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Abstract 

Components of modern systems are characterised by differing lifetimes. The resulting lifetime heterogeneity 

(LTH) is a core criteria to determine life cycle options (LCO) for more sustainable products, e.g. by upgrading 

or reuse. Estimating the lifetimes is challenged by a lack of suitable degradation models (DM) describing the 

detrimental change performance of components during the use phase. This paper expands the state of the art 

in LCO selection by a method to evaluate fitness and sensitivity of DM based on the similarity of use cases, 

environments and operation profiles of the system. 

Keywords: life cycle, sustainability, product architecture, design for x (DfX), model-based systems 
engineering (MBSE) 

1. Introduction 
Behaviour and performance of technical products are affected by degradation. From a technical 

viewpoint degradation is the detrimental change in physical condition, caused by time, use or external 

influences. Ultimately degradation results in the inability of a component or whole product to perform 

its function - generally indicated as a failure. A sound understanding of the degradation of subsystems 

and components is an essential criteria for the engineering of more sustainable products. Knowledge 

about the specific degradation mechanisms is needed to improve the ratio of the deployed material and 

energy and the provided value of the product by enhancing the operating lifetime or implement resource 

circulation paths. Current systems, however, are characterized by numerous and strongly interacting 

subsystems that stem from different engineering domains and are based on heterogeneous and emerging 

technologies. In consequence degradation mechanisms differ for each subsystems. For long-lasting 

systems like aircraft systems, strategies are established to handle the resulting heterogeneity of the 

lifetimes of subsystems by maintenance, refurbishment, replacement or upgrading, e.g.  Ahmadi et al., 

2010. These strategies, also referred to as lifecycle options (LCO) (Umeda, 2001), are driven by 

economic and more often sustainability criteria. The LCO have to be implemented by suitable product 

architectures (PA), enabling for instance simple exchange of subsystems or components during the use 

phase. The interaction between established LCO and PA get challenged, when new technologies are 

integrated and architectures of systems are changing fundamentally. This is applies for most products 

that transform form predominantly mechanical systems into mechatronic systems involving an 

increasing amount of solution elements form software and electronic domain. At the same time an 

increasing mix of technologies, e.g. applied in power train systems of vehicles, is challenging 

established LCO for subsystems like batteries. A major challenge is to estimate the lifetimes of 

subsystems and components used in new fields of application, since there are limited information on the 

specific degradation mechanisms. For instance there are very limited information on the degradation of 
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Li-Ion cells used in power systems of aircrafts. To support identification of LCO in early design stages, 

this paper introduces a method to evaluate the uncertainty of degradation models (DM) based on the 

similarity of use cases, environments and operation profiles of the system under development. This 

method is an important element to investigate the lifetime heterogeneity (LTH) induced by new 

technologies and recent operation profiles and conditions. This LTH resulting on system level provides 

a sound basis to define LCO to increase sustainability of products.  

1.1. Lifecycle Selection based on Lifetime Assessment  

Lifecycle planning is a core task of lifecycle development, aiming to specify the product and its lifecycle 

and establishing eco-design concepts (Kobayashi, 2005). Focusing on environmental impacts, resource 

circulation paths, referred to as lifecycle options (LCO), have to be defined for subsystems and 

components. In general these LCO can be classified into ownership transfer, use continuation, and 

design modifications strategies (Umeda, 2001), that are implemented for instance by upgrade or 

maintenance, product and component reuse or material recycling. The different LCO require specific 

product architectures (PA) enabling for instance efficient replacement or reuse of single components. 

Table 1 provides an overview of basic LCO and references for the definition of modules for PA 

development. This overview indicates basic strategies for PA development and essential weighting 

attributes used to select a LCO. Like indicated in Table 1, the expected lifetime of a component is an 

important criteria to be considered in order to define resource efficient LCO. 

Table 1. Lifecycle Options, Weighting Attributes & Design Strategies, c.f. Umeda et al. (2008).  

Lifecycle Option Weighting Attribute Basic Strategy for Module Definition 

Recycling Constituent materials Grouping components of which materials can be recycled 

without separation 

Maintenance Physical Lifetime Grouping components with short physical lifetime for easy 

replacement 

Reuse Physical/Value Lifetime Grouping components with long physical/ value lifetime 

Upgrading Value Lifetime Grouping components with short value lifetime 

 

Existing methods to select LCO focus either on the whole lifecycle, e.g. (Umeda et al., 2007) or single 

lifecycle phases like end of life, e.g. (Herrmann et al., 2008) or single LCO like reconfiguration, e.g. 

(Umeda et al., 2005), or upgradeability e.g. (Inkermann et al., 2018) and changeability (Rose et al., 

2001). Kobayashi (2005) focusses of the identification of design targets and supports the selection of 

LCO by a QFD from development perspective by integrating customer and environmental requirements 

and lifecycle analysis results of a baseline product. LCO are prioritized based on the ratio of the useful 

lifetime and value lifetime of a product or component. Umeda et al. (2007) propose a methodology to 

select LCO based on a disposal cause analysis. Again, here, the ratio of two lifetime perspectives, 

referred to as value and physical lifetime, are used to define the LCO for components. Based on the 

identified LCO, modular product structures can be developed that aggregate components with similar 

lifecycle properties and take into account geometrical feasibility (Umeda et al., 2008), functionalities or 

communality for reuse (Kimura et al., 2001). The methods proposed by Kobayashi and Umeda et al. 

point out the expected lifetime as a main criteria for LCO selection. However, they provide low 

assistance to determine the lifetimes of components, rather the evaluation is based on the direct 

comparison of value and physical/ useful lifetime derived from previous applications. This paper 

focusses on the evaluation of degradation models (DM) taking into account new technologies and the 

recent operation profiles and conditions of subsystems in early design stages. Here the focus is on the 

physical degradation and resulting physical lifetime, c.f. section 2.1.   

1.2. Objective, Methods and Structure of the Paper 

The purpose of this paper is to show, how uncertainty of degradation models (DM) can be handled to 

support LCO in early design stages. It is highlighted how basic influences on the degradation can be 

evaluated and transferred to changed operation profiles and environmental conditions expected for the 
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system under development. Therefore, the informational value of existing DM is assessed based on the 

analysis of changed use cases and their operational and environmental requirements. The proposed 

method assists to evaluate the degradation to be expected for single components. This paper expands 

the state of art in LCO selection for more sustainable products by the following contributions: 

A refined definition of lifetime dimensions and basic degradation mechanisms to be considered 

for LCO selection; 

An aligned classification of DM to be used in LCO selection; 

A new method to evaluate uncertainties of DM and impacts on the LCO selection process. 

Further parts of tis paper are organized as follows: Section 2 introduced the fundamentals of degradation 

modelling and basic lifetime dimensions relevant for LCO selection for more sustainable products. In 

Section 3 a method to evaluate uncertainties of DM when applied to new field of applications is 

introduced. Section 4 highlights the procedure using the example of a Li-Ion battery for the power 

system of an all-electric aircraft. In Section 5 a summary is given and future research is outlined. 

2. Degradation Modelling  
Generally spoken degradation is the process in which the quality of something is destroyed or spoiled. 

Degradation models (DM) describe the relationship between the influencing factors and the detrimental 

change of specific system properties. Formulation of DM requires both, a description of how 

degradation affects the ability of the system to perform its function and the definition how degradation 

is influenced by the way the system operates (Zagorowska et al., 2020). Kang et al. (2020) distinguish 

between degradation law modelling, describing the tendency of the degradation level, and stochastic 

process modelling, representing both the trend and fluctuation of degradation. While there is a number 

of degradation law models, representing the functional relationship between degradation time or 

degradation quantity and the degradation cause like the fracture mechanism theory, the main uncertainty 

for degradation prognosis results from the environmental and working conditions as well as the 

cognitive uncertainty due to a lack of information. This section introduced basic degradation 

mechanisms to be considered for LCO selection and provides a classification of physical degradation 

models to be used for lifetime assessment in early design stages.    

2.1. Basic Degradation Mechanisms and Lifetime Dimensions for LCO Selection 

A major objective of lifecycle planning is to produce enduringly valuable systems (Browning and 

Honour, 2008). The value a system provides during its lifecycle called lifecycle value (LCV). However, 

this LCV is not constant but changes over time as a result of degradation. Degradation mechanisms 

relevant for LCO selection can be classified based on the principles of accumulation and evolution. 

Accumulation is the concept suitable to describe the basic law of physical degradation of systems. It 

represents the loss of required properties as a result of damage and wearing caused by working and 

environmental conditions. Evolution is suitable to represent the loss of performance and quality form 

the viewpoint of users and operators. This value degradation is a consequence of the proceeding 

difference between the value desired by stakeholders and the value provided by the system without 

taking into account the physical degradation. Based on the definition of a minimal acceptable system 

performance and specific failure threshold the lifetime of a subsystem or component can be determined, 

c.f. Table 2. Since main functions and the performance of systems appear or change depending on other 

systems, it is not valid to describe the degradation of a system without take into account the systems’ 

context. Therefore, an extension of lifetime dimensions for LCO selection is proposed. Table 2 presents 

the proposed lifetime dimensions and underlying basic degradation mechanisms. The distinction 

between context and physical lifetime allows to consider external effects and neighbouring systems, 

needed to realize the systems functions more rigorous. The single lifetime dimensions and underlying 

degradation laws can be applied to single-unit systems or systems considered as a whole. However, to 

support LCO selection for more sustainable products the three degradation mechanisms have to be 

evaluated for the single subsystems and components. Although it is obvious, that in practice there are 

competitive degradations (Kang et al., 2020), caused by coupling effects resulting from the structure of 
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the system and the working and environmental conditions, this contribution focusses is on the physical 

degradation.   

Table 2. Distinction of Lifetime Dimensions and underlying Degradation Mechanisms 

 Value Lifetime Context Lifetime Physical Lifetime 

E
x

p
la

n
a

ti
o

n
 

Determines the period until a 

system is no longer accepted 

by the users. The value 

lifetime is defined by the ratio 

of expected functions and 

performance of the system 

(value) and the provided 

system properties in a specific 

use case of the system. 

Determines the period until a 

system no longer provides its 

complete functionalities or 

performance is limited due to 

incompatibility to interacting 

systems. The context lifetime is 

defined by the limitation or 

inoperability of functional and 

physical system interfaces.      

Determines the period until a 

system no longer provides entire 

functionality or performance due 

to failure of subsystems/ 

components or significantly 

underrunning its performance. 

Physical lifetime is defined by 

damage, wear-out mechanisms 

and failure behaviour. 

D
eg

ra
d

a
ti

o
n

 

L
a

w
 

   

D
eg

ra
d

a
ti

o
n

 

M
ec

h
a

n
is

m
 

Divergence of system 

functions/ performance and 

stakeholder needs caused by 

increasing and changed  

stakeholder requirements 

Decline of compatibility with 

surrounding systems caused by 

changes of the operational 

environment 

Loss of systems performance 

and operational functionality 

caused by accumulation of 

wear, failure; ageing of system 

components 

In
fl

u
en

c
in

g
 

F
a

ct
o

rs
 

Technology development and 

diffusion 

social trends and conventions 

Evolution of infrastructure and 

legislation 

Technology evolution of 

interfaces 

Physical and chemical properties 

load profiles 

environmental conditions 

2.2. Classification of Physical Degradation Models 

Degradation models (DM) describe the relationship between influencing factors and the detrimental 

change of system properties for different types of influencing factors, degradation processes, and 

applications. Effectiveness and accuracy of a DM increases when it is able to capture the specific 

environment and operation conditions and their effects of the system property under investigation. Based 

on the available knowledge about the process and influencing factors, DM that are frequently used for 

prognostic applications can be classified into physical models, data-driven models and knowledge-based 

models (Zagorowska et al., 2020). Physical models are based on physics-of-failure approaches 

(Modarres et al., 2017) and focus on the process of degradation like erosion or wear taking into account 

influencing factors like physical and chemical properties of material or load profiles. Data-driven 

models are developed using data learning techniques applied to information of system state and 

performance collected over time (Meeker et al., 2011). Knowledge-based models are based on cognitive 

experience of mankind (Kang et al., 2020) and thus provide a knowledge-based description of 

degradation without physical interpretation. Detailed reviews and classifications of degradation models 

are for instance provided by Zagorowska et al. (2020) focussing on control systems, e.g. Le (2015) 

focussing on prognostics in general or e.g. Gorjian et al. (2010) focussing on reliability analysis. 

Following the classification proposed by Zagorowska et al. (2020), most relevant for the method 

proposed to evaluate the uncertainty of degradation models in early design stages, are factor-based DM 

describing the degradation depending on different influencing factors. Table 3 gives an overview of 

factor-based degradation models and their basic character. Models of physical degradation and 

reliability-oriented models are case-specific. Constants and influencing factors in these models have to 

be defined for the application and its operational and environmental boundary conditions at hand. 
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Heuristic models are application specific and provide more general but less exact information about 

degradation for single applications like batteries in electric vehicles (Fang et al., 2017). The examples 

given in Table 3 indicate the complexity of the degradation models resulting from the number of 

influencing factors included and demands for parameter definition given by the model parameters.        

Table 3. Characterization of Factor-based Degradation Models, c.f. Zagorowska et al. (2020)  

 Physical Degradation Models Reliability-oriented Models Heuristic Models  

A
p

p
li

ca
ti

o
n

 

Focussing on early stage of 

degradation and are based on 

physics-of-failure approaches 

and knowledge about physical 

and chemical properties, load 

profiles, environmental 

conditions, failure   

Focussing on the end of the 

degradation period  

Parametric models are based on 

physical relationships (see models 

of physical degradation) 

Non-parametric models use 

proportional hazard models 

No focus on a specific phase of 

degradation 

based on knowledge and 

experience about process and 

influencing factors of 

degradation for specific 

applications  

C
h

a
ra

ct
er

 Provides accurate models of 

degradation 

Is complex and requires 

detailed knowledge about 

degradation 

Captures uncertainty nature of 

degradation 

Requires knowledge about past 

degradations 

Is tailored to the application 

Does not have any 

interpretation  

U
se

 

Case specific Case specific  Application specific 

E
x

a
m

p
le

  

Physical model of battery 

aging, capacity loss in % (Suri 

und Onori, 2016), c.f. Table 4 

Arrhenius life relationship 

𝑑 = 𝐴𝑒𝑥𝑝(−𝐵𝑇)  

with constants A, B and 

influencing factor T (temperature)  

Heuristic for battery aging  

(Fang et al., 2017) 𝑑 = 𝑉𝑠 − 𝑉𝑏 

with voltage corresponding to 

the electrode surface 𝑉𝑠 and the 

inner part of electrode 𝑉𝑏 

 

The introduced classification indicates the need of detailed knowledge about the impact of internal and 

external influencing factors on system state and performance. This information in most cases are derived 

from past applications (degradation data) of in field products or accelerated degradation tests (Meeker 

et al., 2011). Focussing on early design stages and conceptual decision-making there is the need to 

provide consistent but less exact information about the degradation of components and subsystems in 

the intended applications. Therefore, in the following Section a method to evaluate the uncertainty of 

DM based on changed operating and environmental conditions is introduced.  

3. Evaluation of Degradation Models in Early Design Stages 
In this section reasons for uncertainties in early design stages as well as methods to handle these are 

introduced. This background serves as a basis to develop a method to assess the uncertainty of DM for 

lifetime estimation and LCO selection in early design stages.  

3.1. Reasons and Handling for Uncertainties in Early Design Stages 

Uncertainties have to be considered in every stage of development. Taking into account the increasing 

state of knowledge gain about the product and the processes, Engelhardt et al. (2010) propose three 

categories of uncertainty, namely stochastic uncertainty, estimated uncertainty, and unknown 

uncertainty. Unknown uncertainty occurs in early design stages, when limited information about the 

future product is known and the product's properties are not determined yet (Eifler et al., 2011). 

Estimated uncertainty is given, when the effects of an uncertain property are known but the probability 

distribution of the resulting deviation is only partially known (Eifler et al., 2011). Transferred to the 

assessment of DM, unknown uncertainty is given if neither the effect of influencing factors nor the 

resulting derivations of the degradation path are known. Estimated uncertainty in degradation modelling 

is given, when the effect of influencing factors is known, but the probability distribution of the resulting 

deviation cannot be described. To cope with uncertainties in engineering design different approaches 

are proposed in literature including sensitivity evaluation based of model-based assessment, use of 
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comparable products and the known behaviour as well as expert assessments (Eifler et al., 2011). 

Mathias et al. (2011) point out that anticipating of planned behaviour and potential disturbances is 

essential to develop robust product concepts able to cope with uncertainties. To select physical effects 

he proposes three robustness ratios to measure the number of disturbances that affect the a physical 

effect in general, indicate the number of disturbances which affect a physical effect within the assumed 

environment, and to evaluate the sensitivity of an effect when reacting to the disturbances in the 

supposed environment. These robustness ratios allow to compare the robustness of different physical 

effects within conceptual design based on knowledge about the physical effect, its formula and potential 

disturbances occurring in the environment of the product under development. In this contribution the 

basic idea of robustness evaluation and sensitivity analysis is transferred to DM. Therefore, expected 

changes of operational and environmental conditions as well as an analysis of the sensitivity of a DM 

with regard to changed influencing factors are in focus. With regard to the DM described in Section 2.2, 

only physical degradation indicating the physics-of-failure as well as reference use cases providing 

knowledge about the lifetime to be expected is considered.  

3.2. A Method to Evaluate Uncertainties of Degradation Models 

Objective of the proposed method is to support LCO selection in early design stages based on the 

evaluation of existing DM. To cope with the given uncertainty in the early design stage, insights for the 

degradation to be expected are derived from a reference DM and its case-specific form as well as 

changed influencing factors and their impact of the expected degradation. The method includes 4 steps. 

Starting point for the uncertainty evaluation of DM is the definition of use cases for the future product 

as well as a first model of its basic system architecture. Results needed in the different steps of the 

method are supported by Model-based Systems Engineering (MBSE). In particular information are 

derived form a use case diagram and an internal block definition diagram, representing the components 

and their functional interactions (Wymore, 2018). In the last step conclusions can be drawn on the range 

for the physical lifetime of a component and suitable LCO for components. Steps of the method and 

required information are introduced in the next subsections. 

3.2.1. Definition of Use Cases and Basic System Architecture 

In a first step use cases and the basic structure of the system under development have to be defined. This 

are common tasks in MBSE (Wymore, 2018), providing insights on recurring applications and basic 

requirements within the use phase of the system. Aside from basic functions to be fulfilled by the system, 

the use cases are used to specify the environment the system is used in as well as to derive requirements. 

For instance for a full electric powered vehicle use cases are charging of traction battery, overland 

travel or city tour. For each use case basic requirements like required power, peak performance or 

maximum/average duration can be determined. Thus, the use cases and linked requirements provide 

insights on different load profiles. In addition to the use cases a first model of the system architecture is 

needed to draw conclusions regarding the functionality of single components in the different use cases. 

In the use case charging of traction battery for instance electric motors of the electric power system are 

not involved and thus there will not be affected by degradation.         

3.2.2. Identification of Reference Applications and Existing Degradation Models 

In the second step similar products, components and applications are identified based on the defined use 

cases and system structure. Essential criteria to select reference applications are similarities in the basic 

system architecture, similar use cases as well as comparable technologies of the single components. 

When identifying reference applications a system perspective is appropriate since on this level use cases 

can be compared effectively. In addition to comparable products it is required to identify existing DM. 

To enable an informative evaluation of the DM, physical DM in most cases are appropriate since these 

indicate the effect of single influencing factors on the degradation, c.f. Table 3. At the same time these 

models have to be tailored for the specific application by determining model parameters. Since these 

information do not exist in early design stages knowledge about the specific degradation have to be 

derived from the reference application. For most components and applications there are tailored DM 

available that can be used to estimate the expected lifetime. 
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3.2.3. Identification of Changed Influencing Factors and Sensitivity Evaluation of DM 

To evaluate the expected degradation behaviour of the component under development, in the third step 

changes of influencing factors have to be identified and the impact of these changes on the degradation 

have to be evaluated. As a basis for this evaluation serve the identified DM and the included influencing 

factors. Changes of the influencing factors can be derived when comparing the use cases of the reference 

product and the system under development. To indicate changes of the single factors not only a 

conclusion (is changed/ is not changed) but a trend (increased/ decreased) has to be indicated. In addition 

to the change of single influencing factors, the sensitivity of the DM for the expected change has to be 

indicated. Therefore, the sensitivity dependent robustness ratio (R) proposed by Mathias et al. (2011) is 

used. This ratio can be calculated by the following formula: 

𝑅 =
1

1+∑ 𝑆𝑛
    (1) 

Where 𝑆𝑛 is the sensitivity of the DM of each changed influencing factor form 0 (insensitive) to 1 

(sensitive). In case a high sensitivity is stated, R becomes < 1 and the informational value of the existing 

DM for the new application context is limited. To assess the sensitivity of the DM for each changed 

influencing factor on the one hand the given DM can be used, on the other hand conclusions can be 

drawn from different applications, e.g. load profiles, of the reference product.  

3.2.4. Drawing Insights for LCO Selection 

Based on the identified changes of influencing factors and the evaluation of the sensitivity of the existing 

DM in the last step insights for the definition of LCO are drawn. These insights on the one hand address 

the basic LCO like reuse, recycling or maintenance, c.f. Table 1. On the other hand based on the 

evaluation of the DM the uncertainty of the expected lifetime is indicated. In order to define the physical 

lifetime an application specific degree of degradation has to be defined. This definition should be made 

taking into account the requirements defined in step one of the method and are thus case-specific. 

The proposed method was applied for different components of the power system of all-electric aircrafts 

in order to evaluate the procedure and to gather information for the single steps. The following section 

highlights the proposed method focussing on the battery system within the power system of an aircraft.  

4. Case Study - All Electric Aircraft Power System  
There is an increasing demand to reduce environmental impacts of aircraft systems. Thus, current 

research is aiming to replace fossil-based combustion engines in aircraft systems with impacts on the 

overall topology as well as architectures of subsystems like the electric power system. Research within 

the cluster of excellence Sustainable Energy-efficient Aviation covers the single components of the 

power system including the battery systems, the overall topology of the aircraft as well as the lifecycle 

assessment focussing on short, mid, and long range aircrafts. To evaluate upcoming architectures and 

identify LCO for minimal environmental impact, there is a need to understand causes of varying 

lifetimes on subsystem and component level, taking into account emerging technologies as well as 

differing operation conditions. The following subsections highlight the proposed method to evaluate 

uncertainties of DM when applied to new applications. Here, the focus is on the battery system since 

this on the one hand has a high share of system weight and thus is a critical system for overall 

architecture design. On the other hand the battery system is expected to be a system with short physical 

lifetime compared to other systems within the power system of all-electric aircrafts. The reported case 

study is focussing on a short range aircraft using the requirements and assumptions for mission profile 

and basic system architecture presented in Karpuk and Elham (2021). 

4.1. Use Cases, Basic System Architecture and Reference Products 

Based on the mission profile and existing research on power systems for all-electric aircrafts essential 

used cases and a first system architecture for the electric power system covering the components of the 

storage subsystem, the distribution system and the electric conversion system can be defined as a 

baseline for evaluation. Figure 1 presents the use case diagram including first requirements and the 

system architecture of the electric power system. To specify the different power demands, the use cases 
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and structured into the phases of a mission profile including the maximum power needed in each phase. 

Within the system architecture, basic interactions between the components are indicated using flows 

and ports in the internal bock definition diagram are presented. The battery system is assumed to 

comprise four batteries that are Li-Ion high power cells with a gravimetric energy density of 

700 𝑊ℎ/𝑘𝑔 (Karpuk and Elham, 2021).        

     
Figure 1. Use Cases and Basic System Architecture of the Electric Power System. 

In automotive applications different DM can be found, describing the degradation of traction batteries 

for different profiles. Suri and Onori (2016) provide a physical model of battery aging describing the 

capacity loss for Li-Ion cells in hybrid-electric vehicles (HEV). The proposed DM indicates the 

influence of different profiles defined by the state of charge, the average C-rate and average battery 

temperature, c.f. Table 4. Although, this model is tailored to the application in HEV it is a sound basis 

to evaluate the single influencing factors and the sensitivity of changes in those since profiles for three 

different applications are presented. To identify the changed influence factors and the sensitivity, 

information about degradation presented in Table 4 are used. The curve fittings resented in the right part 

of table indicate the specific capacity loss for the application in HEV and therefore serve as a basis to 

estimate the physical lifetime to be expected in the avionic context as new field of application.   

Table 4. Physical Degradation Model and Effects of Different Profiles on Capacity Loss of Li-Ion 
Traction Batteries in Hybrid Electric Vehicles, based on Suri and Onori (2016).  

Normalized Capacity Loss to Indicate 

Battery Degradation  

Curve Fitting of Aging Model based on Experimental 

Data for Three Profiles  

𝑄𝑙𝑜𝑠𝑠 = 

(𝛼 ∙ 𝑆𝑂𝐶 + 𝛽)exp (
−𝐸𝑎 + 𝜂 ∙ 𝐼𝑐

𝑅𝑔 ∙ (273.15 + 𝜃)
) ∙ 𝐴ℎ𝑧̅ 

with 𝑆𝑂𝐶 State of charge, 𝐸𝑎 Activation 

energy, 𝐼𝑐 Current rate normalized to battery 

charge capacity, 𝑅𝑔 Universal gas constant, 𝜃 

internal temperature, 𝐴ℎ Charge throughput, 

𝑧̅ average power law exponent, and model 

parameters 𝛼, 𝛽, 𝜂 
 

Profile A:  

𝑆𝑂𝐶̅̅ ̅̅ ̅̅ = 38,5 %; 𝐼𝐶̅ =
2,82 1/ℎ; 𝜃̅ = 36℃ 

Profile B:  

𝑆𝑂𝐶̅̅ ̅̅ ̅̅ = 42,0 %; 𝐼𝐶̅ =
3,00 1/ℎ; 𝜃̅ = 38℃ 

Profile C:  

𝑆𝑂𝐶̅̅ ̅̅ ̅̅ = 68,0 %; 𝐼𝐶̅ =
6 1/ℎ; 𝜃̅ = 45℃ 

4.2. Analysis of Influencing Factors and Sensitivity of DM  

The use cases for the electric power system and existing DM for the reference application serve as a 

basis to identify changed influencing factors and evaluate the sensitivity of the given DM (step 3 of the 

method). The formula given for the capacity loss indicates the essential influencing factors relevant for 

the operation, that are the state of charge, the C-rate, and the charge throughput as well as the physical 

and chemical parameters of the specific battery, that are the activation energy, power law exponent, and 

the gas constant. Based on the use cases defined in Figure 1, changes of these influencing factors 

(operation) can be derived. These are: the state of charge is expected not be lower than for profiles 1 

and 2 for avionic applications since an oversizing of batteries is negative for the overall system (Karpuk 
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and Elham, 2021). At the same time the c-rate is expected to be much higher than given in profile C 

since in particular in the take-off phase there is a high power demand, at the same time charging time is 

critical for efficient operation of aircrafts, c.f. use case charge battery. Since the charge throughput is 

used to calculate the capacity loss no change is considered here. In addition to the changes of influencing 

factors, the sensitivity of the DM for each changed factor has to evaluated, using the robustness ratio 

given in equation 1. To evaluate the sensitivity, the aging model given in Table 4 is relevant. Assuming, 

that the sensitivity for the c-rate used in the exponent of the equation has a much higher than for the 

state of charge, the robustness ratio is calculate as 𝑅 = 0,625 with (𝑆𝑆𝑂𝐶 = 0,2; 𝑆𝐼𝑐
= 0,4). This clearly 

indicates the uncertainty to be expected for the lifetime estimation of the battery system that is to be 

expected significantly lower than those in automotive applications. 

4.3. Draw Conclusions for Lifecycle Option Selection 

Since in this case study only the battery system is considered as a single component, conclusions for 

LCO selection are limited. When performing the highlighted for all systems within the power system, 

two facts are beneficial for the definition of LCO: On the one hand the uncertainty indicated for the DM 

of each subsystem is a major index for rethinking existing LCO from other applications. On the other 

hand uncertainties resulting from the evaluation process of the DM are compensated by the assumptions 

that are true for every model. Moreover, since the definition of LCO is based on the ratio of component 

lifetime and average lifetime of the power system the effect of uncertainties within the procedure is 

damped. To draw conclusions for LCO selection the expected physical lifetime for each component or 

subsystem has to be comparted to the average lifetime of all components. The given ratio indicates the 

lifetime efficiency as a criteria for LCO definition (Umeda et al., 2007). 

5. Conclusion, Discussion and Further Research 
Driven by the demand to develop more sustainable products, in this contribution the concept of lifecycle 

option selection based on the expected lifetime of a component or subsystem was introduced and lifetime 

dimensions as well as models to describe the degradation were presented. In order to support estimation 

of the expected lifetime of components in new fields of application where less knowledge about the 

specific degradation is available, a method to assess the uncertainty of degradation models based on 

reference applications was proposed. The evaluation of uncertainties is based on the analysis of 

similarities in use cases and the identification of changed influencing factors. The proposed method and 

required information where highlighted using the battery system of an all-electric aircraft as an example. 

However, the method is not validated yet, neither it's applicability for different users nor the validity of 

the results are evaluated in details. Thus, it has to be understood as a first concept to be detailed with 

focus on the following aspects. On the one hand a more detailed analysis of degradation models and 

their general informational value is needed. The aim of this research strand is to build up a knowledge 

database comparable to know catalogues of physical effects, focussing on the selection of suitable 

degradation models for different details of knowledge. On the other hand research will focus on the 

impact of interactions between subsystems and their effects on the degradation process. These works 

will be performed focussing on systems with high requirements of reliability and upcoming 

heterogeneity of technologies like electric power systems.  
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