0 0 0 I ⊗ I I ⊗B2
1B

2
0 0 0 0

? ? ? ? 0 ? ? ? ?

? ? ? ? 0 ? ? ? ?

? ? ? ? 0 ? ? ? ?

? ? ? ? 0 ? ? ? ?

0 X1
0 ⊗ I 0 0 I ⊗B2

0B
2
∞ 0 0 0 0

? ? ? ? 0 ? ? ? ?

? ? ? ? 0 ? ? ? ?

? ? ? ? 0 ? ? ? ?


,

which is in turn equivalent to a matrix of the form

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
0 X1

0 ⊗ I 0 0 I ⊗X2
∞B

2
0 0 0 0

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?


.
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In particular, we conclude that c(D) > c(X1
0 )c(X2

∞B
2
0). This completes the proof of case (C)

when (◦, •, ∗) = (0, 1,∞). 2

5.2 The special cases (S-1) and (S-2)
Lemma 5.5. If (K1,K2) is a special pair of type (S-1) or (S-2), then one of the knots K1 or K2

is trivial.

Proof. Suppose otherwise that (K1,K2) is a special pair of type (S-1) and that both K1 and K2

are non-trivial. After an admissible change of basis, assume that

τ1
0 =

0 I 0

I 0 0

0 0 ?

 , τ1
1 =

0 0 I

0 ? 0

I 0 0

 and τ1
∞ =


? ? X1

∞ ?

? ? ? ?

? ? ? ?

? ? ? ?

 . (17)

In particular, A1
0 and D1

1 are zero. We may also assume that

τ2
0 =


0 0 I 0

0 0 0 I

I 0 0 0

0 I 0 0

 , τ2
1 =

? X2
∞ ?

? ? ?

? ? ?

 and τ2
∞ =

0 0 I

0 ? 0

I 0 0

 . (18)

In particular, A2
0, D

2
0 and D2

∞ are zero. The identity matrices which appear as entries (3, 2), (5, 4)
and (6, 6) in D′(K1,K2) may be used for cancellation to obtain the equivalent matrix

0 B1
1B

1
0 ⊗ I I ⊗B2

1B
2
0

I ⊗B2
∞B

2
1 0 B1

0B
1
∞ ⊗ I

B1
∞B

1
1 ⊗ I I ⊗B2

0B
2
∞

D1
0B

1
∞ ⊗B2

0A
2
∞

+X1
1B

1
∞ ⊗B2

0X
2
1

+B1
∞A

1
1 ⊗D2

1B
2
0


.

Subtracting X1
1B

1
∞ ⊗ B2

0B
2
∞ times the first row from the third row, we arrive at the equivalent

matrix 
0 B1

1B
1
0 ⊗ I I ⊗B2

1B
2
0

I ⊗B2
∞B

2
1 0 B1

0B
1
∞ ⊗ I

B1
∞B

1
1 ⊗ I I ⊗B2

0B
2
∞

D1
0B

1
∞ ⊗B2

0A
2
∞

+B1
∞A

1
1 ⊗D2

1B
2
0

 .

Replacing the block forms of (18) and (17), the above matrix takes the form

0 ? I ⊗ I 0 I ⊗X2
∞ ? ? ?

0 ? 0 0 0 ? ? ?

I ⊗X2
∞ ? 0 0 X1

∞ ⊗ I ? ? ?

0 ? 0 0 0 ? ? ?

X1
∞ ⊗ I ? I ⊗ I 0 0 ? ? ?

0 ? 0 0 0 ? ? ?

? ? ? I ⊗ I 0 ? ? ?

0 ? 0 0 0 ? ? ?


.
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Subtract the first row from the fifth row and use the identity matrices which appear as (1, 3) and
(7, 4) entries of the above matrix for cancellation to arrive at the following equivalent matrix:

0 ? 0 ? ? ?
I ⊗X2

∞ ? X1
∞ ⊗ I ? ? ?

0 ? 0 ? ? ?
X1
∞ ⊗ I ? I ⊗X2

∞ ? ? ?
0 ? 0 ? ? ?
0 ? 0 ? ? ?

 .

From the above presentation, we conclude that

k(D) = k(D′) > 2k(X1
∞)k(X2

∞) > 2.

This contradiction rules out the case (S-1). Ruling out the case (S-2) is similar. 2

6. Incompressible tori in homology spheres

6.1 The main theorem
Theorem 6.1. Suppose that Ki is a non-trivial knot in the homology sphere Yi for i = 1, 2. Let
Y = Y (K1,K2) denote the three-manifold obtained by splicing the complements of K1 and K2.

Then the rank of ĤF(Y ) is bigger than 1.

Proof. Suppose otherwise that Y is an L-space. Thus, (K1,K2) is a special pair. By
Proposition 5.3 and Lemma 5.5, we may assume that K1 is full-rank. In particular, one of
the cases (K) or (C) from Proposition 5.4 will happen. Note that in case (K) the kernel of D is
necessarily non-trivial by Lemma 4.6, while in case (C) the cokernel of D is non-trivial.

Let us assume that (K) is the case. Thus, c(D) = 0 and

k(X1
• ) = k(B2

ı(∗)X
2
ı(•)) = 1.

Note that Ker(B2
ı(∗)) ⊂ Ker(B2

ı(∗)X
2
ı(•)), which implies that either B2

ı(∗) is injective or we have

Ker(B2
ı(∗)) = Ker(B2

ı(∗)X
2
ı(•)). Let us first assume that the latter happens. It follows that

Ker(B2
ı(∗)) = Ker(B2

ı(∗)X
2
ı(•)) = Ker(B2

ı(∗)X
2
ı(•)X

2
ı(•)) = Ker(0),

since X2
ı(•)X

2
ı(•) = 0 by Lemma 4.6. Since B2

ı(∗) 6= 0 for ∗ = 0, 1, this cannot happen unless

∗ = ∞ and B2
0 = 0. By assumption, B1

0 and B1
1 are injective, while B1

∞ is surjective, implying
that a1

0 > a1
∞ > a1

1. Since the parity of a1
0 is different from the parity of a1

1 and a1
∞, we may

further assume that a1
0 > a1

∞ > a
1
1. Furthermore, we may assume that D1

0 = D1
1 = A1

∞ = 0. The
kernel of D′ has a subspace, which corresponds to the fifth column of D′ and is isomorphic to
Ker(B1

0B
1
∞⊗ I). The rank of this subspace is at least (a1

0−a1
∞)a2

1. This implies that a2
1 = 1 and,

for some positive integer a,
a1

0 − 1 = a1
∞ = a1

1 = a.

Since a1
∞ = a1

1, it follows that B1
0 is invertible. Part (1) of Lemma 4.7 then implies that (after

an admissible change of basis) we may assume that

τ1
0 =

(
0 I

I 0

)
, τ1

1 =

0 0 I

0 1 0

I 0 0

 and τ1
∞ =

0 X1
1 x

? d ?

? d′ ?

 (19)
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for some a × 1 matrix x, some a × a matrix d and some 1 × a matrix d′. Proposition 5.4 then
implies that

1 = k(D) > k(X1
1 )k(B2

0X
2
1 ) = k(X1

1 ) > 1.

This means that X1
1 is an a× a matrix of rank a− 1, and there is a unique 1× a vector y with

yX1
1 = 0. Since B1

∞ is full-rank, yx ∈ F cannot be 0, i.e. yx = 1. Note that the (1, 2) entry of
(τ1
∞)2 is zero, implying that

X1
1d+ xd′ = 0 ⇒ yX1

1d+ yxd′ = 0.

Since yX1
1 = 0 and yx = 1, we conclude that d′ = 0. We can now replace the block forms of (19)

in the matrix of (15) (which is equivalent to D′) and obtain the matrix

? I ⊗ I 0 ? 0 0
0 0 0 ? 0 0

? 0 0 0 X1
1 ⊗ I x⊗ I

X1
1 ⊗ I 0 0 x⊗ I 0 0

? 0 I ⊗ I ? 0 0
0 0 0 ?0 0 0


.

If we add ?0 · (y⊗ I) times the fourth row to the last row, the last row of the resulting equivalent
matrix becomes zero. It follows that the cokernel of the above matrix has a subspace of size
a2
∞ > 0. In particular, c(D) > 0. From this contradiction, we conclude that B2

ı(∗) is injective.

Let us first assume that B1
0 is not invertible. Then c1

•, c
1
◦ 6= 0. From the equalities c1

•c
2
ı(•) =

c1
◦c

2
ı(◦) = 0, we conclude that B2

ı(◦) and B2
ı(•) are both surjective. Thus, K2 is full-rank and, by

part (C) of Proposition 5.4, c(D′(K2,K1)) > 0. Since c(D′(K2,K1)) = c(D′(K1,K2)), this is a
contradiction, which implies that B1

0 is invertible. Moreover, the argument implies that 0 ∈ {◦, •}
and at least one of c2

ı(◦) and c2
ı(•) is trivial. It is easy to conclude from here that we are then

either in case (S-1) or in case (S-2) of Proposition 5.3, which are both excluded by Lemma 5.5.
The contradiction rules out case (K) of Proposition 5.4.

Now assume that (C) is the case. Thus, k(D) = 0 and

c(X1
◦ ) = c(X2

ı(◦)B
2
ı(∗)) = 1.

Note that Coker(B2
ı(∗)) is a quotient of Coker(X2

ı(◦)B
2
ı(∗)), which implies that either B2

ı(∗) is

surjective or Coker(B2
ı(∗)) = Coker(X2

ı(◦)B
2
ı(∗)). If the latter happens, similar to the previous case

we find that Coker(B2
ı(∗)) = Coker(0), since X2

ı(◦) is nilpotent by Lemma 4.6. Since B2
ı(∗) 6= 0 for

∗ = 0, 1, this cannot happen unless ∗ =∞ and B2
0 = 0. Since B1

0 and B1
1 are surjective and B1

∞
is injective, we may also assume that A1

0 = A1
1 = D1

∞ = 0. Furthermore, a1
0 < a1

∞ 6 a1
1. Then

the only non-zero entry in the fourth row of D′(K1,K2) is B1
∞B

1
1 ⊗ I, where the identity matrix

is of size a2
∞. Since B1

∞ is a matrix of size a1
1 × a1

0, we conclude that 1 = c(D′) > (a1
1 − a1

0)a2
∞,

which means that a2
∞ = 1 and there is a positive integer a such that

a1
0 = a1

∞ − 1 = a1
1 − 1 = a.

In this case, we may apply part (2) of Lemma 4.7 to obtain the following block forms:

τ1
0 =


0 0 1 0

0 0 0 I

1 0 0 0

0 I 0 0

 , τ1
1 =

0 0 I

0 1 0

I 0 0

 and τ1
∞ =

? ? x

d′ d X1
0

? ? 0

 (20)
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for some 1 × a matrix x, some a × a matrix d and some a × 1 matrix d′. The identity matrices
appearing in the above block forms are all a× a matrices. Proposition 5.4 then implies that

1 = c(D) > c(X1
0 )c(X2

∞B
2
0) = k(X1

1 ) > 1.

This means that X1
0 is an a× a matrix of rank a− 1, and there is a unique a× 1 vector y with

X1
0y = 0. Since B1

∞ is full-rank, xy ∈ F cannot be 0, i.e. xy = 1. Note that the (2, 3) entry of
(τ1
∞)2 is zero, and we have

dX1
0 + d′x = 0 ⇒ dX1

0y + d′xy = 0.

Since X1
0y = 0 and xy = 1, we conclude that d′ = 0. We can now replace the block forms of (20)

in the matrix of (16) (which is equivalent to D′) and obtain the matrix

0 0 0 I ⊗ I 0 0 0

B2
∞B

2
1 0 ? 0 x⊗ I ? ?

0 ? 0 0 X1
0 ⊗ I 0 ?

0 ? 0 0 0 0 0
0 ? 0 0 0 0 0
0 0 ? 0 0 ? ?
0 0 0 ? 0 ? ?


.

If we add y ⊗ B2
∞B

2
1 times the fifth column to the first column, the first column becomes zero,

and we thus obtain a subspace of the kernel of the above matrix (and of the kernel of D′) which
is of size a2

∞ > 0. In particular, k(D) > 0. From this contradiction, we conclude that B2
ı(∗) is

injective.
Again, let us first assume thatB1

0 is not invertible. Then k1
•, k

1
◦ 6= 0. Since k1

•k
2
ı(•) = k1

◦k
2
ı(◦) = 0,

we conclude that B2
ı(◦) and B2

ı(•) are both injective. Thus, K2 is full-rank and, by part (K) of

Proposition 5.4, k(D′(K2,K1))> 0. Since k(D′(K2,K1)) = k(D′(K1,K2)), this is a contradiction,
which implies that B1

0 is invertible. Moreover, the argument implies that 0 ∈ {◦, •} and at least
one of k2

ı(◦) and k2
ı(•) is trivial. Again, it is implied that we are either in case (S-1) or in case (S-2)

of Proposition 5.3, which are both excluded by Lemma 5.5. The contradiction rules out case (C)
of Proposition 5.4. 2

Corollary 6.2. If the homology sphere Y contains an incompressible torus, then

rnk(ĤF(Y,F)) > 1.

Proof. If Y contains an incompressible torus T , T will be separating and there will be a pair of
curves λ and µ on T such that λ is homologically trivial on one side of T and µ is homologically
trivial on the other side of T . Since Y is a homology sphere, the intersection number of µ and λ
is 1. Let U1 and U2 be the two components of Y − T and let U1 be the component containing a
surface which bounds λ. Capping off µ ⊂ T = ∂U1 by a disc and then gluing a three-ball gives
a three-manifold Y1. The simple closed curve λ represents a knot K1 ⊂ Y1. Similarly, capping off
λ ⊂ T = ∂U2 by a disc and then gluing a three-ball gives a three-manifold Y2 and µ represents a
knot K2 ⊂ Y2. Both Y1 and Y2 are homology spheres and Y is obtained by splicing K1 and K2.
Since T is incompressible, both K1 and K2 are non-trivial and Theorem 6.1 completes the proof
of this corollary. 2
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6.2 Applications

We may use the relation between Khovanov homology of a knot inside the standard sphere

and the Heegaard Floer homology of its branched double-cover, discovered by Ozsváth and

Szabó [OS05], to show the non-triviality of Khovanov homology for certain classes of knots. We

emphasize again that the results presented here are all special cases of the theorem of Kronheimer

and Mrowka [KM11] that Khovanov homology is an unknot detector.

Definition 6.3. A prime knot K ⊂ S3 is an n-string composite if there is an embedded 2-sphere

intersecting the knot transversely which separates (S3,K) into prime n-string tangles. A 2-string

composite knot is called a doubly composite knot.

We refer the reader to [Ble84] for more on doubly composite and doubly prime knots, and

only quote the following lemma from that paper.

Lemma 6.4. A prime knot K ⊂ S3 is a doubly composite knot if and only if the double cover

Σ(K) of S3 branched over the knot K contains an incompressible torus T which is invariant

under the non-trivial covering translation and meets the fixed point set of this map precisely in

four points, and separates Σ(K) into irreducible boundary irreducible pieces.

Corollary 6.5. If the prime knot K ⊂ S3 is doubly composite, the rank of its reduced

Khovanov homology group K̃h(K) is bigger than 1.

Proof. If K is doubly composite, by Lemma 6.4 there exists an incompressible torus T inside

the three-manifold Σ(K). Thus, the rank of ĤF(Σ(K),F) is bigger than 1. By the main theorem

of [OS05], there is a spectral sequence whose E2-term consists of Khovanov’s reduced homology

K̃h(K) of the mirror of K with coefficients in F which converges to ĤF(Σ(K),F), and is of rank

greater than 1 by Theorem 6.1. Thus, the rank of K̃h(K) is bigger than 1 as well. 2

Furthermore, if K is a prime satellite knot, we will have an incompressible torus in the

complement of K. This torus gives an incompressible torus in the double cover Σ(K) of S3

branched over the knot K. Thus, Heegaard Floer homology of Σ(K) will be non-trivial. We thus

have the following corollary.

Corollary 6.6. If K ⊂ S3 is a prime satellite knot, the rank of its reduced Khovanov homology

group K̃h(K) is greater than 1.

In fact, we may prove a slightly more general statement.

Proposition 6.7. If the rank of the reduced Khovanov homology K̃h(K) of a non-trivial knot

K ⊂ S3 is 1, the double cover Σ(K) of S3, branched over the knot K, is hyperbolic.

Proof. Note that if a knot K is doubly composite Corollary 6.5 implied that the rank of K̃h(K) is

bigger than 1. Thus, K has to be doubly prime. By Thurston’s orbifold geometrization theorem

(see [BP01] and [CHK00]), the branched double cover Σ(K) is a geometric manifold and there

are three possible cases.
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(1) Σ(K) is a Lens space and thus admits a spherical structure. If ĤF(Σ(K)) is one

dimensional, Σ(K) is forced to be the standard sphere and K is trivial. Thus, in this case,

the rank of K̃h(K) is bigger than 1 only if K is trivial.

(2) Σ(K) admits a Seifert fibration and K is a Montesinos knot with at most three rational

tangles. If Σ(K) is not a homology sphere, K̃h(K) is clearly different from F and, if it is a

homology sphere which admits a Seifert fibration and ĤF(Σ(K)) = F, we know (see [Rus04] or

[Eft09]) that Σ(K) is either the standard sphere or the Poincaré sphere. Moreover, for Σ(K) to be

the Poincaré sphere we should have K = T (3, 5), i.e. K is the (3, 5)-torus knot or equivalently the

(−2, 3, 5)-pretzel knot, which is 10124 in Rolfsen’s table (see [HW10] and [Rol76]). The homology

K̃h(T (3, 5)) has rank 7 by direct computation [Shu].

(3) Σ(K) admits a hyperbolic structure which is invariant under the deck transformation.

Having ruled out the first two possibilities, the proof is complete. 2

The knots K with the property that Σ(K) admits a hyperbolic structure which is invariant

under the involution of Σ(K) are called π-hyperbolic. The hyperbolic structure comes from a

hyperbolic structure on S3−K, which becomes a singular folding with angle π around K. Thus,

in particular, π-hyperbolic knots are hyperbolic.

Suppose that K is not the unknot. By Proposition 6.7, if K̃h(K) = F, the branched double

cover Σ(K) is hyperbolic. Conjecture 1.2 then implies that ĤF(Σ(K)) is non-trivial and, by the

correspondence of [OS05],

1 = rnk(K̃h(K)) > rnk(ĤF(Σ(K))) > 1.

In particular, if Conjecture 1.2 is true then for every non-trivial knot K the reduced Khovanov

homology K̃h(K) is non-trivial (i.e. different from F).
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