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SOLUTIONS OF THE SECOND AND FOURTH
PAINLEVE EQUATIONS, I

HIROSHI UMEMURA AND HUMIHIKO WATANABE

Abstract. A rigorous proof of the irreducibility of the second and fourth
Painleve equations is given by applying Umemura's theory on algebraic differ-
ential equations ([26], [27], [28]) to the two equations. The proof consists of two
parts: to determine a necessary condition for the parameters of the existence of
principal ideals invariant under the Hamiltonian vector field; to determine the
principal invariant ideals for a parameter where the principal invariant ideals
exist. Our method is released from complicated calculation, and applicable to
the proof of the irreducibility of the third, fifth and sixth equation (e.g. [32]).

In previous papers [27] and [28], we settled the problem of the ir-
reducibility of the first differential equation P\ of Painleve. Namely we
proved that no solution of the first Painleve equation is classical. So the
first Painleve equation defines highly transcendental functions different from
the classical functions. The proof depends on the condition (J) introduced
in [28], which is of arithmetic nature and plays an important role in the
proof of the irreducibility of the first equation P\.

Our framework tells us that if an ordinary algebraic differential equation
of second order satisfies the condition (J), then no transcendental solution
of the differential equation is classical. So for the first equation Pi, the proof
of the irreducibility consists of two parts: (i) To prove that the first equation
satisfies the condition (J); (ii) To show that the first Painleve equation has
no algebraic solutions.

In this paper we discuss in this framework the irreducibility of the
second and fourth equations Pu(a), P[y(a,β) of Painleve:

Pίl(<x) ^ =
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Since, for particular values of the complex parameters α, /?, the equations
Pn(a) and P\v(a,β) have algebraic solutions, or classical solutions ratio-
nally expressed by solutions of Riccati equations. Our objective should be
the determination of all the classical solutions of the equations. To this
end, we have to do the following:

(i) To show that the equations Pπ(α), Pιγ(a,β) satisfy the condition (J)
for general α, β\

(ii) To determine transcendental classical solutions for particular values of
the parameters α, β for which the equations P\\{a), P\y(a,β) do not
satisfy the condition (J);

(iii) To list up all the algebraic solutions.

We leave (iii) for a separate paper [30]. Our main results are Theorems 2.1
and 3.2. In their proofs, we use birational transformations between solutions
of a Painleve equation.

As for (iii) Murata [16] determined algebraic solutions of Pπ(α) and
Piy(a,β). (i) and (ii) were done by Noumi [18] and Okamoto [21] for the
second and fourth equations respectively (See also [19]). Murata [15] worked
out with the third Painleve equation. All these works were done in the
above framework. But in these works the authors checked the arithmetic
condition (J) by straightforward calculations. The calculations are hard
particularly in the fourth and third equations, so that there is little hope
of applying their calculations to the fifth and sixth Painleve equations. We
analysed the note [21] of Okamoto on the fourth Painleve equation (see also
[19], §2) and tried to simplify his argument so that we can treat the fifth
and sixth equations. We succeeded in this attempt, and we are preparing
papers on solutions of the third, fifth and sixth equations (e.g. [32]). The
aim of the present paper is to explain our method for the second and fourth
equations.

In order to prove our main theorems, Theorems 2.1 and 3.2, it is crucial
to prove Propositions 2.2 and 3.5. In the process of their proofs there are
two major technical improvements. Taking Proposition 3.5, for example,
we briefly explain these improvements. Let K[p,q] be the polynomial ring
in two variables p and q over an ordinary differential overfield K of C(t).
Let X(v) be the derivation on K\p,q] associated with the fourth Painleve
equation (for the definition see Subsection 3.2). The main task for proving
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the proposition is to analyse an equality

(1) X(γ)F = GF

for some G,F G K\p,q\. The first improvement is how to endow the poly-

nomial ring K\p,q] with a grading structure that simplifies the detailed

analysis of (1). To this end we choose the weights of both p and q as one,

which coincide with the order of moving poles of the solutions of the system

Srv(v) of differential equations equivalent to the fourth equation. But this

analytic interpretation of the weights is not necessarily satisfactory if we

treat the other Painleve equations. We show in Subsections 2.5 and 3.5 that

good weights come from the Newton polygon of the Hamiltonian vector field

associated with each Painleve equation. The second improvement is the "di-

visibility lemmas" (Lemmas 2.3, 2.4, 3.6-3.8). If we write F = Fm-\ \-F0

as a sum of homogeneous polynomials Fi of weight i with respect to the

above grading of K\p,q], then the divisibility lemmas show that the poly-

nomials F m , F m _i, Fm_2, and so on, are divisible by a certain product of

three monomials p, q, p — q. Hence we can argue as if m = 3, so that we

are released from complicated caluculation. We deduce the divisibility lem-

mas from several commutative diagrams ((14), (18), (22) in Subsection 3.2,

etc.). These diagrams simplify the proofs of the divisibility lemmas.

The references show that there is a tradition in the study of the Painleve

equations, which deserves respect, developed in Russia and Belorus. So far

as the second and fourth equations are concerned, our results look over-

lapped with theirs (e.g. Gromak [8], and Gromak and TsegeΓnik [10]).

There are, however, two major differences: (i) We have the clear defini-

tion of classical functions; (ii) Our method is effective so that we can apply

it to the fifth and sixth Painleve equations.

§1. Preliminaries

Let D be a domain of the complex line C with a complex coordinate

t. We denote by M(D) the field of meromorphic functions on D. M(D) is

an ordinary differential field with a derivation d/dt and contains the field

C(t) of rational functions of one variable ί as a differential subfield. In

a previous paper [26] (especially Part II, §2, see also [28]) we defined a

classical function. Let us review our definition.

DEFINITION. An ordinary differential field extension L/C(t) is said to

be a classical extension if there exist a complex domain D in C and a finite
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sequence of elements yi, , yjy in M(D) such that the following conditions

are satisfied:

(i) the field L is a differential subfield of the field C(i)(yι, , yw) differen-

tially generated over C(t) by the y^s: L C C(ί)(t/i, * , Ϊ/TV};

(ii) for each i (1 < i < N), one of the following conditions is satisfied:

(a) there are n elements αi, , α n of C(t)(y\, ,y%-ι) such that yi is

a solution of a homogeneous linear ordinary differential equation of

order n:
dny dn~ιy

(b) there are an Abelian function /(^i, , zn) of n variables, and n el-

ements a±, - , an of C(t)(yι, , 2/i-i) such that yi is the composite

function /(αi, , an).

An element of a classical extension field is said to be a classical function.

Remark. In [26] we explained the theoretical significance of the pre-

ceding conditions (a), (b), which are related with algebraic groups. In fact

we proved in [26], Part II, Theorem 2.19 that a differential field of mero-

morphic functions is classical if and only if it is a differential subfield of a

successive G-primitive extension in the sense of Kolchin [12], Chap. VI.

EXAMPLE.

(i) If a function y is algebraic over a classical extension field, then y is

classical. In particular an algebraic function is classical (cf. Lemma 1.1

in [28]).

(ii) If / is a classical function, then every function y satisfying

dt J

is a classical function. In fact the function y satisfies a homogeneous

linear ordinary differential equation

1 dt2 dt dt

Since /, df /dt are classical, y is a classical function by definition.
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(iii) For classical functions αi, α2, every function q satisfying

(1) -f + αig + α2 = 0
at

is a classical function. The assertion is obvious if α2 = 0. Assume
α2 Φ 0. A function y (φ 0) satisfying

dyi
is classical by definition. If we set q = uy and substitute it into (1),
we have

du α2

dt y '
so that u is classical by (ii). Hence q = uy is a classical function.

(iv) For rational functions αo,αi,α2 £ C(ί), every function g satisfying a
Riccati equation

dq

is a classical function. If αo = 0, then q is a classical function by
(iii). If αo φ 0, then, replacing q by q/ao if necessary, we may assume
α0 = 1 without loss of generality (see e.g. [11], Chap. II). If we set
q = (d/dί)(logτ), we obtain a homogeneous linear ordinary differential
equation:

d2τ dτ

dt2 dt

Therefore every solution of Riccati equations with coefficients in C(t)

is a classical function.

Now we review the condition (J). Let K be an ordinary differential
overfield of C(t) with derivation δ. So the restriction of δ to C(t) agrees
with the usual derivation d/dt on C(t). Let K\p, q] be the polynomial ring
over K in two variables p and q. The derivation δ on K is uniquely extended
to a derivation on UΓ[p, #] such that δ(p) = δ(q) = 0, which we denote by the
same symbol <5. For two polynomials A(p,q),B(p,q) G C(t)[p, q] C K\p,q],
we define a derivation X on if [p, g] by

https://doi.org/10.1017/S0027763000006486 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006486


156 H. UMEMURA AND H. WATANABE

So, ifK = C(t), we have

We say that a polynomial F in K\p, q] is X-invariant if there exists a
polynomial G in K\p, q] such that XF = GF. We also say that an ideal /
of K[p, q] is X-invariant if we have XH G / for every H G / . The following
conditions for a principal ideal / of K\p,q] are equivalent:

(i) the ideal / is X-invariant;

(ii) the ideal / is generated by an X-invariant polynomial;

(iii) every generator of the principal ideal / is X-invariant.

When the equivalent conditions are satisfied, the zero locus V(I) C Spec
K\p,q] is called an X-invariant curve defined over K if the principal ideal
I is properly between the zero-ideal and K\p,q]: 0 / / C K\p, q], or equiv-
alent ly, if a generator F of / does not belong to K.

We introduce the following condition for X:

(J) For any ordinary differential field extension K/C(t), there exists no
X-invariant curve defined over K.

Now, let us consider the following system of ordinary differential equations:

( dq

(2)

We say that a solution (p, q) of (2) is algebraic if both p and q are algebraic
over C(t). Otherwise, the solution (p,q) is said to be non-algebraic or tran-
scendental. When both p and q belong to C(t), we say that the solution
(p,q) is rational We also say that a solution (p, q) of (2) is classical if both
p and q are classical, and a solution (p, q) is non-classical if not so. The
proof of Lemma 0.8 in [27] allows us to show the following fundamental the-
orem that is indispensable to the classification of solutions of the Painleve
equations.

THEOREM 1.1. Let (p,q) be a solution of the system (2). If the deriva-
tion X satisfies the condition (J), then one of the following conclusions
holds:
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(i) the solution (p, q) is algebraic;

(ii) the solution (p, q) is not classical.

Namely there is no transcendental classical solution of (2).

§2. The second Painleve equation

2.1. Statement of the theorem

We know that the second Painleve equation is equivalent to the follow-
ing system S\i(a) of ordinary differential equations of first order:

' dq 9 t

dt=P~q " 2 '

dp

where a is a complex parameter (cf. [20]). In fact, if we eliminate the
unknown p from Sπ(α), we get the second Painleve equation:

d2q
| 2 g 3 + tg + α

So the second Painleve equation Pu(a) and the system Su(a) are paramet-
rized by the complex line C.

In order to state Theorem 2.1, we review birational transformations of
solutions of the system Sn(a) associated with a group of complex affine
transformations of the complex line C. We define affine transformations s,
ί+, ί_ of C by s(a) = - 1 - α, t_(α) = a - 1, t+(α) = a + 1 for a <E C.
Let G be the subgroup generated by them in the group of complex affine
transformations of the complex line C. Then the group G is isomorphic
to the semidirect product of a cyclic group (s) of order two and a group
(£_,£+). Since the latter group is isomorphic to the additive group of the
integers Z, we find G = Z/2Z K Z, so that it is isomorphic to the affine
Weyl group of the root system of type A\ ([1], Chap. 4, §2, 1). Let Co be
the subset of C that consists of all the complex numbers a satisfying the
following conditions:

(i) 4<5R(α)<0;

(ii) 9f(α) > 0 if »(α) = 0 or - i ,
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where $t(υ) and ζs(υ) denote the real and imaginary parts respectively of a
complex number v. We see that Co is a fundamental region of C for the
group G.

For a G C, let Σ(α) be the set of solutions (p, q) of the system *Sπ(α).
Here we assume that a solution is meromorphic over a complex domain.
We set Σ = \JaΣ(a) (disjoint union). We define rational transformations
s*, (£_)*, (£+)* of the set Σ as follows ([20], Section 1): For (p,q) G Σ(α),

(i) we define s*(p, q) G Σ(—1 — α) by

q+ j \lotφ ,

and

s*(p,q) = (p5?) if α = - - ;

(ii) we define (ί_)#(p, ςr) G Σ(α — 1) by

if
y , ~H , „, „ , p_2q2_tJ ~ " > 2 '

and

if or = -

(in) we define (£+)* G Σ(α + 1) by

(ί+)*(p>?)= (-P +

and

The definitions of s*, (ί_)*, (ί+)* are well-defined by the following facts:
for(p,ςr)€Σ(α),

(i) p ^ 0 if a φ -1/2;

(ii) p - 2q2 - ί φ 0 if α ^ 1/2.
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In fact, the assertion (i) is trivial. Ϊίp — 2q2 — t = 0, we have 0 = (d/dt)(p —

2q2 — i) = a — 1/2, which proves the assertion (ii).

Since we have s* — (£+)*(£_)* = (£_)*(£+)* = 1, where 1 denotes the

identity transformation of Σ, we see that the mappings s*, (£-)*, (£+)*

define birational transformations. Let G* be the subgroup generated by

(£+)* and 5* in the group of all bijections of the set Σ. The group G*

consists of birational transformations of Σ that respect the natural fibration

TΓ: Σ -* C denned by π: Σ(a) 3 (p, q) —* a G C. Hence we have a surjective

group morphism φ of G* onto G such that φ(s*) = s, φ(t*) — t. Since

s*(ί_f-)*s* = (^-)* a n d s*(t_)Hί5>t; = (ί+)*, ^ is an isomorphism of G* onto

G. For g G G*, the following diagram is commutative:

Since g is C(t)-birational, a solution (p, q) is classical (resp. algebraic, ratio-

nal) if and only if the solution g(p, q) is classical (resp. algebraic, rational).

Now let us state our main result for the second Painleve equation.

THEOREM 2.1. (i) For every integer a G Z? there exists a unique ra-

tional solution of the system Su(a).

(ii) For every a G 1/2 + Z, there exists a unique one-parameter family of

classical solutions of S\ι{oι), of which each solution is rationally written by

a solution of a Riccati equation

^ ) dt ~~ q 2

(iii) Let (p, q) be a solution of S\ι(a) different from those mentioned in (i)

and (ii). Then neither the function p nor the function q is classical, and

the transcendence degree of C(t,p,q) over C(t) equals two.

Using the birational transformations introduced above, we can explic-

itly write the solutions (p,q) in the assertions (i) and (ii). In fact, if (p, q)

is a rational solution of S\ι{a) for a G Z, then we have

(p, 9) = (*+)? f l
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If (p, q) is one of the classical solutions of *ί>π(α) (a G 1/2 + Z) in (ii), then

we have
1

where qr is a solution of the Riccati equation (1).

Let us introduce a new unknown u by

Substituting it into (1), we obtain the Airy differential equation

d2u t

Hence all the classical solutions of SΉ(α) for a G 1/2 + Z are rationally

generated from Airy functions.

We explain here how we prove the theorem. Let K be an ordinary

differential overfield of C(ί) with derivation δ and let K\p,q] be the poly-

nomial ring over K in two variables p and q. According to §1, we introduce

a derivation X(a) on K\p, q] by

To prove the theorem, we may assume that the parameter a belongs to the

fundamental domain Co by the operation of G. The proof consists of the

following three parts:

(I) Non-classical solutions. If there exists an X(α)-invariant curve defined

over K (a G Co) for any differential extention K/C(t), then we have

a = —1/2. We conclude by Theorem 1.1 that, for a G Co such that

a φ —1/2, every solution of S\\{a) is non-classical if it is not algebraic

(Corollary 2.6).

(II) Classical solutions. For every X{—l/2)-invariant polynomial F in

K\p, q] and not in K, there exists an integer i > 0 such that (F) = (pι)

(Lemma 2.7). So every transcendental classical solution of Su(—1/2) is de-

fined by the Riccati equation (1) (Proposition 2.9).

(III) Algebraic solutions. The system Su(a) (a G Co) has a rational solu-

tion if and only if a = 0. The solution (p, q) — (t/2, 0) is a unique rational

solution of Sπ(0) (In particular the assumption "if it is not algebraic" in

(I) is always satisfied.).
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The procedures (I) and (II) will be done in Subsections 2.2 and 2.3.
We discuss the procedure (III) in Subsection 2.4, but it will be done in a
separate paper [30].

Remark. It turns out from Theorem 2.1 that the following conditions
for a transcendental solution (p,q) of Su(ά) are equivalent:

(i) (p, q) is classical;

(ii) tr.d.[C(t,p,ς):C(t)] = l.

The similar result holds for the fourth Painleve equation (cf. Theorem 3.3).
Some authors determined solutions (p,q) of Sn(a) or Srv(v) (see §3) with
tr.d.[C(£,p, q): C(t)] ~ 1. It is not, however, obvious at all from their
determination that there is no classical solution (p, q) in our sense with
tr.d.[C(£,p,q): C(t)] = 2. In his Stockholm Lessons [25], Painleve had an
idea of classifying transcendents by the degree of algebraic differential equa-
tion that defines the transcendents. Their determination of solutions (p, q)
with tr.d.[C(t,p, q)\ C(t)] = 1 comes from the same idea as Painleve's. We
can not, however, measure the complexity of a function by the transcen-
dence degree. For example a linear differential equation of order three is
simpler than the Painleve equations just as in number theory, whatever the
degree may be, an abelian extension is simpler, at least theoretically, than
a non-abelian extension. Generalized differential Galois Theory will give a
satisfactory answer to this kind of questions (cf. [29]).

2.2. Non-classical solutions
The following proposition is crucial for the proof of Theorem 2.1.

PROPOSITION 2.2. // the derivation X(a) does not satisfy the condi-
tion (J), then there exist non-negative integers i and j such that

(2) i + j>l

and

(3)

Proof. We shall proceed in six steps.
Step 1. By hypothesis there exists a differential overfield K of C(t)

such that we find an X(α)-invariant principal ideal / properly between the
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zero-ideal and K\p,q\: 0 φ I C K[p, q\. Let F G K\p, q] be a generator of

/. So we have / = (F), F $ K and

(4) X(a)F = GF

for some G G if[p, q]. We define the weights of p and g to be 2 and 1

respectively, so that the weight of a monomial apιqi ( 0 / α G K) in K\p, g]

is 2i + j .

Let i?d be the UΓ-linear subspace of K\p, q] generated over K by all the

monomials with weight d. Hence K\p,q] becomes a graded ring: K[p,q] =

with RQ = K and R^ i?̂ / C Rd+d' We set

t d

so that X(a) — X\ + XQ + -^-l + X-2 ι s the homogeneous decomposition.

Namely each Xi (i = —2,-1,0,1) is a derivation that maps Rd to Rd+i

Since the highest part X\ of X is of weight one and since the polynomial

F in (4) is not equal to zero, the polynomial G in (4) belongs to the direct

sum i?o θ R\. Therefore we have G = μq + v for some μ, z/ G UT. Since

F ^ if, we have an expression F = FQ + + F m with F^ G Rd and F m ^ 0

for some integer m > 1. So the equation (4) is written as

(5) (Xx + Xo + X-i + X - 2 ) ( F m + . . . + Fo) = (μg + i/)(Fm + + F o ) .

Comparing the homogeneous parts of both sides of (5), we have a system

of m + 4 equations equivalent to (5), hence to (4):

(6)d XχFd = μqFd + uFd+1 - X0Fd+i - X-ιFd+2 - X-2Fd+3

for each integer d such that —3 < d < m. Here we consider F_3 = F_2 =

F_i = F m + i = F m + 2 = F m + 3 = 0. In Steps 3-6, we shall recursively

determine the polynomial Fd for d — m^m — 1,ra — 2,ra — 3. The polyno-

mials F m , F m _ i , F m _ 2 are determined without imposing any condition on
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the parameter a. The expected relation (3) appears as an obstruction to

the determination of jFm_3.

Step 2. We need the following two auxiliary lemmas, which deliver us

from a brute force calculation (cf. [18], [19], [21]).

LEMMA 2.3. Let d be a non-negative integer and let k be a positive

integer. Let A be a polynomial in R^, and let μ! be an element of K. If

μ! — d-\- 41 — 4 φ 0 for every integer I such that 1 < I < k and if A satisfies

a congruence

(7) XλA = μqA mod (2q2 - p)k,

then A = 0 mod {2q2 - p)k.

LEMMA 2.4. Let d, k, A, μ! be as above. If μ1 + d — 4Z + 4 φ 0 for

every integer I such that 1 < I < k and if A satisfies a congruence

(8) XiA = μqA mod pk:,

then A = 0 mod pk.

Proof of Lemma 2.3. We denote by K[T] the polynomial ring in one

variable T over K. Let ψ be the iί-algebra morphism of K\p, q] onto K[T]

defined by φ(q) = T and φ{p) = 2Γ2. Then the kernel Ker(/? of φ is

the principal ideal generated by 2q2 — p. The following diagram (9) is

commutative:

(9)

K\p,q]

So the kernel Ker φ = (2q2 — p) is Xi-invariant. In fact we have a formula

(10) Xι{2q2-p) = -2q{2q2-p).

Now we show A Ξ O mod (2q2 — p)1 by induction on I (1 < / < k). We

set A — Y^2i+j=dcijPl(^ with Cij G K. Applying φ to both sides of (7), we

have

φ{XχA) = φ(μ'qA).

This is equivalent to

τ2ίrφ{A) = φiμ'qA)
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by the commutative diagram (9). Since φ(A) = (Σ2i+j=d 2ιCij)Td, it follows

that

(μ'-d)( £ ?Cij)Td+1 = 0.

Since μ1 — d Φ 0 by hypothesis, we have J2^cij = 0 a n d hence A =

0 mod 2ρ2 — p. This proves the case 1 = 1. Assume that A = 0 mod (2q2 —

p)1-1 for I > 2. We show A = 0 mod (2<?2 - p)z. If d < 21 - 2, we have

A = 0 since i G i?^ is divisible by (2g2 — p)ι~ι, and there is nothing to

prove. Therefore we may assume d > 2Z — 2. Then we can put

(11) ^I = i ? ( 2 g 2 - p ) ί - 1

with a polynomial B G i?d-2Z+2 If w e substitute (11) into (7) and divide

both sides of the resulting congruence by (2q2 — p ) / - 1 , we get

(12) XXB = (// + 2/ - 2)gS mod (2q2 - p ) f e " i + 1 .

If we put £? = Σ22+.7=d-2/+2 eijPιtf with e^ G ϋΓ and apply φ to (12), then
the same argument as above gives us a relation

Since μ' — d+Al—A φ 0, we have Σ ^%eij — 0 a n d hence A = 0 mod (2q2—p)1.
This is what we had to show, and the lemma is proved.

Proof of Lemma 2.4. Let φ be the K-algebra morphism of K[p, q] onto

K[T] defined by φ(q) —T and φ{p) = 0. The kernel Ker φ is the principal

ideal generated by p. The following diagram (13) is commutative:

K\p,q] —

(13) xx

K\p,q] —+K[T\.

Ψ

So the kernel Ker^ = (p) is X\-invariant. In fact we have a formula

(14) X1(p)=2qp.

The argument of the proof of Lemma 2.3 allows us to prove this lemma if

we use φ and (13) for φ and (9) respectively. Hence we omit the detail.

https://doi.org/10.1017/S0027763000006486 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006486


SECOND AND FOURTH PAINLEVE EQUATIONS 165

Remark. The commutative diagrams (9) and (13) are obtained in the

following procedure. Let us determine the homogeneous ίί-algebra mor-

phism Φ such that the following diagram is commutative:

K\p,q] >K[T\.
Φ

Here we consider the polynomial ring K[T] as a graded ring in the usual

way. Hence we can set Φ(p) — aT2 and Φ(q) — bT for some α, 6 G K and

get a system of algebraic equations:

J 2ab = 2α,

ia - b2 = b.

Therefore we have the solutions (α, b) = (2,1), (0,-1), (0, 0). The first

two of them define the expected morphisms ψ and ψ respectively, and the

remainder gives a trivial solution that has no importance.

Step 3. Now we come back to the proof of the proposition. The poly-

nomial Fm satisfies the equation (6) m :

(6)m XiFm = μqFm.

We claim that (m — /i)/4 is a nonnegative integer. In fact, otherwise, we

would have μ — m + Al — 4 φ 0 for every integer / > 1. By Lemma 2.3

it would follow that Fm = 0 mod (2g2 — p)k for every integer k > 1. This

contradicts the hypothesis Fm φ 0. Moreover we claim that (m + /i)/4 is a

non-negative integer. In fact, otherwise, we would have μ + m — 4Z + 4 ^ 0

for every integer I > 1. By Lemma 2.4 it would follow that F m = 0 mod pk

for every integer k > 1. This contradicts the hypothesis Fm φ 0. If we put

i — (m + μ)/4 and j — (m — μ)/4, we have

(15) m = 2(i + j)

and

(16) μ = 2(i-j).

Since m > 1, (15) implies (2) as required. If j > 1, we have Fm = 0 mod

(2q2 —py by Lemma 2.3 because μ — m + 4Z — 4 φ 0 for every integer I such
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that 1 < I < j . If i > 1, we have F m = 0 modp1 by Lemma 2.4 because

μ + m — 41 + 4 ^ 0 for every integer Z such that 1 < I < i. By (2) we

have Fm = 0 mod pι(2q2 — p)i. Since the polynomial pι{2q2 — p)-7 belongs

to i? m , we have Fm = apι(2q2 — p)i for some non-zero element a £ K.

The polynomial a~λF is X(o;)-invariant and generates the ideal / = (F)

introduced in Step 1. So we may assume a — 1 and therefore

(17) Fm=pi(2q2-Pγ.

Step 4. The polynomial Fm_χ satisfies the equation (6)m_χ:

Since XoFm = 0 by (17), the equation (6)m_i is rewritten as

(19) XA-! = μqFm-! + upi(2q2 - Pγ,

where μ is given by (16). We have XiFm_χ = μqFm_ι modp z . If i > 1,

we have F m _ i = 0 mod p% by Lemma 2.4 because μ + (m — 1) — 4i + 4 =

4i — 41 + 3 φ 0 for every integer Z such that 1 < I < i. Similarly we have

XιFm-i = μqFm-i mod (2q2 — p)-7. If j > 1, we have F m _ i = 0 mod (2q2 -

p)i by Lemma 2.3 because μ — (m — 1) + 41 — 4 = - 4 j + 4Z — 3 ̂  0 for every

integer Z such that 1 < Z < jr. By (2) we have F m _ i = 0 mod pι(2q2 — p) J .

Hence we have

(20) F m _ ! = 0.

It follows from (18) that we have

(21) v = 0.

Step 5. The polynomial Fm_2 satisfies the equation (6)m_2:

(6) m _ 2 XlFm-2 = μqFm-2 + vFm-X - XoFm-! - X-iFm.

If we substitute (17), (19) and (20) into (6) m _ 2 , we get

(22) XιFm^2 = μqFm^ + 2jtqpι(2q2 - p ) ^ 1 .

Since X\ is a derivation, we have

(23) X1({2q2-p)Frn^2) = ~2q (2q2 - p ) F m _ 2 + (2q2 -
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Eliminating XιFm-2 from (21) and (22), we have

(24) Xi((2</2 - v)Fm-2) = (μ - 2)q {2q2 - p ) F m _ 2 + 2jtqp\2q2 - p)'.

We\mveX1((2q2-p)Fm-2) = (μ ~ 2)q (2q2 - p ) F m _ 2 mod p\ If i > 1, we

have {2q2 —p)Fπι-2 = 0 mod p2 by Lemma 2.4 because (μ — 2)+ra — 4Z + 4 =

4z — 4/ + 2 7̂  0 for every integer I such that 1 < I < i. Similarly we

have Xι((2q2 - p ) F m _ 2 ) = (μ - 2) 9 (2q2 - p ) F m _ 2 mod (2g2 - p)K If

j > 1, we have (2q2 — p)Frn-2 = 0 mod (2q2 — p) J by Lemma 2.3 because

(μ —2)— ra + 4/ — 4 = - 4 j + 4Z —6 φ 0 for every integer I such that 1 < I < j .

We have (2q2 - p ) i ?

m _ 2 Ξ 0 mod p'(2<?2 - p)-7' by (2). Then there exists an

element c G K such that

(25) (2q2 - p ) F m _ 2 = 0 ^ ( 2 ^ - p)J.

If we substitute (24) into (23) and notice the relation (6)m, we have c = jt.

We have by (24)

(26) Fm-2=jtpi(2q2-p)i-1

Step 6. Finally we determine the polynomial i^m_3 and derive the

relation (3). F m _3 satisfies the equation (6)m_3i

(6) m _ 3 Xl^m-3 = μqFm-

If we substitute (17), (19), (20) and (25) into (6) m _ 3 , we have

(27) X i F m _ 3

If m — 2, we have i = 0 or j = 0 by (15). Therefore we have a = 1/2 or

a — —1/2 by (26), which satisfy the relation (3). Assume m > 3. We have

(28)

Substituting (26) into (27), we have

(29) X1 (p(2q2 - p ) F m _ 3 ) = μq
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We have Xι{p(2q2 - p ) F m _ 3 ) = μq p(2q2 - p ) F m _ 3 mod p\ If i > 1, we

have p{2q2 — p)Fm-3 = 0 mod pτ by Lemma 2.4 because μ + (m + 1) —

4/ + 4 = 4i — 4Z + 5 7̂  0 for every integer / such that 1 < / < i. Similarly

we have X1{p{2q2 - p ) F m _ 3 ) = μq ' P&Q2 ~ p)Fm-3 mod (2q2 - p)i. If

j > 1, we have p(2g2 — p)F m _3 = 0 mod (2g2 — p)-7 by Lemma 2.3 because

μ — (m + 1) + 41 — 4 = —4j + 4Z — 5 ^ 0 for every integer I such that

1 < I < j . Therefore we have p(2q2 — p)Frn-% = 0 modp2(2q2 — p)-7. Since

Ri = {cq \ c £ K}, there exists an element c £ K such that

(30) p(2q2 - p ) F m _ 3 - cqpi(2q2 -

Substituting (29) into (28), we have

and hence we have

(31)

and

(3)

Thus Proposition 2.2 is proved.

Moreover, from (29) and (30), we have

(32) F m _ 3

COROLLARY 2.5. The complex number a in Proposition 2.2 is rational

and \a\ > 1/2.

Proof. The number a satisfies the relation (3). We see i φ j easily.

Then we have a = (i +j)/(2(i — j)), and the assertion follows immediately.

Combining this corollary with Theorem 1.1, we deduce the next corollary

immediately.

COROLLARY 2.6. Let (p,q) be a solution of 5π(α). If a e Co and

a φ —1/2, then one of the following conclusions holds:

(i) the solution (p, q) is non-classical;

(ii) the solution (p, q) is algebraic.
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2.3. Classical solutions

We determine all the X(—l/2)-invariant principal ideals of K\p,q\.

LEMMA 2.7. For every integer i > 1, the principal ideal (pι) is X(—1/

2) -invariant. Conversely, if I is an X(—1/2)-invariant principal ideal prop-

erly between the zero-ideal and K\p,q], there exists an integer i > 1 such

that I = (j/).

Proof. Let the notation be as in Proposition 2.3. The first half is

obvious. For the second half, it is sufficient to show that the X(—1/2)-

invariant polynomial F is equal to pι for some integer i > 1. Since a =

— 1/2, we have j — 0 from (3). Hence we have m = 2i = μ, i > 1, F m = pι

and Fm_χ = F m _ 2 = F m _ 3 = 0 by (2), (15), (16), (17), (19), (25) and (31).

Here we prove the next

SUBLEMMA. Let d be an integer such that 0 < d < 2i and let A be a

polynomial in i?^. If A satisfies an equation

(33) XλA = 2iqA,

then A = 0.

In fact, if 2% + d ψ 0 mod 4, we have 2i + d — 41 + 4 φ 0 for every

integer / > 1. Therefore we have A = 0 by Lemma 2.4. If 2i + d = 0 mod 4,

then A: = (2i + d)/4 is a positive integer and we have 2i + d — 4/+ 4 ^ 0

for every integer / such that 1 < I < k. It follows from Lemma 2.4 that

A = 0 modpk. Since 2k - d = (2i - d)/2 > 0, we have A = 0, and the

sublemma is proved.

Now, let d be an integer such that 0 < d < m — 3, and assume F^ — 0

for every integer d1 such that d < dr < m (This assumption holds when

d — vn — 3.). Then the polynomial i^_ ! satisfies the equation (32) for

A = Fd-\. Therefore we have F^—i = 0 by Sublemma. By induction on <i,

we have F^ = 0 for every integer d such that 0 < d < m, and the proof of

the lemma is completed.

LEMMA 2.8. Let L be an ordinary differential overfield of C(t) with

derivation δ, and let K be an ordinary differential field with C(t) C K C L.

If a pair (p,q) of elements of L satisfies the system Su(—1/2), i.e.,

δq = p- qz-, -
q F q ' 2

δp = 2pq,
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and if the transcendence degree tr.d.[if(j9, q): K] equals one, then p equals

zero, and q satisfies the Riccati equation (1):

Proof. The polynomial ring UΓ[p, q] is an ordinary differential ring with

the derivation X(—1/2). Let φ be a surjective morphism of differential rings

of K\p,q] onto K\p,q] sending p and q respectively to p and q. So Ker(^

is X{—l/2)-invariant. Since every prime ideal of codimension one of the

polynomial ring K\p,q] is principal, Ker φ is X{—l/2)-invariant principal

ideal. Now it follows from Lemma 2.7 Ker</? = (p), so that we have p = 0.

Substituting p ~ 0 into (33), we find that ςf satisfies (1).

Let us determine all the classical solutions of the system 5π(—1/2).

PROPOSITION 2.9. If a function q(t) satisfies the Riccati equation (1),

then (O,g(t)) is a classical solution of S\\{—1/2). Conversely, let (p(t),q(t))

be a transcendental classical solution of the system S\ι(—1/2). Then p(t)

equals zero and q{t) satisfies the Riccati equation (1).

Proof. For a = —1/2, the system Su(a) is given by

' dq 2 ί

\ dt

So the first assertion is proved. To prove the converse, we use the notation

and argument of the proof of the theorem in [27], p. 787. There exists a

succesive G-primitive extension C(t) = K\ C K2 C C Kn (n > 2)

such that the field C(t,p(ί), q(t)) is a differential subfield of Kn. Since the

solution (p(t),q(t)) is non-algebraic, there exists an index i (2 < i < n)

such that tτA\Ki\ UΓj_i] > 1. First, we may assume that the extension

Kn/Kn-\ is not algebraic. Then we may also assume that either p(t) or

q(t) is non-algebraic over i f n -i We denote by Kn-\ the algebraic closure of

Kn_\ in Kn, so that Kn/Kn-ι is a regular extension. Let M be the quotient

field of Kn ®xn__x Kn, which is an ordinary differential field (cf. loc. cit.).

We have two ΛΓn_i-embeddings φa: Kn —+ Kn ®χn_ 1 Kn C M (a = 1, 2):

φι(a) = α ® 1, ^2(0-) = 1 ® α for α G Kn. As was shown there, we can
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find a tower of differential subfields ψ2{Kn) = Mo c M i C C M / = M

(I > 1) such that tr.d.[M;: M^i] < 1 for 1 < i < I. Since either p(t) or q(t)

is non-algebraic over Kn-\, either φ\(p(t)) or φι(q(t)) is non-algebraic over

φi{Kn-ι), and consequently either φ\(p(t)) or ψι{q(t)) is non-algebraic

over ψ2(Kn). Therefore there exists an index i (1 < ί < I) such that

tτA.[Mi-ι(φι(p(t)),φι(q(t))): M^_i] = 1. So we see by Lemma 2.8 that

φι(p(t)) equals zero, and that φι(q(t)) satisfies the Riccati equation (1),

which proves the proposition in this case.

If the extension Kn/Kn-\ is algebraic, then we can apply the similar

argument to the extension KnjK{ where ί denotes the integer (1 < i < n—1)

such that the extension Kn/Ki+\ is algebraic and the extension Ki+i/K{

is transcendental.

2.4. Algebraic solutions
The algebraic solutions q of the second Painleve equation P\ι{ά) are

determined by Murata [16]. Our definition of an algebraic solution (p,q)

is that both the functions p and q are algebraic. The equation Pπ(α) is

equivalent to the system Su(a), but there is a slight difference between

these definitions. Evidently, if (p, q) is an algebraic solution of S\ι(a), then

q is an algebraic solution of Pn(α). But a priori there is no reason to expect

the converse. In fact, as will be seen in Theorem 3.3, even if q is an algebraic

solution of Piv(v), (p, q) is not necessarily an algebraic solution of SΊv(v).

For the second equation, however, we classify the algebraic solutions of

(a), and, as a result, we know that the converse is true.

PROPOSITION 2.10. (i) Every algebraic solution of S\ι(a) is rational.

(ii) The system Su(a) has a rational solution if and only if a £ 1/2 + Z.

(iii) For each a G 1/2 + Z., the rational solution of Sn(a) is unique.

We will prove the proposition in a forthcoming paper [30].

2.5. The Newton polygon of the invariant polynomial F

We defined a weight on K\p, q] in the proof of Proposition 2.2 (Step 1).

We explain where this weight comes from.

The polynomial ring K\p, q] is N2-graded: If we set Rij = {jpιq^ | 7 G

K} for (i,j) G N 2 , then we have K]p,q\ = Θμj)GN2 Rϋ w i t n RklRmn =

Rk+m,ι+n f°r all (fc, Z), (ra,n) G N 2 . By the Newton polygon of a polyno-

mial Σakipkql G K\p,q] we understand the convex closure of the subset

) G N 2 I ajςi φ 0} in the plane R 2 . We say that an endomorphism
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L: K\p,q] —> K\p,q] of the additive group K\p,q] is homogeneous of weight

(Z,ra) ((Z,ra) G Z2) if L(Rij) C Ri+ιJ+m for every (i, j) G N 2 . Here we

regard R{+ij+m = 0 if either i + / or j + m is negative. Therefore the

ring Endzi^[p, q] of all endomorphisms of the additive group K\p,q] is a

Z2-graded ring. For example derivations pd/dq, —q2d/dq, 2pqd/dp, δ are

homogeneous of weight (1, —1), (0,1), (0,1), (0,0), respectively. So the ho-

mogeneous decomposition of the derivation -X"(α), which is an element of

Endz K[p, g], is X(a) = X(i?_i) + -^(o,i) + -̂ (0,0) + ^(0,-1) + -^(-1,0)5 where

d

Γ\ d

x - t d

each X(ij) being a homogeneous endomorphism of weight (i, j ) . We define

the Newton polygon of an endomorphism L G Enά^ K\p, q] of the addi-

tive group K\p,q] as the convex closure of the subset {(i,j) G Z 2 | L{j φ

0} in R 2 , where the homogeneous decomposition of L is given by L —

J2(ij)eZ2 Lij for some L^ G iϊ^ . So the Newton polygon of the endomor-

phism X(a) is the convex closure of {(1, -1) , (0,1), (0, 0), (0, -1), (-1,0)}

i n R 2 :

C

Here a (resp. b) denotes the first (resp. second) coordinate on the plane

R 2 . We show how the Newton polygon of the endomorphism X(a) G Endz
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(K\p,q\) determines the Newton polygon of the X(α)-invariant polynomial

FeK\p,q}.

Since the N2-grading is not easy to treat, we introduced in the proof

of Proposition 2.2 an N-grading on K\p,q] to analyze the equation (4). To

understand the significance of this grading, we define a family of grading

structures on K\p, q]: We define the weights oίp and q to be p and σ respec-

tively, which are integers such that σ > 0 and — σ < p < 2σ. By definition

the weight of a monomial apιqi (0 / a G K) in K\p, q] is ip + jσ. Let

Rf

d be the iί-linear subspace of K\p,q] generated by all the monomials of

weight d. Hence K\p, q] becomes a graded ring with respect to this weight:

K\p. q] = ffij i?j with R!A R^, C i?j, J, . If we decompose the polynomial F

with respect to this gradation of K[p, g], we have the homogeneous decom-

position

{όb) t = tnι Λ V t n

with F'i G i?Λ and F]' Φ 0 for some integers n' n (n1 < n). If we set

dq dp

X' - —
p-σ~Pd~q

, _ d

Y> ( + l \ d

X-p-{a+2jdp'

Y> - ί d

X-σ~~2dq>

then we see that X(a) = X'σ + X^,_σ + X'o + X'_p + XLσ and each X[ (i =

σ, p — σ,0, — p, —σ) is a derivation mapping R'd to R'd+i. The homogeneous

decomposition of the endomorphism X(a): K\p,q] —> K[p,q] with respect

to this grading is independent of p, σ. Then the equation (4) is written as

(36) (X'σ + X'+X'0 + X'_

We notice here σ > max{p — σ, 0}. Comparing the homogeneous parts of

the maximum weight σ + n of both sides of (35), we have an equation for

(37) X'σF'n = μqF'n,
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where μ is given by (16). We set F'n = Σkp+ισ=nckιp
kql with cki G K.

Substituting this into (36), we have the relations (2k — I — μ)ckι = 0 for

integers fc,ί G N such that kp + Iσ = n. Since F^ φ 0, there exist non-

negative integers ko and Zo such that ckoιo φ 0. So we have

(38) μ = 2ko-lo.

If Cfc/// φ 0 for other fc7 and Z7, we have a simultaneous equation:

jμ = 2/c0 - Zo = 2fc' - Z',

\n — pko + σ/o = pfcr + σ/;.

Since the determinant
2 1 = 2σ + p Φ 0, we have kn = kf and L = I' and
p r

therefore the polynomial F'n is given by

(39) K = Ck0l0p
k°ql°-

This shows that (fco, Zo) is a vertex of the Newton polygon of F, denoted

by P,and that the Newton polygon is contained in a subset

{(o, 6) € R2 I 6 - Zo < -2(α - fc0), α - fc0 < ~(b ~ lo)}

as in the figure below:

In the Newton polygon of X(ά) in Figure 1, as in Figure 2, there is no edge

with a vertex B and of slope r such that — 2 < r < 1. Now we take the

weight introduced in the proof of Proposition 2.2 that comes from the edge

BC of the Newton polygon of the derivation X(a) (see Figure 1). Then the

highest component of the derivation X{pί) is (p — q2)(d/dq) + 2pq(d/dp),

and we found the polynomial Fm as the highest component of the invariant

polynomial F (see (17)). In Figure 2, the polynomial Fm gives an edge with

the vertex P lying on a line

{(α, b) G R 2 I b - Zo = -2(α - fe0)}.
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Therefore two monomials, F'n and 2^pιq2^ in F m , represent the same vertex

P, and hence are equal. Thus we have the relations

k0 =i,

k = 2j,

(40)

(41)

(42)

If we repeat this procedure at each vertex of the Newton polygon of the

derivation X(a), we can determine the whole figure of the Newton polygon

of the invariant polynomial P, which is the intersection of the first quadrant

and a quadrilateral PQRS such that the slope of the edges PQ, QR, RS,

SP are respectively 1, —1, 0, —2 as is shown below:

b

P

\ . w. .
V- :-
R

: : : \ '

Q

Here a (resp. b) denotes the first (resp. second) coordinate on R 2 .

Remark The Newton polygon of an invariant polynomial can be de-

generate. In fact, we have an X(—l/2)-invariant polynomial p whose New-

ton polygon is a subset {(1,0)} C R 2 . Moreover, we have an X(l/2)-

invariant polynomial 2g2 — p + t whose Newton polygon is represented by

the following picture:

b

+2

O +1
-• a
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These Newton polygons are degenerate forms of the Newton polygon in

Figure 3.

§3. The fourth Painleve equation

3.1. Statement of the theorem

Now we treat the following system SΊv(v) of ordinary differential equa-

tions:

' ^ = 2pq - q2 - 2tq + 2(vλ - υ2),

— .= 2pq — p + 2tp + 2(^i — ^3),

where v = (^1,^25^3) denotes an arbitrary vector on a complex plane V in

C 3 defined by υ\ + V2 + V3 = 0 ([20]). The system SΊv(v) is equivalent to

the fourth Painleve equation:

In fact if we eliminate the unknown p from SΊv(v), we get F\y(a^β) un-

der the relations: a = 3υs + ! , / ? = —2(i>2 — ^i) 2- In order to state

Theorem 3.2, we review birational transformations of solutions of the sys-

tem SΊv(v) associated with a group of affine transformations of the com-

plex plane V. We define three affine transformations s\, 82, t— of V by

«i(v) = (v2,vuv3), s2(v) - (v3,v2,vi), t_(v) = v + ( l/3) .(- l ,- l ,2) for

v = (vι,V2,vs) G V. We have s2 = s | = 1, ί_si = siί_, where 1 denotes

the identity transformation of V. If we set so = tZ1sιS2Sιt-, z$ = sχS2t-,

we have so(v) = (^1,^3 + 1,̂ 2 — 1) and ^o(v) = (ΐ>2 — 1/3,^3 + 2/3, i>i — 1/3.

We also have SQ = ZQ = 1, ί l 1 ^ - — siso^i- Let G be the subgroup

generated by si, 52, t- in the group of all complex affine transformations

of V. We can also choose si, 52, ZQ as generators of the group G. Let H

be the subgroup of G generated by so, 5χ, S2 Setting V = V Π R 3 , we

have VQ = V' (g)R C = V. The group H of affine transformations of V

leaves the real form V invariant. The operation of H on the real space Vf

is isomorphic to that of the affine Weyl group of the root system of type

A2 on the two dimensional real vector space (cf. [1], Chap. VI.). We easily

see that H is a normal subgroup of G, and we have a group isomorphism

G = H x (ZQ). Let Γ be the subset of V that consists of all the vectors

v = (^1,^2,^3) satisfying the following conditions:
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(i) »(ι>2-vi)>0;

(ii) 9t(vi - v3) > 0;

(iii) $t{v3 - v2 + 1) > 0;

(iv) ζs(υ2 - vι) > 0 if $t(υ2 - vλ) = 0;

(v) %(vι -υ3)>0 if dtfa - v3) = 0;

(vi) 3?(υ3 -υ2)>0 if 5R( 3̂ - vo + 1) = 0.

Here ?R:(v) and θ( t ) denote the real and imaginary parts respectively of a

complex number v.

LEMMA 3.1. The subset Γ is a fundamental region ofV for the group

H.

Proof We set V = V Π R 3 and V = Γ Π R 3 . The subset Γ is a

fundamental region of the real vector space V for the group H, because the

set Γ' is the closure of an alcove of the affine Weyl group H (cf. [1], Chap. VI,

§2). We set f = {v G V \ $t(v2-υi) > 0,5R(^i—^3) > 0, and $t(υ3-v2+l) >

0}. We have Γ D Γ, and the interior of Γ agrees with that of Γ. Every H-

orbit on V contains a point of Γ, because Γ7 is a fundamental region of V.

We show that the intersection of each H-orbit Ω and the subset Γ consists of

one point. It is easy to see that this fact proves the lemma. The difference

between Γ and Γ consists of boundary. So we may assume that the H-orbit

Ω contains a point of boundary. For example, let us analyse what happens

on a boundary stratum

B3 = {v G f I 5R(>2 - vi) = 0, » ( v i - v3)?R(v3 -v2 + l)φ 0}.

The stratum B3 is si-invariant. If we set

= {v G B3 I %(v2 - Vl) > 0},

= {veB3\ Z(v2 - υi) = 0},

then we have a decomposition B3 — B^ U B3 U B% (disjoint union). The

restriction of s\ to B3 is the identity mapping on B®, and we have
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#3~ and 5i (Bz) = B$. SO, if Ω Π B3 φ 0, then Ω Π (B^ U J5§) Φ 0, so that

Ω Π Γ 7̂  0 . Similarly a boundary stratum

#23 = {v G f I »(v 2 - vi) = »(vi - υ3) = 0,

or, equivalently, $t(vι) = 3fc(v2) = ^Oδ) = 0}

is W-invariant, where W denotes the subgroup of H generated by si, 52-

We have

= 0}).

Let us prove this equality. The set B23 is regarded as a two-dimensional

real vector space of all vectors u = (u\, 162, ̂ 3) such that u\ + U2 + u3 — 0.

The group W effectively acts on it as a subgroup of affine transformations,

and is isomorphic to the Weyl group of the root system of type A2. Since

the set { v G Γ I 3ft(vi) = 5? (v2) = 3R (^3) = 0} is regarded as the closure of a

Weyl chamber with respect to this action, we easily have the equality above.

Now, if Ω Π B23 φ 0, then Ω ΓΊ {v G Γ | 3fc(υi) = $t(υ2) = 5R(υ3) = 0} φ 0

by the equality above, so that Ω π Γ / 0 . Applying the above argument to

every boundary stratum of Γ, we have ΩπΓ φ 0.

To complete the proof we have to show that for every H-orbit Ω the

set Ω Π Γ consists of one point. Let us show vi = V2 for vi, V2 E Ω Π Γ.

There exists g E H such that vi = g{v2) In particular we have 3i(vi) =

y9l(v2), where $R(v) denotes the real vector (5R(^i), ^(^2)5 ̂ (^3)) hi V for

v = (vi,V2)V3) G V. If 3?(vχ) is in the interior of Γ', then the equality

5R(vi) = ^3ϊ(v2) implies g = 1, so that vi = V2. Assume that 9i(vi) lies

on the boundary of Γ', for example, 5R(vχ) G B3 Π Γ'. Then we have g = 1

or sχ Therefore we have vχ,V2 E B3 with either vi = 6*i(v2) or vi = V2.

We may assume vi = Si(v2). Then it follows from the decomposition

B3 = B^ U B% U B^ that vi, v 2 G J5§, so that vi = 5i(v2) = v 2 . Thus

Lemma 3.1 is proved.

Now, let Co be the subset of V that consists of all the vectors v =

(^1,^2,^3) satisfying the following conditions:

(i) ^{vλ - v3) > 0;

(ii) »(υ 2 + υ3) > 0;

(iii) $t(v3 + 1/3) > 0;
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(iv) S ( υ i - v3) > 0 if dt(vi - v3) = 0;

(v) 5(v2 + v3) > 0 if ^{υ2 + v3) = 0;

(vi) 3(u 3) > 0 if »(u 3 + 1/3) = 0.

Since Γ = C o U z 0 C 0 U ZQC0 and G = H x (z0), we have the following

properties by Lemma 3.1:

(ii) for g, h G G (g φ h) the interior of g(Co) does not intersect that of

h(C0).

We define two subsets W and D of F by

W = {v E V I υi - ^ 2 G Z}

U {v E V I ̂ 2 - ^3 G Z} U {v G V I v3 - vi E Z},

D = {v E F I vi - V2 e Z}

Π {v G V I υ 2 - ^3 G Z} Π {v E V I ̂ 3 - vι £ Z}.

They are G-invariant subsets of V. A subset CoΠW — CQΠ {v £ V \ vι =

υ^} is a fundamental region of W for G. The set D is an orbit of the origin

0 of V by the group G: D = G 0.

For v G V\ let Σ(v) be the set of solutions (p,q) of SΊv(v). We set

Σ = U v Σ(v) (disjoint union). We define three birational transformations

0i)* , (s2)*, 0-)* o f t h e s e t Σ a s follows (cf. [20]): For (p, q) G Σ(v),

(i) we define (si)*(p,g) E Σ(sχ(v)) by

and

( si)*(p,g) = (p,g) if vi - ^ 2 = 0;

(ii) we define (s2)*(p,g) G Σ(s 2(v)) by

and

if ^1 -

(52)* (p, ς) = (p, q) if vi - υ 3 = 0;
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(iii) we define (t_)»(p,g) <Ξ Σ(t_(v)) by

q{p-q- 2ί) + 2(υ3 - v2

p-q-2t

(p-q-2t)-
q(p-q-2t)

if (vι -υ3- l)(υ2 - υ3 - 1) φ 0,

if t>2 — ̂ 3 — 1 = 0 a n d v\ — v% — 1 7^ 0,

if vi — 3̂ — 1 = 0 and v2 — V3 — 1 ̂  0, and

(t-)*(p,g) = ( - g , P - ? - 2 t )

if vi - -us - 1 = i>2 - i>3 - 1 = 0 (i.e. v = (1/3,1/3, -2/3)).
The preceding definitions of (si)*, ($2)*, (^-)* a r e well-defined by the

following facts: for each (p,q) G Σ(v),

(i) q φ 0 if vx-v2φ 0;

(ii) p ̂  0 if υι - V3 φ 0;

(iii) p - q - 2t φ 0 if v2 - υ3 - 1 φ 0;

(iv) q(p-q- 2t) + 2(v3 - v2 + 1) φ 0 iΐ (v2 - v3 ~ l)(vi - υ3 - 1) ̂  0.

The assertions are proved in the same way as in the case of the second
Painleve equation (cf. Subsection 2.1). We omit the detail.

Let G* be the subgroup generated by (si)*, (52)*, (t-)* in the group of
all bijections of the set Σ. The group G* consists of birational transforma-
tions of Σ. There exists a surjective group morphism / of G* onto G such
that /((si)*) - si, /((s2)*) = 52, /((*-)*) = *-. We set H* = / ^ ( H ) .
Let π be the natural projection of Σ onto V defined by π(p, q) = v for
(p, q) G Σ(v). Then the following diagram is commutative for every g G G*:

_ 9 _

y.
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Let us now state our principal theorem for the fourth Painleve equation.

THEOREM 3.2. (i) For every vector vinW and not in D, there exists

a one-parameter family of classical solutions of the system Srv(v).

(ii) For every v G D, there exist two one-parameter families of classical

solutions of the system SΊv(v).

(iii) Let (p,q) be a transcendental solution of Sιy(v) (V G V) different from

those in (i) and (ii). Then neither the function p nor the function q is

classical, and the transcendence degree of C(t,p,q) over C(t) equals two.

As we shall see in Theorem 3.3 below, we have tr.d.[C(£,p, q); C(ί)] < 1

for every solution (p, q) in (i), (ii).

To prove Theorem 3.2, we may assume the vector v parametrizing the

system SΊv(v) belongs to the fundamental region Γ of the group H by

the operation of the group H* on the set of solutions. Consequently, it is

sufficient to prove the following theorem, in which we explicitly determine

all the transcendental classical solutions of SΊv(v) for every v G Γ for which

SΊv(v) has such solutions.

THEOREM 3.3. (i) For every vi = (^1,^2,^3) £ V such that v\ = v%

and for every solution q of a Riccati equation

(1) C^ = -q2-2tq + 2(v1-v2),

(0, q) is a classical solution of S\\ι(yι).

(ii) For every V2 = (^1,^2,^3) £ V such that v\ = V2 and for every solution
p of a Riccati equation

(2) d£ = -p2 + 2tp + 2(v1-v3),
at

(p, 0) is a classical solution o/SΊv(v2)

(iii) For every V3 = (^1,^25^3) £ V such that V2 = 173 + 1 and for every

solution q of a Riccati equation

( 3 ) ^ = < j 2

(q + 2t, q) is a classical solution of

(iv) Let (p,q) be a transcendental solution of SΊv(v) (v G Γ) different from

those in (i)-(iii). Then neither the function p nor the function q is classical,

and the transcendence degree of C(t,p,q) over C(t) equals two.
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The assertions (i)-(iii) are obvious. The assertion (iv) is proved in Subsec-

tion 3.4.

Using the birational transformations in the group H*, we can explicitly

write every classical solution in Theorem 3.2 as a rational function of one

of the classical solutions in (i)-(iii) of Theorem 3.3. In fact, let (p,q) be

a classical solution of SΊv(v) for a v G W. Since Γ Π W is a fundamental

region of an H-invariant subset W of V, there exist an element g G H

and a unique vector VQ G Γ Π W such that v = g(vo). Therefore, there

exists a classical solution (po> Qo) of SΊv(vo) in Theorem 3.3 and an element

9 £ f~ι(g)sucn t h a t (p>?) = g{po,qo)
Moreover, we notice the following fact.

LEMMA 3.4. The three Riccati equations (1)—(3) are birationally equiv-

alent each other through the birational transformation (zo)*

Proof. Let the notation be as in Theorem 3.3. The proof is divided

into the following three parts.

(i) Let (0,g) be a classical solution of SΊv( v i) defined by (1). Then a

solution (/Zo)*(O, g) = (—Q^—Q — 2t) belongs to Σ(zo(vi)), where the vector

*o(vi) - (v2 ~ 1/3, v3 + 2/3, V! - 1/3) is in Γ Π {v G V | υ2 = v3 + 1}. If we

set Q = — q — 2t, we see that Q satisfies a Riccati equation

^ = Q2 + 2tQ + 2(υ2 -υs- 1),

which is equal to (3) with V3 = ZQ (vi).

(ii) Let (p, 0) be a classical solution of SΊv(v2) defined by (2). Then a

solution (^o)*(p, 0) = (0,p — 2t) belongs to Σ(zo(v2)), where the vector

zo(v 2) = (v2 - 1/3, v3 + 2/3, vι - 1/3) is in Γ Π {v G V \ vλ = v3}. If we set

Q = p — 2ί, we see that Q satisfies a Riccati equation

dQ = -Q2- 2tQ + 2( υ 2 -V3- 1),

which is equal to (1) with vi = ^o(v2).

(iii) Let (q + 2ί, q) be a classical solution of SΊv(v3) defined by (3). Then

a solution (20)*(<7 + 2ί, ς) = (—g, 0) belongs to Σ(zo(v3)), where the vector

Z o (v 3 ) = (v2 - 1/3, v3 + 2/3, vi - 1/3) is in Γ Π {v G V \ vλ = v2}. If we set

P = — g, we see that P satisfies a Riccati equation

p

which is equal to (2) with v2 = ZQ(V3).
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Let us introduce a new unknown u by

(4) q= ^(logu).

If we eliminate the unknown q from (1) and (4), we have the Hermite
differential equation for u

(5) ^ + 2 ^ + 2 ( ^ - ^ = 0.

Therefore, we see by Lemma 3.4 that all the solutions of the Riccati equa-
tions (1)—(3), and therefore all the classical solutions of SΊv(v) for each
v G W, are rationally generated from Hermite functions defined by (5).

3.2. Non-classical solutions
Let K be an ordinary differential overfield of C(t), and let K\p, q] be the

polynomial ring over K in two variables p and q. We consider the following
derivation X(v) on K\p,q]:

xiy) = Q-t + (2PI -<?- 2 t i + 2vί ~ 2V2)Q-

+ (2pq - p2 + 2tp + 2v! - 2v^) — .
op

PROPOSITION 3.5. // there exists a vector v = (^1,^2,^3) G V for
which X(v) does not satisfy the condition (J), then there exist nonnegatiυe
integers i,j,k such that
(6) i + j + k > 1

and

(7) i(vι - v3) +'j(υ2 - υi) + fe(l + 3̂ - υ2) = 0.

Proof. We shall proceed in five steps.
Step 1. By hypothesis there exists a differential overfield K of C(t)

such that there exists an X(v)-invariant principal ideal / properly between
the zero-ideal and K\p, q). Let F G K\p, q]be a generator of /. So we have
J = ( F ) , F ^ K a n d
(8) X(v)F =

for some G G K\p,q]. We define both the weights of p and q to be one, so
that the weight of a monomial apιqi ( 0 / α G K) in K\p, q] is i + j . Let Rd
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be the if-linear subspace of K[p, q] generated over K by all the monomials

of weight d. Hence K\p, q] becomes a graded ring: K\p, q] = 0d>o Rd with

i?o = K and Rd Rd> Q Rd+d' We set

- + (2p~q)q-,

O d d
= — + 2tp—-2tq—,

dt dp oq

- + 2(v1-v2)-,

so that X(v) = X\ +XQ + X-\ is the homogeneous decomposition. Namely

each Xi {% = —1,0,1) is a derivation that maps Rd to Rd+i Since the

highest part X\ of X(y) is of weight one and since the polynomial F in

(8) is not equal to zero, the polynomial G in (8) belongs to a direct sum

RQ 0 R\. Therefore we have G = λp + μq + g for some λ, μ, g G K. Since

F £ K^we have an expression: F = FQ + + F m with Fd G Rd and F m φ 0

for some integer m > 1. So the equation (8) is written as

(9) (Xi + Xo + X_i)(F 0 + + Fm) = (λp + μq + g)(F0 + ... + Fm).

Comparing the homogeneous parts of both sides of (9), we have a system

of m + 3 equations equivalent to (9):

(10)d XιFd = {Xp + μq)Fd

for each integer d such that —2<d<m. Here we consider F_2 = F-i =

Step 2. Before treating the equations (10)^, we shall show the following

three auxiliary lemmas.

LEMMA 3.6. Let d be a non-negative integer and let k be a positive

integer. Let A be a polynomial in Rd, and let Xf and μ! be elements of K.

If \f + μ! — d + 3l — 3 φ 0 for every integer I such that 1 < I < k and if A

satisfies a congruence

(11) XλA = (λ;p + μ'q)A mod (p - q)\

then A = 0 mod (p — q)k.
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LEMMA 3.7. Let d, k, A, λf, μ! be as above. If μ! + d - 3/ + 3 φ 0 for

every integer I such that 1 < I < k and if A satisfies a congruence

(12) XλA = (λ'p + μq)A mod pk,

then A = 0 mod pk.

LEMMA 3.8. Let d, k, A, \r, μ! be as above. If λ' + d - 3/ + 3 φ 0 for

every integer I such that 1 < / < k and if A satisfies a congruence

(13) XλA ΞΞ (λ'p + μ'q)A mod qk.

then A = 0 mod qk.

Proof of Lemma 3.6. We denote by K[T] the polynomial ring in one

variable Γ over K. Let φ be the if-algebra morphism of K\p, q] onto K[T]

defined by φ{p) — φ(q) — T. The kernel Ker φ of φ is the principal ideal

generated by p — q. The following diagram (14) is commutative:

K]p,q]—P— K[T]

(14) ,

So the kernel Ker φ = (p — q) is X\-invariant. In fact we have a formula

(15) -X"i(p ~ Q) = ~~{p + Q)(P ~ θ)

Now we show A = 0 mod (p — q) by induction on I (1 < I < k). We

set A = Σi+j=dcijPί(ϊi WΓkh ĉ - G UΓ. Applying (̂  to both sides of (11), we

have

This is equivalent to

by the commutative diagram (14). Since φ{A) = (Σ^+ J = = ί/Qj)T r f, it follows

that

(V + μ'-dK Σ Cij)Td+1=0.
i+j=d
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Since λ' + μf — d ^ 0 by hypothesis, we have Σcij = 0 and hence A =

0 mod p — q. This proves the case / = 1. Assume that A = 0 mod (p — q)ι~ι

for / > 2. We show A = Q mod (p — q)1. If d < I — 1, we have A — 0 because

A G Rd is divisible by (p — q)ι~ι, and there is nothing to prove. Therefore

we may assume d > I — 1. Then we can put

(16) A = B(p-q)ι~ι

with a polynomial B E Rd-i+i If we substitute (16) into (11) and divide

both sides of the resulting congruence by (p — q)ι~ι, we get

(17) XλB = {(V + l-l)p+(μ' + l- l)q}B mod (p - q)k~l+1.

If we put B = ^ i + J = c ^ _ / + 1 eijpιqi with e^ G i ί and apply (̂  to (17), then

the same argument as above gives us a relation

(λ' + μf - d + 3/ - 3)( 5 3 e ^) = °
z-hj=d—Z+l

Since \'+μ! — d+3l — 3 7̂  0, we have J2 eίj — 0 a n ( l hence A = 0 mod (p—q)1.
Thus Lemma 3.6 is proved.

Proof of Lemma 3.7. Let ^ p be the Jf-algebra morphism of K\p, q] onto

K[T] defined by ψp(p) — 0 and ψp(q) = T. The kernel Ker ψp is the principal

ideal generated by p. The following diagram (18) is commutative:

(18) Xl

K\p,q] >K[T\.
•Φp

So the kernel Ker ψp = (j>) is Xχ-invariant. In fact we have a formula

(19) Xx{p) = {2q - p)p.

Now we show i Ξ θ moάp1 by induction on I (1 < I < k). We set

A = Σi+j=dcijPιQ^ with Cij G if. Applying ^ p to both sides of (12), we

have

φp{XχA) = φp(μ'qA).
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This is equivalent to

-T2~φp(A)=φp(μ'qA)

by the diagram (18). Since ψp(A) = CQ^T^, it follows that

(μ' + d)codT
d+1 = 0.

Since μ! + d φ 0 by hypothesis, we have CQ^ = 0 and hence A Ξ O mod p.

This proves the case / = 1. Assume that A = 0 modp1"1 for I > 2. We

show A Ξ O mod pι. If d < I — 1, we have A = 0 because A G JR^ is divisible

by pι~ι, and there is nothing to prove. Therefore we may assume d > I — 1.

Then we can put

(20) A = Bpι~ι

with a polynomial B G i?d-/+i If w e substitute (20) into (12) and divide

both sides of the resulting congruence by pι~ι, then we get

(21) XλB = {(λ' + l-l)p+ (// - 2/ + 2)g}B mod pk~ι+ι.

If we put B = Σi+j=d-l+ι eijPιtf with e^ E K and apply ψp to (21), then
the same argument as above gives us a relation:

(μ + d - 3/ + 3)eo,d-z+i = 0.

Since μ1 + d — 31 + 3 φ 0, we have eo,d-/+i = 0 and hence A Ξ O mod pι.

Thus the lemma is proved.

Proof of Lemma 3.8. Let ψq be the K-algebra morphism of K\p, q] onto

K[T] defined by ψq(q) = 0 and ψq(p) = T. The kernel Ker ψq is the principal

ideal generated by q. Then the following diagram (22) is commutative:

Ψq
κ\p,q]

(22)

K\p,
Ψq

So the kernel Ker ψq = (q) is Xi-invariant. In fact we have a formula

(23) X1(q) = (2p-q)q.

The argument of the proof of Lemma 3.7 allows us to prove this lemma if

we use ψq and (22) for ψp and (18) respectively. Hence we omit the detail.
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Remark The commutative diagrams (14), (18), (22) are obtained in

the following procedure. Let us determine the homogeneous K-algebra

morphism Φ such that the following diagram is commutative:

K[T).

Here we consider the polynomial ring K[T] as a graded ring in the usual

way. Hence we can set Φ(p) = aT and Φ(q) = bT for some α,6 G K, and

get a system of algebraic equations:

!

{2b — a)a = α,

(2α-6)6 = 6.

Therefore we have the solutions (α, b) = (1,1), (0, —1), (—1,0), (0,0). The

first three of them define the expected morphisms (/>, ψpi ψq respectively,

and the remainder gives a trivial solution that has no importance.

Step 3. Let us come back to the proof of the proposition. The polyno-

mial Fm satisfies the equation (10)m:

(24)m X1Fπι = (Xp + μq)Frn.

We claim that (m — λ — μ)/3 is a non-negative integer. In fact, otherwise, we

would have λ + μ — ra + 3/ — 3 ^ 0 for every integer I > 1. By Lemma 3.6,

it would follow that Fm = 0 mod (p — q)k for every integer k > 1. This

contradicts the hypothesis Fm φ 0. Similarly we see that (μ + ra)/3 and

(λ + ra)/3 are non-negative integers by Lemmas 3.7 and 3.8 respectively. If

we put i = (μ + ra)/3, j = (λ + ra)/3 and k = (m — λ — μ)/3, then we have

(25)

(26) λ = 3j - m,

(27) μ = 3ί - m.

Since m > 1, (24) implies (6) as required. If i > 1, we have Fm = 0 mod p1

by Lemma 3.7 because μ + ra — 31 + 3 ^ 0 for every integer / such that

1 < I < i. If j > 1, we have F m = 0 mod g j by Lemma 3.8 because
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λ + m — 31 + 3 φ 0 for every integer I such that 1 < I < j. If k > 1, we have

Fm = 0 mod (p — q) by Lemma 3.6 because λ + μ — ra + 3/ — 3 7̂  0 for every

integer I such that 1 < Z < fc. By (6) we have Fm = 0 mod pιqj (p — q)k.

Since the polynomial pιqi (p—q)k belongs to i?m, we have Fm = apιq\p—q)k

for some non-zero element a £ K. The polynomial a~ιF is X(v)-invariant

and generates the ideal / = (F) introduced in Step 1. So we may assume

a — 1 and therefore

(28) Fm=pW(p-q)k.

Step 4. The polynomial F m _ i satisfies the equation (10)m_χ:

_i XiFm-! = (Xp

If we substitute (27) into (10)m_i, we get

(29) X i F m _ ! = (Xp + μq)Fm.1 + {g - 2(i - j)t}pιq^{p - qf

where λ and μ are given by (25) and (26). Since X\ is a derivation, we have

(30) Xλ{(p - q)Fm_1) = -(p + q)(p - q)Frn_1 + (p - g ^ F ^ i

Eliminating XiF m _i from (28) and (29), we have

(31) Xx((p - q)Fm-l) = {(λ - \)p +(μ- l)q}(p - q)Fm-ι

Weh&veX1((p-q)Fm^1) = {{λ-l)p+(μ-l)q}(p-q)Fm-1 mod/. Ifz > 1,

we have (p—q)Fπι-ι = 0 mod p1 by Lemma 3.7 because (μ— l) + ra — 3/ + 3 =

3i — 3/ + 2 7̂  0 for every integer I such that 1 < / < i. We also have

XI((P ~ q)Fm-i) = {(λ - l)p + (μ - l)q}(p ~ q)Fm_1 mod ^ ' . If j > 1, we

have (p — q)Fπι-ι = 0 mod g 7 by Lemma 3.8 because (λ — 1) + m — 31 + 3 =

3j — 3/ + 2 / 0 for every integer I such that 1 < / < j. Moreover we

have Xλ({p - g)Fm_i) = {(λ - l)p + (μ - l) g}(p - q)Frn_ι mod (p - q)k.

If fc > 1, we have (p — q)Frn-\ = 0 mod (p — g)fc by Lemma 3.6 because

(λ — 1) + (μ — 1) — m + 3/ — 3 = —3fc + 3/ — 5 φ 0 for every integer / such

that 1 < I < fc. We have (p - g)Fm_i = 0 mod pιqj(p - q)k by (6). Then

there exists an element c £ K such that

(32) (p
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If we substitute (31) into (30) and notice the relation (10)m, we obtain a

relation

{g - 2(i - j)t}(p -q)- (c+2kt)(p + q) = 0.

Hence we have

(33) g = 2(i-j)t,

(34) c = -2kt.

From (31) and (33), we find

(35) Fm-1 = -2ktpiqi(p-q)k-1.

Step 5. The polynomial .F m _ 2 satisfies the equation (10)m_2:

(10)m_2 XiFm-2 = (λp + μq)Fm-2 + gFm-ι - Xo^m-i - X-iFm.

If we substitute (27), (32), (34) into (10)m_2, we get

(36) XiFm-2 = (λp + μq)Fm_2

+ 2i(v3-v1)pi-1qj(p-q)k

+ 2j(v2-vι)piqj-1(p-q)k

+ 2k(l + v3- v2)piqj(p - qf~l.

If m = 1, we have three cases: (i) i = 1 and j = k = 0; (ii) j = 1 and

i = k = 0; (iii) fc = 1 and i = j = 0. If the first case holds, we have by (35)

•u3 — v\ = 0. Hence the relation (7) holds in this case. Similarly we have

the relation (7) in the other cases, too. Assume m > 2. We have

(37) X, (pq(p - q)2Fm_2) = - (p + q)pq(p - q)2Fm_2

+ pq{p-q)2XiFm-2-

Eliminating XχFm-2 from (35) and (36), we have

(38) Xι{pq{p - g) 2Fm_ 2) = {(λ - l)p + (μ - l)q}pq(p - 9 ) 2 F m _ 2

+ 4k(k - I)t2(p + q)pi+1qj+1{p - q)k

+ 2i(v3-v1)pW+\p-q)k+2

+ 2j(v2-v1)pi+1qi(p-q)k+2

+ 2fc(l + v3 - V2)pi+1qj+1(p - q)k+l.
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_2) = { (λ- l)p + .(μ- ΐ)q]pq{p-q)2Fπι^2 mod p\

If i > 1, we have pq(p—q)2Fm-2 = 0 mod pι by Lemma 3.7 because (μ— 1) +

(m + 2) - 3/ + 3 = 3z - 3Z + 4 7̂  0 for every integer / such that 1 < I < i. We

also have Xi(pq(p-q)2Fm-2) = {(λ-l)p+(μ-l)g}p<7(p-ςf) 2 F m _ 2 mod g 7.

If j > 1, we have ^>g(p — q)2Fm-2 = 0 mod g 7 by Lemma 3.8 because

( λ - l ) + (ra+2)-3Z+3 = 3J-3/+4 φ 0 for every integer / such that 1 < I < j .

Moreover we have Xχ(pq(p — q)2Fm_2) = {(λ - l)p + (μ — l)^}pςf(p -

g ) 2 F m _ 2 mod (p - g)fc. If fc > 1, we have pq(p - q)2Fm-2 = 0 mod (p - q)k

by Lemma 3.6 because ( λ - l) + ( μ - 1) - (ra + 2) + 3 / - 3 = -3A: + 3 / - 7 ^ 0

for every integer I such that 1 < I < k. We have pq(p — q)2Fπι-2 =

0 mod pιq^(p — q)k by (6). Then there exists a polynomial A £ R2 such

that

(39) pq(p - q)2Fm-2 = ApW(p - q)k.

If we substitute (38) into (37) and divide the resulting equation by pιqi(p —

q)k, then we obtain an equation for A:

(40) L(A) = 4fc(fc - l)£2(p + q)pq

+ 2ί(υ3 - vx)q{p - q)2

+ 2j(v2 -^i)p(p-g)2

+ 2fc(l + υ3 - υ2)pq(p - q),

where we put L(A) = X\A + (p + q)A. Three vectors pg, p(p — g), q(p — q)

form a basis of the if-linear space R2, and four vectors (p + q)pq, p{p — q)2,

q(p — q)21 PQ(P — q) form a basis of the iί-linear space Λ3. Hence, if we

consider the formulae

(41)

(42) L(p(p - q)) = pq(p - q) - p(p - g)2,

(43) L(q{p - q)) = p^(p - g ) + ςr(p - q)2",

then we see that L defines an injective if-linear mapping of i?2 into R3.

Since A G i?2, we can set

(44) A = ξpq + τ?p(p -q)+ ζq(p - ς)

with £, 77, C G if. If we substitute (43) into (39), then we have

(45) ξ = 2k{k - l ) t 2 ,
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(46) η = -2j(υ2-vι),

(47) C = 2i(i*-vi),

(48) η + ζ = 2k(l + v3-v2).

From (45), (46), (47), we find the expected relation (7). Hence, Proposi-

tion 3.5 is proved.

Moreover, let us determine the polynomial Fm^2, which we will use

in the next subsection. Substituting (44), (45), (46) into (43), we get the

explicit form of A:

(49) A = 2k(k - l)t2pq - 2j(v2 - vλ)p{p - q) + 2i(v3 - vx)q{p - q).

If i = 0, p divides A. If j = 0, q divides A. If k = 1, p — q divides A. If

k = 0, (p — q)2 divides A because of the relation (7). If we substitute (48)

into (38) and divide both sides by pq(p — g)2, we get

(50) F T O _ 2 = 2k(k - l)ί

COROLLARY 3.9. The vector v in Proposition 3.5 does not belong to

the set Γ-W.

Proof. It is sufficient to show that, for arbitrary non-negative integers

i, j , k such that i + j + fc>l,a complex line in V

(51) i{yι - υs) + j(^2 - vi) + k(l + v3 - v2) = 0

does not intersect Γ — W. Assume the contrary. There exist non-negative

integers z, j , k with i + j + k > 1 and a vector v = (^1,^2,^3) EΓ — W such

that the relation (50) holds. From (50) we have

(52) m(Vl - v3) + j$t(v2 - vi) + fc»(l + ̂ 3 - t>2) = 0

and

(53) iζS(υι - υ3) + j%(v2 - vx) + kζs(v3 - υ2) = 0.

The rest of the proof is divided into three cases:

(i) If the three real parts 5R(̂ i — ̂ 3), $t(υ2 — vi), and 5R(1 + ̂ 3 — ̂ 2) are

not equal to zero, then they are positive because v G Γ. Hence we have
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i = j — k = 0 by (51). This is a contradiction.

(ii) Assume that one of the real parts is equal to zero and the others are

not equal to zero. We assume, for example, $t(vι — vs) = 0 and R{v2 —

vι)$t(l + V3 — V2) ̂  0 because we can similarly treat the other cases. The

two non-zero real parts are positive because v G Γ. We have j = k = 0 by

(51). Since v ^ W, the imaginary part ζs(vι —V3) is positive. Therefore we

have i = 0 by (52). This is a contradiction.

(iii) Assume that two of the real parts are equal to zero and the other is not

equal to zero. Then we can deduce a contradiction by the same argument

as above. We omit the detail.

3.3. Classical solutions

In the following two lemmas we determine all the non-trivial X(v)-

invariant principal ideals of K\p,q] for v G Γ Π W. First we prove the

LEMMA 3.10. (i) Let Vi be a vector in Γ Π {v G V \ v\ = ^3} and

not in D. For every positive integer i, a principal ideal (pι) is X(vχ)-

invariant. Conversely, if I is an X(vι)-invariant principal ideal properly

between the zero-ideal and K\p, q], then there exists a positive integer i such

that I = (p{).

(ii) Let V2 be a vector in Γ Π {v G V \ V\ = V2} and not in D. For every

positive integer j , a principal ideal (g 7) is X(v2)-invariant. Conversely, if

I is an X(y2)-invariant principal ideal properly between the zero-ideal and

K[p,q], then there exists a positive integer j such that I = (g 7 ) .

(iii) Let V3 be a vector in Γ Π {v G V \ V2 = V3 + 1} and not in D.

For every positive integer k, a principal ideal ((p — q — 2t) ) is X(ys)-

invariant. Conversely, if I is an X(v^)-invariant principal ideal properly

between the zero-ideal and K\p, q], then there exists a positive integer k such

that I = ((p-q-2t)k).

Proof. Since we can similarly prove the remaing assertions, we prove

only the assertion (i). The first half is obvious. For the second half, the

notation being as in the proof of Proposition 3.5, it is sufficient to show that

the X(vχ)-invariant polynomial F is of the form F — p% for some positive

integer i. We put v\ = (^1,^25^3)- Since v\ = U3, we have

j(v2 - vι) + fc(l + V3 - V2) = 0

by (7). Then we have

υ3 - v2) = 0
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and

jζs(v2 - vι) + k$s(v3 - υ2) = 0.

Since vi is in Γ Π {v (Ξ V | v\ = vs} and not in D, we have j = k = 0 by

the same argument as in the proof of Corollary 3.9. We have i — m > 1,

λ = - m , μ = 2m, Fm = p m , F m _ x = F m _ 2 - 0 by (24), (25), (26), (27),

(34), (49). Then the assertion (i) follows immediately from (10)^ and the

following

SUBLEMMA. Let d be an integer such that 0 < d < m and let A be a

polynomial in i?^. If A satisfies an equation

= (—mp + 2mq)A,

then A — 0.

In fact, if 2ra + d φ 0 mod 3, then we have 2m + d — 3Z + 3 φ 0 for every

integer / > 1. Hence, by Lemma 3.7, we have A = 0. If 2m + d = 0 mod 3,

then k = (2m + d)/3 is a positive integer and we have 2m + d — 3Z + 3 ^ 0

for every integer / such that 1 < I < k. It follows from Lemma 3.7 that

A = 0 mod pk. Since k > d, we have 4̂ = 0.

Now we prove the

LEMMA 3.11. (i) For arbitrary non-negative integers i,j such that i +

j ^ 1, a principal ideal (pιqi) is X(0)-invariant. Conversely, if I is an

X(0) -invariant principal ideal properly between the zero-ideal and K\p,q],

then there exist non-negative integers i,j such that i+j > 1 and I = {p%q^).

(ii) For arbitrary non-negative integers i, k such that i + k > 1, a principal

ideal (pι(p—q—2t)) is X(—1/3, 2/3, —1/3)-invariant. Conversely, if I is an

X(—1/3, 2/3, —1/3-invariant principal ideal properly between the zero-ideal

and K\p,q]} then there exist non-negative integers i,k such that i + k > 1

and I = (p\p-q-2t)k).

(iii) For arbitrary non-negative integers j , k such that j + k > 1, a principal

ideal (q^(p — q — 2t)k) is X(l/3,1/3, —2/3)-invariant. Conversely, if I is an

X(l/3,1/3, —2/3)-invariant principal ideal properly between the zero-ideal

and K\p,q], then there exist non-negative integers j , k such that j' + k > 1

and I = (qi(p-q-2t)k).

Proof. Since we can similarly prove the remaining assertions, we prove

only the assertion (i). The first half is obvious. For the second half, the
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notation being as in the proof of Proposition 3.5, it is sufficient to prove

that the X(0)-invariant polynomial F is of the form F = pιqi for some

non-negative integers i,j such that i + j > 1. Since v = 0, we have k = 0

by (7). We have i + j = m > 1, λ = 2j — i, μ = 2% — j , Fm = p%q\

F m _ i = Fm-2 = 0 by (24), (25), (26), (27), (34), (49). Then the assertion

(i) follows immediately from (10)^ and the following

SUBLEMMA. Let d be an integer such that 0 < d < i + j and let A be

a polynomial in R^ If A satisfies an equation

then A = 0.

In fact, if 2% - j + d φ 0 mod 3, then we have 2z - j + d - 3/ + 3 φ 0

for every integer I > 1. Therefore, by Lemma 3.7 we have A = 0. If

2j — i + d φ 0 mod 3, then we have 2j — i + d — 31 + 3 φ 0 for every integer

I > 1. Therefore, by Lemma 3.8, we have A = 0. Assume 2i—j + d = 0 and

2j - i + d ΞΞ 0 mod 3. If we set 2χ = (2i - j + d)/3 and j i = (2j - i + d)/3,

then we see that ii and j i are non-negative integers and that i\ + jΊ > d. If

ii > 1, we have A Ξ O mod p11 by Lemma 3.7 because 2% — j + d — 31 + 3 φ 0

for every integer / such that 1 < / < i\. If j i > 1, we have A = 0 mod g 71

by Lemma 3.8 because 2j — i + d — 31 + 3 φ 0 for every integer / such that

1 < Z < j i . Therefore, we have A = 0 mod pnq^1, and A = 0.

3.4. Proof of Theorem 3.3

The derivation X(v) for every v G Γ — VF satisfies the condition (J)

by Corollary 3.9. Hence we see by Theorem 1.1 that every transcendental

solution (p, q) of SW(V) f° r all v E Γ — W is non-classical.

On the other hand, it follows that all the transcendental classical solu-

tions of SΊv(v) ΪOT v GΓ ΠW are determined by the principal prime ideals

(p), (<?), {p — q — 2t), and that the other transcendental solutions of SΊv(v)

for v G ΓίΊ W are not classical. Thus we complete the proof of Theorem 3.3.

3.5. The Newton polygon of the invariant polynomial F

By definition, the Newton polygon of the derivation X{v) is represented

by the following picture:
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- 1
-• a

o

- 1

The grading introduced in the proof of Proposition 3.5 comes from the edge
joining the vertices (0,1) and (1,0).

On the other hand, by the same argument as in Subsection 2.5, we find
the following figure of the the Newton polygon of the invariant polynomial
F:

O D

Here an integral point (u, v) in R2 represents a monomial r)puqv (7 G
K). In the figure the Cartesian coordinates of the vertices O, A, B, C, D are
(0,0), (0,j + fc-i), (i,j + fc), (i + k,j), (i + fc-j,0). The edge BC represents
the polynomial Fm — pιqi(jp — q)k, the edge AB a polynomial (—l)k(pq +
2υι-2vsYqj+k~\ the edge CD a polynomial {pq + 2vλ -2v2)jpi+k~j. Notice
that the Newton polygon of F can be degenerate similarly to the case in
the second Painleve equation (see Lemmas 3.10 and 3.11).
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