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A Brunn-Minkowski Type Theorem
on the Minkowski Spacetime

Hyoungsick Bahn and Paul Ehrlich

Abstract. In this article, we derive a Brunn-Minkowski type theorem for sets bearing some relation to the
causal structure on the Minkowski spacetime I"*!. We also present an isoperimetric inequality in the Min-
kowski spacetime I"*! as a consequence of this Brunn-Minkowski type theorem.

1 Introduction

The Brunn-Minkowski theorem states that, for non-empty compact sets A, B in the Eu-
clidean space ",

(1.1) Vi(A+B) > Vi(A)+ Vi (B)

and equality holds for A, B C E" with V(A), V(B) # 0 if and only if A and B are homo-
thetic convex bodies (i.e., convex and compact sets), where A + B is the Minkowski sum
or vector sum of A and Bgivenby A+ B = {a+ Db : a € A,b € B}; and V(D) is the
n-dimensional volume of D C [E" (See [BF], [BZ], [F], [W]). This is the core result of the
Brunn-Minkowski theory in the theory of convex bodies and many prototypes of geomet-
ric inequalities originate from this, for example, the classical isoperimetric inequality and
the Minkowski inequality of mixed volumes.

Our aim is to derive a Brunn-Minkowski type inequality in the Minkowski spacetime
"1, Even though the Minkowski spacetime I"*! is a vector space as is the Euclidean
space, the nature of 1."*! is quite different from that of the Euclidean space; especially,
the causality conditions of General Relativity are important in the differential geometry of
the Minkowski spacetime. Thus, it is natural to try to find a Brunn-Minkowski type in-
equality in the Minkowski spacetime for sets bearing some relation to the causal structure.
Our Brunn-Minkowski type theorem is not strongly related to convexity. In particular, the
optimal situation does not occur for the convex case, ¢f. Remark 6.2. Let S be a compact,
simply connected, achronal, piecewise smooth spacelike hypersurface of "*! contained in
the chronological future I'*(O) of the origin O of I.**!,

The (upper) hyperbolic space H(r) of radius r > 0 in IL"*! is

H(r) = {x = (x0,%1,...,%,) € L™ :d(0,x) = r},
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where d is the Lorentzian distance on I"*!. Now H(r) is a smooth spacelike hypersurface of
IL"*! with constant curvature —1/#2. Let u(S) be the subset of H(1) defined by

1(S) = {i cH(1):xe€ s}.
[l x|

Also let t* > 0 be defined as t* = d(O,S) = SUP, s d(O, q). The infinite cone Qs of S is
defined by
Qs ={Ay €™y € u(S),A > 0}.

By the cone K = C(S) of S (with respect to O) we mean the compact set enclosed by S and
Qs in "L, Explicitly,

K=Cl)={N\:q€S0< A< 1}
The (past) parallel S; of S with distance t is then given by
Ss={pe€C(S):dp,S) =t}

For the cone K = C(S) of S, welet K, = C(S;) and B () = C(t,u(S)), where tu(S) = {tq:
g € u(S)} C Hi(t). Clearly, Sy = Sand Ky = K. Let B, (t) = B, (t) N C(S) for 0 <t < t*
and p € S, where B, (1) = {q € J~(p) : d(q, p) > t}, the past outer ball of radius t > 0
centered at p (cf. [BEE, p. 145]). Then from the definitions of S; and K;, we can see that

K, =C(S) ={x€C(S):dx9 >t} =] B, ®.
peS
Throughout this paper, we will employ the following:
Convention 1.1 A hypersurface in 1! will always be a compact, simply connected,
achronal, piecewise smooth spacelike hypersurface of I."*! with piecewise smooth bound-

ary contained in the chronological future I'*(O) of the origin O of I"*! unless explicitly
mentioned.

We can now state our main result.

Brunn-Minkowski Type Theorem Let S be a hypersurface in the Minkowski spacetime 1.1
witht* = d(0,S) > 0and let K = C(S) be the cone of S. Let V (B) be the (n+1)-dimensional
Lorentzian volume of B C L1, Then, for0 <t <t%

(1.2) Vit (K;) > Vit (K) — Vit (Be(r)).

Moreover, equality holds for some t (0 < t < t*) ifand only if S C H(t*).

As an application of this result, we will derive an isoperimetric inequality for cones in
the Minkowski spacetime:

Isoperimetric Inequality Let S be a hypersurface in the Minkowski spacetime 1! with
t* = d(O,S) and let K = C(S) be the cone of S. Let A(S) be the n-dimensional Lorentzian
volume of S and w = V(]BﬂK(l)). Then,

A"™HS) < (n+ )™ wV(K)

with equality only when S C HI(t*).
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This last result is a Lorentzian version of the isoperimetric inequality for convex cones
of P. L. Lions and E Pacella [LP].

In Section 2, we recall some aspects of the Minkowski spacetime I."*! needed in this pa-
per. In Section 3, we present the k-dimensional Lorentzian volume systematically from the
vector space structure of L"*! and compare the k-dimensional Lorentzian volume with the
k-dimensional Euclidean volume. In Section 4, we introduce an elementary cone of a PL-
hypersurface in I."*! and derive a Brunn-Minkowski type inequality for a PL-hypersurface
by induction (Proposition 4.2). In Section 5, we present an approximation of a hypersur-
face by elementary cones (Proposition 5.2). In Section 6, we prove a Brunn-Minkowski type
theorem for a hypersurface (Theorem 6.1). Finally, in Section 7, as an application of our
Brunn-Minkowski type theorem, we prove an isoperimetric inequality for a hypersurface
in " (Theorem 7.1).

2 Preliminaries

By the Minkowski (1 + 1)-spacetime IL"*! (n > 1) we mean R"*! with the scalar product g
of index 1;

gl y) =x-y = —xoyo + in)’i

i=1

forx = (X0, %1, -, %) ¥ = (Yo, Y1, - -» ¥n) € R™1. We shall consider x, y, . .. not only as
points but also vectors. The tangent vectors v € TIL"*! are classified by the causal character;
timelike if g(v,v) < 0, spacelike if g(v,v) > 0 or v = 0 and null if g(v,v) = 0 and v # 0.
A smooth submanifold M of I"*! is said to be spacelike provided all tangent vectors to M
are spacelike. We assume that IL"*! is time-oriented by ey = (1,0, ..., 0); thus, we say that
a nonspacelike tangent vector v to IL"*! is future-directed if g(ey,v) < 0. The norm of a
vector v is defined by ||v|]| = 1/|g(v,v)|. A curve v: [0,¢c] — 1" is said to be timelike
(spacelike, null, nonspacelike, respectively) if '(¢) for all 0 < t < c is timelike (spacelike,
null, nonspacelike, respectively). A nonspacelike curve 7 is said to be future-directed if v'(t)
forall 0 <t < cis future-directed. The arc length of «y is given by

L(y) = / Iy (6)] .
0

For two points p, q € L""!, p < g means that there is a smooth future-directed timelike

curve from p to g, and p < g means that either p = q or there is a smooth future-directed
nonspacelike curve from p to q. The chronological future (respectively, past) of p is the
set I'(p) = {q € "' : p < q} (respectively, I (p) = {q € "' : g < p}). The
causal future (respectively, past) of p is the set J*(p) = {q € "' : p < g} (respectively,
J(p) = {q € 1" : g < p}). Forapoint p € L™, I(p) = I'(p) UI (p) and
J(p) = JT(p) U J=(p), and foraset A C "1, I(A) = UPGAI(p) and J(A) = UpEA J(p).
A set B C 1" is said to be achronal if the relation p < q never holds for p,q € B. Given
p.q € " with p < g, let Q, , denote the space of all future-directed piecewise smooth
nonspacelike curves from p to q. The Lorentzian distance d: L""! x "1 — R U {oo0} is
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defined as follows; for any p € M,

0 forq ¢ I+(P)7
d(p,q) =
(P.a) {SqueQM L(y) forqe J*(p).

For two sets A and B in IL"*1, the Lorentzian distance d(A, B) from A to B is defined by

(2.1) d(A,B) := sup d(p,q).
pPEAGEB

Sometimes, we will use the notations d(x, B) and d(A, y) instead of d({x}, B) and d(4, {y}).

All geodesics in I"*! are of the form a(s) = x + sy for x, y € 1."*! and, if « is a future-
directed timelike geodesic, « realizes the distance from «(0) = x to a(s) = x + sy. Es-
pecially, let a: [0,1] — L™ be the curve defined by a(s) = sx for x € I"(O). Then
d(0,x) = L(a) = ||x||. The Lorentzian distance d is continuous on L"*! x L"*! and
the reverse triangle inequality holds for the Lorentzian distance d (¢f. [BEE, p. 140]): If
p <r <g,then

(2.2) d(p,q) > d(p,r) +d(r,q).

In the remaining part of this section, we present some properties of the cone and parallel
of a hypersurface S needed later.

Lemma 2.1 Let K = C(S) be the cone of a hypersurface S in "' with d(O, S) = t*. Then
K C Bg(t*).

Proof Suppose that x € K C Qs. Since d(O, S) = t*, ||x|| < #*. By definition, Bx(t*) =
{y € Qs : ||y|| < t*}. Thus, we have K C Bg(t*). [ |

Lemma 2.2 Let K = C(S) be the cone of a hypersurface S in "' with d(O,S) = t*. If
V(K) = V(Bk(t*)), then K = B (t*), so S C H(t*).

Proof By Lemma 2.1, K C Bg(t*). Since both K and B (+*) are compact sets and V (K) =
V (Bk(t*)), K = By (t*). [ |

Lemma 2.3  Suppose that S is a hypersurface in "' with d(O, S) = t*. Let x € S such that
||x|| = t* and let £: [0,1*] — [0, 1] be the function given by

t*

£t) =

7
Then £(t)x € S; for 0 <t < t*.

Proof Since d(£(t)x,x) = t, d(£(t)x,S) > t. Suppose that d(&(t)x,S) > t. Then since d
is continuous and § is compact, there exists y € S so that d(£(t)x, y) = d(£(t)x,S) > 0.
By the reverse triangle inequality (2.2) for the Lorentzian distance d,

d(O,y) > d(0,&(t)x) +d(E(t)x, y) > t*.
This contradicts that d(O, S) = t*. Therefore, we have d(f(t)x, S) =tand{(t)x € S;. A
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Lemma 2.4 Let S be a hypersurface in LY such that S = S'US?, where S’ are hypersurfaces
in " and S may have common boundary points but their interiors do not intersect. Let
K =C(S)andK' = C(S") fori = 1,2. Then

K! UK} C K.

Proof Suppose that x € K} UK?. Then x belongs to one of K} or K7, say, K. So, d(x, S') >
t. Since S = S' U &%,

t <d(x,S") = sup d(x, y) < supd(x,z) = d(x,S).
yeSst z€S

Thus, x € K;. |

Suppose that S; is the past parallel of a hypersurface S of I"*! with t* = d(O,S) and
0 < t < t*. Then by the reverse triangle inequality (2.2), S; is achronal. Let S;(t) =
S, (1)) NC(S) for0 <t < t*and p € S, where S, (t) = {q € I (p) : d(q, p) = t}, the past
sphere of radius t > 0 centered at p. Then S; can be regarded as the envelope of the family
of S; (t) for p € S. Using the continuity of f(m) = d(m, S), the basic geometric properties
of the family S; are readily established:

Proposition 2.5 Let S be a hypersurface in " witht* = d(O, S). Then, for0 < t < t*, S,
is also a hypersurface in "' with d(O, S,) = t* — t and u(S;) = u(S). [ |

3 The Minkowski Spacetime as a Vector Space

In this section, we will define the Lorentzian volume in I."*! systematically using elementary
facts from linear algebra.

Let eg, e, .- .,e, be the standard orthonormal basis of I."*! as a vector space; ey =
(1,0,...,0), e, = (0,1,0,...,0),...,e, = (0,...,0,1) € L™, Let Il(ay,...,a,) be
the space spanned by the m linearly independent vectors ay, . . ., a,, € ", 1 <m < n+1.
We may consider II(ay, . . ., a,,) as an m-dimensional smooth submanifold of I"*! with the
embedding X: R™ — 1L"*! defined by

XY, ..., em = Zfiai e,
i=1
Then the induced metric on I(ay, . . ., a,,) from L"*! is given by
n . .
g= Y gjdede,
ij=1

where
gij = Xgi 'ng =da;- aj.
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The volume element of I1(ay, . .., a,,) is

dv = \/|gld¢" - - - de™,

where [g| denotes the absolute value of the determinant of the matrix (g;;). From this
observation, we define the Lorentzian volume of the parallelotope:

Definition 3.1  The m-dimensional Lorentzian volume V,,(P) of the m-dimensional
parallelotope P = P(ay, . .., a,,) whose edges are ay, . . ., a,, in IL"*! is given by

Vin(P) = | det(a; 'aj)|%.

By a slight modification of a vector product of the (n — 1) vectors in the Euclidean
n-space (cf. [Bl], [Hs]), we define a vector product of the n vectors in the Minkowski
(n + 1)-spacetime as follows:

Definition 3.2 Suppose that ay, . . ., a, are linearly independent vectors in IL"*!. Then the
vector product a; X - -- X a, of the n vectors ay, . . ., a, is defined by
eo el PR en
_a? a% PR a’i‘
(3.1) a; X --- X a, = det . . O,
—a al ar
wherea; = (a),a},...,a") fori=1,...,n.
We denote by R(uy, ..., u,) the matrix with row vectors uy, ..., u,, and we let i =
(= ut, ... u") foru = (u° ul,...,u"). For convenience, we denote (e, ..., e,) by e as

for a row vector. Then
a; X -+ X a, = detR(e,dy,...,d,).
Lemma3.3 Leta=a, X ---Xa,andb € "' Then

detR(b,dy,...,d,) =b-a.

Proof Let A = R(e,ay, ..., a,) = (a;j)o<i,j<n- Then
a = Aooeo +A()1€1 + - +A0nen,

where A;; is the cofactor of a;;. Let B = R(Z_J, ayy...,ay) = (bij)o<i,j<n» Where b =
°, 0, ...,b"). Then

detB = —bOBQQ + blB()l + -0+ anOna
where B;; is the cofactor of b;;. Since Ay; = By;j for j = 0,1,...,n, we have
detB = —bOA()() + blA()l +---+b"'Ay, =b-a. |

By Lemma 3.3, we have
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Corollary 3.4  a; X --- X a, is normal to the n-dimensional space spanned by the n linearly

independent vectors ay, . . . , a, in L',

Let D be an m x (1 + 1) matrix over R, m,n > 1, and let u; = (u3, u}, ..., u?) be the
j-th row vector of D. We set D - D' = DeDf, where ¢ is the diagonal (n + 1)-matrix with
diagonal entries —1, 1, ..., 1. Explicitly,

n
D-D' = (—u?u? + Zufulj) = (u; - uj).
k=1
Lemma 3.5 For any m X (n+ 1) matrix D over R, m,n > 1,

(3.2) detD-D' = — (detB)*+ ) (detC)?,
B C

where the first sum is taken over all m x m submatrices B of D containing the first column of D
and the second sum is taken over all m x m submatrices C of D not containing the first column
of D.

Proof See the Appendix. ]

Lemma 3.6 The norm of a; X --- X ay is equal to the n-dimensional Lorentzian volume of
the n-dimensional parallelotope whose edges are the vectors ay, . . ., a, € ",

Proof Let P = P(ay,...,a,) be the n-dimensional parallelotope whose edges are the vec-
tors aj, . .., a,. Then by Definition 3.1

V,(P) = | det(a; - aj)|%.

Let D = R(ay, . ..,a,). Then, by Lemma 3.5,

(3.3) det(a; - aj) = (detBy)* — ) _(det B;)?,
j=1

where By is the nn X n matrix obtained from D by deleting the (k + 1)-th column. Note that
the right hand side of (3.3) is

—(ay X -+ Xa,-a; X---Xa).

Thus
Vu(P) = |la; X -+ X ay]|. [ |

Remark 3.7 (Lorentzian Volume vs. Euclidean Volume) We denote by VE the m-dimen-
sional Euclidean volume, 1 < m < n+ 1.
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1. LetP = P(uy, ..., uy+1) bean (n + 1)-dimensional parallelotope whose edges are the
Vectors uy, . . ., tys1 in R™, where uj = (w9, ul, ..., u?t). Then

VEL(P) = | det((u;, u;))|? = | detR(uy, .. ., thys1)],

where (uj, uj) = > 1, ui‘u}]‘ is the Euclidean metric. On the other hand, the (n + 1)-
dimensional Lorentzian volume of P is

1 _ _
Vi1 (P) = | det(u; - uj)|> = |detR(dy, . . . , flns1)],
where u; - uj = —uu§ + 3} ufu} is the Minkowski metric. Notice that
detR(ﬁl, ey l/_ln.'.l) = — detR(ul, ey Lln+1).
Thus V,.+1(P) and V£, (P) coincide for an (n + 1)-dimensional parallelotope P.

2. LetP = P(uy, ..., u,) be an m-dimensional parallelotope in R"*!, 1 < m < n. Let
D = R(uy,...,uy). Then

VE(P) = VdetDD' = [ (detA)?,
A

where the sum is taken over all m x m submatrices A of D. On the other hand, by Defini-
tion 3.1 and Lemma 3.5, we have

Vin(P) = /| detD - D' = \/}— > (detB)? +) "(detC)?
B C

)

where the first sum is taken over all m x m submatrices B of D containing the first column
of D and the second sum is taken over all m x m submatrices C of D not containing the
first column of D. Thus, the Lorentzian volume of the m-dimensional parallelotope P is
quite different from the Euclidean volume of P for 1 < m < n. For example, let P =
P((1,1,1),(0,1,1)) in R’ then VE(P) = /5 # V,(P) = v/2. Furthermore, one can
find an example having a positive Euclidean volume, but a zero Lorentzian volume, say,
P((O7 1,0), (1,0, 1)). Comparing these two formulas, we have

Vu(P) < VE(P)

for an m-dimensional parallelotope in R, 1 < m < n.

Let IT = II(ay, ..., a,) be the n-dimensional space spanned by the # linearly indepen-
dent spacelike vectors ay, . . ., a, € 1"}, which will be called a spacelike hyperplane in IL"*1,
Then by Corollary 3.4 the vector a; x - -- X a, is normal to II, so it is timelike. Let o be a
permutation on the n numbers 1, . . ., n; then by definition,

Ag(1) X =+ X Aoy = (Sgno)a; X -+ X ay,
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where sgn o is +1 or —1 according as the permutation ¢ is even or odd. So, we may assume
thata; X - - - x g, is future-directed by reordering a;’s if necessary. Let P = P(cn, ay, ..., a,)
be an (n+1)-dimensional parallelotope whose edges are cn, ay, . . . , a,,, where ¢ is a positive

constant and
ap X -+ Xdy

n Ha1><~-~><a,,||'

Then by Lemma 3.3

(3.4) Vur1(P) = cllay X -+ X ay|.

4 Elementary Cones

In this section, we introduce elementary cones in IL"*! and prove a Brunn-Minkowski type
inequality (1.2) for elementary cones by induction.

We first consider the simplest case of our hypersurfaces in 1”1, Let P C I*(O) be an
n-dimensional convex polytope in the spacelike hyperplane IT C "*!, which will be called
a spacelike convex polytope in IL"*!. Then P is clearly a hypersurface in I”*! in the sense of
Convention 1.1. (For convenience, we denote by II(P) the hyperplane II containing P.)
We define a simple cone K to be the cone K = C(P) for a spacelike convex polytope P.
Note that a simple cone K = C(P) is convex. For convenience, we will denote by V(K)
the (n + 1)-dimensional Lorentzian volume for a cone K and by A(S) the n-dimensional
Lorentzian volume for a hypersurface S in IL"*!. By the height of P (or K = C(P)) we mean
the Lorentzian distance d (O, H(P)) from O to II(P). Note that the (n + 1)-dimensional
Lorentzian and Euclidean volumes of an (# + 1)-dimensional parallelotope are equivalent
(Remark 3.7). Thus, from (3.4), we have

(4.1) V(K)=V(C(P)) = n—JlrlhA(P),

where h is the height of K. Recall that B (t) = C (t,u(P)) for K = C(P).

Lemma 4.1 Let K = C(P) be a simple cone with d(O, P) = t* and K; = C(P;). Then
EMK C Ky, (1—&(1)K C Bkl(t)

foreacht € [0,t*].

Proof The second relation follows Lemma 2.1. The first relation is clear for t = 0, t*,

since £(0)K = 1K = K = Kp and £(t*)K = O = K;~. Since a spacelike convex polytope

P is compact and the Lorentzian distance d is continuous, there exists w* € P such that

d(O,w*) = ||w*|| = d(O, P). Then by Lemma 2.3, {(t)w* € P, N &(t)P fort € [0,t*]. For

z € Py, letn(z) = c € [0,1] if z € cP. To prove the first relation, it suffices to show that for

z€P,0 <t <t n€t)w*) = &(t) < n(z). Suppose that there exists z € P; such that

ni(z) < &(t) < 1. Lety: [0,1 —n,(2)] — L"*! be the curve given by

v(s) = z + sw*.
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Then # is a future-directed timelike geodesic. Clearly, v(0) = z € n(2)P C n(2)K and
(1 — nt(z))w* S (1 — nt(z))P C (1 — nt(z))K. From convexity, K = AK + (1 — MK for

0< A< 80,7(1 — n,(z)) =z+ (1 - nt(z))w* € K and 7([0, 1— nt(z)]) C K. Notice
that Qp + Qp = Qp. Thus, we have

dz,P) = d(z,(1 = m(@)) = L) = (1 =n@)r" > (1= W) =+.
This contradicts that z € P;. [ |
Let Q be a hypersurface of IL"*! such that

Q=| )P,

s

Il
—_

J

where each P/ is a spacelike convex polytope in L"*!, and P/ may have common boundary
points but their interiors do not intersect; such a Q will be called a PL-hypersurface in 1.**!,
By an elementary cone we mean a cone K = C(Q) for a PL-hypersurface Q. Note that

K=C(Q) = LmJ Kl = Lmj c(ph).
j=1 j=1

Let /1; be the height of P/. Then by (4.1) we have
1« :
= - AP
(4.2) V(K) =V (C(Q) — j§1 hj A(PY).

Proposition 4.2 Let Q be a PL-hypersurface in 1" with t* = d(O, Q) and let K = C(Q)
be the elementary cone of Q. Then

(4.3) VT (K;) > VT (K) — VT (B(t)).
for0 <t <t*

Proof Notice that (4.3) is clear for t = 0, t* from the definitions K;, Bx(¢) and Lemma 2.1.
We now prove (4.3) by induction on the number of constituent spacelike convex poly-
topes of a PL-hypersurface Q in IL"*!. Suppose that Q consists of only one spacelike con-
vex polytope, that is, K = C(Q) is a simple cone. Then K = C(Q) is a convex body,
so K = AK + (1 — MK for A € [0,1], and V(cK) = ¢""'V(K) for ¢ > 0. From the
original Brunn-Minkowski theorem (1.1) for convex bodies in the Euclidean space and Re-
mark 3.7(1),

Va1 (K) = Vit (E(1)K) + Vi ((1 - £<f>)f<)

and by Lemma 4.1, for each ¢ € [0, t*],

ENK C Ky, (1 —¢&@1)K C Bg(t).
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Thus, we have

Vit (K) < Vit (K;) + Vit (Bi(t)).

Suppose that (4.3) is true when the number of constituent spacelike polytopes of a PL-
hypersurface in "+ is < m— 1. Let K = C(Q) be an elementary cone of a PL-hypersurface
Q whose number of constituent spacelike polytopes is m. We can split Q = U;”: , P7 into

PL-hypersurfaces Q! and Q? so that the numbers of constituent spacelike convex polytopes
of each Q' and Q% are < m. Let K' = C(Q’) with d(O, Q') =t} for i = 1,2. By induction
hypothesis,

(4.4) Vi (K)) > Vit (K') = Vit (Bya (1)
for0 <t <tf and
(4.5) Vit (K2) > Vit (K2) — Vit (Bga(t))

for 0 < t < t}. By the definitions of K;, Bx(t) and Lemma 2.1, we see that V(K') <
V(]B§Kf(t)) and K! = & fort > t¥. So, the inequalities (4.4) and (4.5) hold for 0 < ¢ < ¢*,
Thus, for 0 < t < t*, we have

V(K) = V(KY) + V(K?)

n+l

< [VE (KD + Vit (B ()] + [V (K2) + Vit (B ()]

We recall an inequality of Minkowski (See [BB, Section 1.22]): If a;,b; > 0and 0 < p < 1,

then
(4.6) (>a) + (o) < [Y@+wr]’
i=1 i=1 i=1
with equality only when (ay, . ..,a,) = A(by, ..., b,) for some constant \. By the inequal-

ity of Minkowski (4.6), we have

Lontl

V(K) < [(V(K}) FVKD)™ + (V(lB%Kl(t)) + V(]B%Kz(t))) }
Since By (£) U Bg2(t) = By (t) and K} U K? C K, by Lemma 2.4,
V(K) < [Vﬁ(Kt) + Vi (lBﬁK(t))]”H.

Thus, the inequality (4.3) is proved. ]
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5 Approximation
Let A, B be compact sets in R” with the Euclidean distance dy: R"” x R" — R given by

do(x,y) =

zn:(xi -y,
i=1

where x = (x!,...,x"), y = (¥',...,»") € R". The Euclidean distance dy(x, A) between a
set A and a point x in R” is defined by

do(x,A) = I;lel};l do(x, y)

and the (Euclidean) diameter diam(A) of A C R” is defined by

diam(A) = max dy(x, y).
x,yEA

The Hausdorff distance d5 (A, B) of A and B in R" is defined by
di'(A,B) =inf{p: A C B*,B C A},

where A? = {x € R" : dy(x,A) < p}. If dif(A,A;) — 0, one says that the sequence of
compact sets A; converges to A in the Hausdorff distance. Note that di'(A, B) = 0 if and
onlyif A = B (¢f. [W, pp. 92-93]).

For sets A and B in the Minkowski spacetime L"*!, we let

(5.1) d;j(A,B) = sup d(x,y)+d(y,x),
xEA,yEB

where d denotes the Lorentzian distance in I.”*!. Then clearly d;(A, B) = d;(B,A) and
dj(A,B) > 0. Notice that d;(A, A) # 0 in general. Moreover, d;(A, B) does not give any
information about how close A is to B in general. For example, let A = {(0,x) € [2:0<
x < 1}and B, = {(0,2) € I2:y <z<y+1}fory €R, then d;(A,B,) = 0 for all
y € R. Inspired by this observation and restricting our attention to hypersurfaces A and
B in I"*! satisfying not only Convention 1.1, but also the further causality condition (5.2),
we have the following properties for d;, which are similar to those for d3:

Lemma 5.1 Suppose that A and B are hypersurfaces in "% such that
(5.2) AC J(B), BC]JA).
For a hypersurface D in " and t > 0, let
J(D,t) = {x € J(D) : d(x,D) + d(D, x) < t}.
Then, ifd;(A,B) < ¢ fore >0,
ACJB,e), BCJ(A¢)

and dj(A,B) = 0 if and only if A = B.
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Proof Suppose that dj(A,B) < € and x € A. Then d(x,y) + d(y,x) < eforall y € B.
Thus, d(x, B) + d(B, x) = SUP,cp d(x,y) +d(y,x) < e. Hence,x € J(B,e),s0 A C J(B,¢).
Similarly, we have B C J(A,¢).

Suppose that A = B. Thend(x, y) = Oforx, y € Asince Aisachronal. Thus, dj(A, B) =
0.

Suppose that d;(A, B) = 0. Then A C J(B,0). Note that J(B, 0) can be written as

18,0 = BU(J(B)\ (1B)UB)),
where, as usual, U stands for a disjoint union. Using this, we may write
J(B) = J(B,0) UBUI(B).

Let x € A such thatx € J(B) \ (I(B) U B). Then since A is simply connected and piece-
wise smooth spacelike, there exists y # x € A C J(B) such that y € I(B) U B. If
y € I(B), then dj(A,B) > 0. If y € B, then there must be z € A such that z € I(B)
since A is simply connected and piecewise smooth spacelike, and d;(A, B) > 0. Thus, A N

(](B) \ (I(B) U B)) = &, s0 A C B. Similarly, we have B C A. Therefore A = B. |

We now approximate a hypersurface S by a sequence of PL-hypersurfaces Q°. The
achronality of S implies that S may be considered as a graph of a function f: D C R* — R,
and also plays a critical role for the estimation of the distance between S and Q° in our
approximation.

Proposition 5.2 Let S be a hypersurface in IL"*'. Then there is a sequence of PL-hyper-
surfaces Q° in "' converging to S.

Proof Since S is a hypersurface in L"*! (See Convention 1.1), there are a simply con-
nected, compact set D € R" and a piecewise smooth function f: D — R so that S may
be parametrized as

S= {(f(x),x) el x=(x',...,x") € D}.
Let f = maXxyep f(x), i = minep f(x) and c = 3(f—i). Since D C R” is compact, given
e > 0, we can approximate D from inside by a polytope D° C R" with df/ (D, D?) < e.

Since f is continuous on D and D* C D is compact, f is uniformly continuous on D".
Thus, for each € > 0, there exists § = d(g) so that for x, y € D*, if dy(x, y) < 6, then

2
(5.3) @ = f)l < =

Consider a triangulation I'* = {af};: ; of D, where o5 are n-simplexes in R" such that
diamo(of) < 4. Let F(crf) be the convex hull of the (#n + 1)-points (f()’o% }’0), (f()’l% }’1),
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., ( fu), y,,) in IL"*, where y;’s are the vertices of 0;‘7 . Then F(o;‘j ) are spacelike convex
polytopes in L"*!, Set

UF(UE), §* ={(f(x),x) € Stx € D},

Then from construction, we see that Q° is a PL-hypgrsurface in " with u(Q°) = u(S%) C
1(S) and there exists a piecewise smooth function f: D* — R such that

Q@ ={(fx),x) e """ : x € D}.

Notice that for each x € D, there is a simplex %

;€ I'® such that x € 0;‘?, and since
diamo(af-) <4,

2
(5.4) |f(x) — flx)| < maxf(x) mmf(y < ?

Let J° = {(x,y) € D X D : dy(x,y) < |f(x) — f(»)|}. Then

(5.5) dj(Q°,8) = sup |f(x) — f(n)} — do(x, y)*.
(x,y)eJ

Note that for (x, y) € J¢,

1fx) = FOIP = do(x, )* < |f(x) = F@P +2[f(x) = fO]If(x) — f(»)]
+]f(x) = f))* — do(x, y)?
<|f(x) = fEP +2/f(x) = f)f(x) = f(»),

where the last inequality comes from the achronality of S. Thus,

d)(Q,8) < sup [f(x) = f@P +2|f(0) = FIfx) = f(y)

(x,y)ET*

< sup |f(x) — FO|(|fx) = fG]+2]f(x) — fF(»)])

(x,y)€J°

x,y€eD*
2
<& =2
c
Thus, we have
(5.6) d;(Q%, ) <e.

Upon letting € — 0, we have d;(Q°, $°) — 0 and §° — S. Note that S C R x D* C J(Q°)
and Q° C R x D* C J(5°). Thus, we have §° C J(Q°) and Q° C J(§°). By Lemma 5.1, we
have Q°* — Sase — 0. [ |

By Proposition 5.2 and the continuity of the Lorentzian distance, we have the following:
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Corollary 5.3 Let Q be a sequence of PL-hypersurfaces with K = C(Q°) in IL"*! converg-
ing to a hypersurface S in 1"*! with K = C(S). Then V(K®) — V(K), V(K?) — V(K;) and
V (Bg=(1)) — V (Bk(1)).

6 A Brunn-Minkowski Type Theorem

We now prove the main result.

Theorem 6.1 (Brunn-Minkowski Type Theorem) Let S be a hypersurface in the Minkow-
ski spacetime L' with t* = d(O, S) and let K = C(S) be the cone of S. Then, for0 <t < t*,

(6.1) Vit (K;) > Vit (K) — Vit (Be(1)).
Moreover, equality holds in (6.1) for somet (0 < t < t*) if and only if S C H(t*).

Proof The inequality (6.1) for a hypersurface S in I"*! follows from Propositions 4.2, 5.2
and Corollary 5.3. Suppose that S C H(¢*). Then S; = (+* — 1)u(S) and K, = C(S;) =
C((t* = )u(S)) = Bx(t* — 1) = (t* — )Bg(1) for 0 < t < ¢*. Thus we have

V(K) = (t" = )"V (Bx(1), V(Bk() =t""V(Bk(1))

for 0 <t < ¢*. Thus, equality holds in (6.1) for 0 < < t*.
Suppose that equality holds in (6.1) for t = ¢*. Then V(K) = V(Bk(t*)) since
V(K¢+) = 0. Then by Lemma 2.2, S C H(t*). So, we assume that

(6.2) Vi (K,) = Va1 (K) — Vit (Bi(t))
for some ty € (0,t*). Then, we have
(6.3) VT (Bi(t* — tg)) — VT (K,) = Vit (Be(t*)) — Vit (K).

Let us consider a decomposition § = S!' U S? with K! = C(S'), V(K') > 0 as in Lemma 2.4.
Employing the arguments as in the proof of Proposition 4.2, we have

V(K) = V(K") + V(K?)
< [V (KL + Vi (Br (1)) ]
(6.4) + VIR + VT (B (1))
< (VKL + VD)™ 4V (Be(to)] ™
< [V (K,) + Vit (B ()]

By the assumption (6.2) and the condition for equality of the first inequality in (6.4), we
have

(6.5) V(K =V (KL) + Vit (Bgi(to))
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and
(6.6) VT (B (t* — 1)) — Vit (KL ) = Vit (B (1)) — V1 (K)

for i = 1, 2. By the condition for equality of the last inequality in (6.4), we have V(KtlU )+
V(K}) = V(K;,) and so K} UK} = K;, by Lemma 2.4. By the condition for equality of the
second inequality in (6.4), we have

(6.7) V(K,) = AV(K,),  V(Bii(to) = AV (Bk(1))

where A; € (0, 1) such that A\; + A\, = 1. Finally, from (6.3), (6.6) and (6.7), we have
(6.8) VA (B (7)) — VAT(K) = AT (V* (B (t*)) — VF%(K)).

This means that for any two hypersurfaces $’,S”” C S in L"*! with K’ = C(S’) and
K" = C(8"), if V(]B%K/(t*)) = V(]B%Ku(t*)), then V(K') = V(K''). Suppose that S is
not contained in H(¢*). Consider the function f: S — R defined by f(x) = ||x||. Since f
is continuous and S is compact, there exist w,, w* € S so that f(w,) = £, = min,eg f(x),
fw*) = t* = max,cs f(x) and t,. < t*. Since f is continuous on S, there exist open
neighborhoods U of w* and V of w,, in S such that f(w*) — f(x) < %(t* —ty)forx € U
and f(y) — f(w.) < 3(t* — t,) for y € V. Then we can find hypersurfaces §’,S"" C S
in "' such that ' C U, §"" C V and V (B (t*)) = V(Bk/(t*)), where K’ = C(§'),
K'"" = C(§"). Letf = t, + %(t* — t4). Then Bg/(f) € K’ and K" C Bk (). So,
V(K') < V(K'). This is a contradiction. Thus, f is a constant function on S, that is,
f(x) =t* forall x € S. Hence, S C H(¢*). [ |

Remark 6.2 Let A be a compact set and BE(t) the Euclidean ball of radius t > 0 in R™*!.
Let A! be the parallel body of A with distance  given by

Al ={x+ty e R :x € A,y e BE(1)}.

Then the original Brunn-Minkowski theorem says that
(6.9) VET(A") > VT (A) + VET (BRD)),

where Vi denotes the (n + 1)-dimensional Euclidean volume. On the other hand, our
Brunn-Minkowski type theorem may be written as

(6.10) Vit (K) < Vi (K,) + Vit (Be(r).

In view of inequalities (6.9) and (6.10) and recalling the inclusion that K, C K but A C A’,
we may say that the direction of the inequality of our Brunn-Minkowski type theorem is
opposite to that of the original Brunn-Minkowski theorem. Non-trivial optimal cases of the
original Brunn-Minkowski theorem occur only for convex bodies. However, our Brunn-
Minkowski type theorem is not strongly related to convexity even though some properties
of convexity are used in the proof. For example, our optimal case occurs only when S C
H(t), but K = C(S) is not convex.
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7 An Isoperimetric Inequality
LetQ = U;": , P/ bea PL-hypersurface in L"*! with K = C(Q) and n; the unit past-directed
normal vector of the spacelike convex polytope P/. Set
[tnj,Pj] ={mj+x:x¢€ Pl o<s< t}.
Then by (3.4),
(7.1) V([tn;, P']) = tA(P/).

Let R be the set of points of K \ K; which are not contained in any [tn;, PJ], R, the set of
points of K \ K; which are contained in some [tn;, P'] N [tng, PK], j # k, and R; the set of
points of [tn;, P/] which are not included in K \ K;. Then, for a sufficiently small ¢ > 0,

(7.2) V(K) — V(K;) = tA(Q) + %,
where the remainder % is V(R;) — V(R;) — V(R3). For v, r > 0, let
B~ (v,r) ={x€ J (O): ||x|| <rex) <v},

where @(x) is the hyperbolic angle between ¢y and x (¢f. [BH] or [On, p. 144]). Let
B, (v,r) = p + B~ (v,r), which will be called the past spherical cone of radius r, center
p and angle v. Then every point of R, R, and R; is contained in the union of all past
spherical cones B, (v,t) of radius ¢, center p contained in the (n — 1)-dimensional face
of P/ and angle v of some large, but finite v. Thus, the remainder % is < ct?, where ¢ is
a constant that is independent of ¢. For a fixed K = C(Q), we may consider V(K;) as a
function of t. Then by (7.2) we have

(7.3) li

t—0

g VLYK g,

Ln+1

Let S be a hypersurface in L""" with K = C(S). Then we may consider a decomposition

S = Lmj sk,
k=1

where each S¥ is a smooth spacelike hypersurface in L"*! and S* may have common bound-
ary points but their interiors do not intersect. Let dA; be the volume element on S¥. Then
the n-dimensional volume of S* is defined by

A(SH = [ dAg
Sk

and the n-dimensional volume of S is given by

A(S) = ZA(S").
k=1
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Let Q° be a sequence of PL-hypersurfaces constructed as in the proof of Proposition 5.2.
Then A(Q®) — A(S) as e — 0. By Proposition 5.2 and Corollary 5.3, we have

(7.4) li

t—0

mw = —A(S).

Theorem 7.1 (Isoperimetric Inequality) Let S be a hypersurface in IL"*! with t* = d(O, S)
and let K = C(S) be the cone of S. Then,

(7.5) AMH(S) < (n+ 1) wV(K)
with equality only when S C H(t*), wherew =V (IB%K(I)).
Proof Let S be a hypersurface in "*! and K = C(S), the cone of S. Then by Theorem 6.1,
V(K) > [V (K) — (wt")ar ]!
= V(K) — (n+ Dwm V71 (K)t + o1).
So, we have

. V(K) - V(K)
Iim ——=

t—0 t

> —(n+ Dwm Vit (K).

By (7.4),
A(S) < (n+ Dwm Vi (K),

which is equivalent to (7.5).
Suppose that S C H(#*). Then we have

VK) =t*""w,  A(S) = (n+ Dwt*".
Thus,
An+l(s) = (n+ 1)n+1wn+1t*ﬂ(ﬂ+1) =(n+ 1)n+lw(wt*n+1)n
= (n+ )" wV"(K).

Suppose that equality holds in (7.5). Consider a decomposition § = S'U §? with K =
C(§8)and V(K') > 0 asin Lemma 2.4 and let w; = V(]BiK,-(l)) fori = 1, 2. Then we have

A(S) = A(S") + A(SY)
< (4 D[(@V'EKD) T + (waV"(KD) ]
< (n+ 1) (wV"(K)) ™,
in view of another inequality of Minkowski (See [BB, Section 1.21]): for a;, b; > 0,

(I1«)" + (I1#)" < [T +00]"
i=1 i=1 =1

https://doi.org/10.4153/CJM-1999-020-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1999-020-0

A Brunn-Minkowski Type Theorem 467

with equality only when (ay,...,a,) = A(by, ..., b,) for some constant A. Since equality
holds in (7.5), we have ‘
Ww; = )\,w, V(Kl) = )\,V(K)

for A\; € (0,1) such that A\; + A\, = 1. These imply (6.8). Therefore, we have S C Hi(¢t*).
|

Remark 7.2 This isoperimetric inequality in the Minkowski spacetime corresponds to the
isoperimetric inequality for convex cones of P. L. Lions and F. Pacella [LP] in the Euclidean
space. Notice that the isoperimetric inequality of P. L. Lions and E. Pacella does not hold
for nonconvex infinite cones (See Remark 1.3 in [LP]), and moreover its direction of in-
equality is opposite to that of our isoperimetric inequality in the Minkowski spacetime. The
isoperimetric inequality (7.5) for the 2-dimensional case has been already established [BH],
which corresponds to an isoperimetric inequality of C. Bandle for the Euclidean plane [Ba,
Theorem 1.1]. The result in [BH] has been extended to a general Lorentzian surface in [B].

Appendix
Here, we give a proof of Lemma 3.5. One can find a similar proof of the Euclidean case
in [Bl].

Lemma A.1 IfR isarow operation, then (3.2) in Lemma 3.5 holds for a given m X n matrix
D if and only if it holds for the matrix R(D) in the place of D.

Proof Let C be the column operation which does the same thing to columns that R does
to rows. (Here, we use the right-hand notation for C.) Then there is a constant k # 0 such
that
k* detD - D' = k* det(DeD') = det([R(DeD")]C)
= det(RD)e(D'C) = det(RD) - (D'C)
= det(RD) - (RD)".
Let B’ be an m X m submatrix of RD containing the first column of RD and let C’ be m x m

submatrix of RD not containing the first column of RD. Assume that (3.2) holds for RD
in the place of D. Then we have

kK? detD - D' = det(RD) - (RD)’

— (detB')?* + > (detC’)?
B’ c’
=— (kdetB)’ + Y (kdetC)
B C

gy (— 3 (det B)? + Z(detC)z).
B C
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Since k # 0, (3.2) holds for D. Similarly, if (3.2) holds for D, then it holds for RD. [ |

For convenience, we will denote the k x k submatrices of a square matrix A containing
the first column of A by B(k,A) and the k x k submatrices of A not containing the first
column of A by C(k, A). Then, Lemma 3.5 may be written as follows:

Lemma A.2 For any m x (n+ 1) matrix D over R, m,n > 1,
(A1) detD-D' = — " (detB(m, D))’ + > (detC(m, D))’

where the first sum is taken over all B(m, D) of D and the second sum is taken over all C(m, D)
of D.

Proof We will prove (A.1) by induction on #. If n = 1 and m = 1, then (A.1) is just the
standard flat Lorentzian metric on 2. If n = 1 and m = 2, then it is trivial since B(2, D) =
Dis the only 2 x 2 submatrix of D and det(D-D") = det(DeD') = — det(DD') = —(det D).
If n = 1 and m > 2, the row vectors of D are linearly dependent, so are the rows of D - D".
Thus, det(D - D') = 0. The right hand side of (A.1) is also zero since there are no m x m
submatrices of D. Hence, (A.1) holds for n = 1. Assume that (A.1) holds for n = k. Let D
be an m x (k + 1) matrix. We may assume that some column DWofD, 1< j<k+1,is
non-zero. (Otherwise, the proof is trivial since D is the zero matrix.) Then, by Lemma A.1,
we may assume without loss of generality that

D) —
0

Let D’ be the matrix obtained from D by deleting the column DY), Then, a straightforward
computation from the definition of D - D' gives

1 0 0
0 0 0
D-D'=D'- (D) + ,
0 0 0
Thus, we have
(A2) det(D - D') = det(D’ - (D')") + detE,

where E is the (1, 1) minor of D’ - (D’)". Now there are two types of m x m submatrices of
D; (1) those of D’ and (2) the consisting of the column DY) together with an m x (m — 1)
submatrix of D’. Let D* be the matrix obtained from D’ by deleting the first row. If we
compute the determinant of an m x m matrix of type (2) using minors of the column D7),
we obtain £1 times the determinant of an (m — 1) x (m — 1) submatrix of D*. Thus,

> (detB(m, D))" = 3" (det B(m,D"))* + > (det B(m — 1,D"))’
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and

3" (detC(m,D))* = 3" (detC(m, D))+ (detC(m — 1,D*))".

Notice that D’ and D* have k columns. So, we have
(A3) = (detB(m, D))"+ (detC(m,D))* = det(D’ - (D')') + det(D* - (D*)")
by induction hypothesis. By the definitions of D* and E,
D* - (D*)' = E.
From (A.2) and (A.3) we see that (A.1) holds for an m x (k + 1) matrix D. [ |
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