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Abstract

We investigate expansions for connectedness functions in the random connection model
of continuum percolation in powers of the intensity. Precisely, we study the pair-
connectedness and the direct-connectedness functions, related to each other via the
Ornstein–Zernike equation. We exhibit the fact that the coefficients of the expansions
consist of sums over connected and 2-connected graphs. In the physics literature, this
is known to be the case more generally for percolation models based on Gibbs point
processes and stands in analogy to the formalism developed for correlation functions in
liquid-state statistical mechanics.

We find a representation of the direct-connectedness function and bounds on the
intensity which allow us to pass to the thermodynamic limit. In some cases (e.g., in
high dimensions), the results are valid in almost the entire subcritical regime. Moreover,
we relate these expansions to the physics literature and we show how they coincide with
the expression provided by the lace expansion.
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1. Introduction and main result

Perturbation analysis plays an important role in both stochastic geometry [14, Chapter 19]
and statistical mechanics. For Gibbs point processes (grand-canonical Gibbs measures in statis-
tical mechanics), quantities like factorial moment densities (also called correlation functions)
are highly nontrivial functions of the intensity of the Gibbs point process itself (density) or
the intensity of an underlying Poisson point process (activity). When interactions are pairwise,
it is well known that the coefficients of these expansions are given by sums over geomet-
ric, weighted graphs. There is a vast literature addressing the convergence of these expansions;
see, for example, [2, 16]. Some attempts have been made at exploiting power series expansions
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from statistical mechanics for likelihood analysis of spatial point patterns in spatial statistics;
see [19].

The physics literature provides similar power series expansions for connectedness functions
in a class of percolation models driven by Gibbs point processes, the so-called random con-
nection models (RCMs) [6]. The expansion coefficients for the pair-connectedness function
can be written in terms of a sum of certain connected graphs (see (3.1)) and the coefficients
for the direct-connectedness function in terms of a sum over certain 2-connected graphs (see
(4.1)). The two functions are related via the Ornstein–Zernike equation (OZE) [20], an integral
equation which is of paramount importance in physical chemistry and soft matter physics and
which enters some approaches to percolation theory; see [25, Chapter 10]. For Bernoulli bond
percolation on Zd, the OZE encodes a renewal structure and is used to prove Ornstein–Zernike
behavior [4], a precise asymptotic formula for pair-connectedness functions in the subcriti-
cal regime that incorporates subleading corrections to the exponential decay. The OZE also
appears as a by-product of lace expansions [10, Proposition 5.2].

The expansions for connectedness functions appearing in [6] are derived as a means of dis-
cussing the following question: is it possible to choose the notion of connectivity in such a way
that the percolation transition, if it occurs at all, coincides with the phase transition in the sense
of non-uniqueness of Gibbs measures? We remind the reader that the relationship between the
two phenomena is rather subtle, and in general the corresponding critical parameters do not
match; see [12] and references therein. To the best of our knowledge, the question above has
not been fully answered for continuum systems, although Betsch and Last [1] were recently
able to show that uniqueness of the Gibbs measure follows from the non-percolation of an
associated RCM driven by a Poisson point process.

Moreover, the convergence of the expansions for connectedness functions has not been
treated in a mathematically rigorous way, in stark contrast with the rich theory of cluster expan-
sions. Even in the simplest case of the RCM driven by a Poisson point process that we consider
in this paper, where activity and density coincide and are called the intensity, rigorous results
for the expansion of connectedness functions barely exist: the first ones were obtained by Last
and Ziesche in [15]. However Last and Ziesche do not prove that their expansions coincide
with the physicists’ expansion, and they do not prove quantitative bounds for the domain of
convergence of the small-intensity expansion.

Our main result addresses graphical expansions of the direct-connectedness function in
infinite volume. The results by Last and Ziesche [15], combined with our combinatorial con-
siderations from Section 6.2, imply that the physicists’ expansions have a positive radius
of convergence; however, it is not our purpose to provide a quantitative bound for the lat-
ter. Instead, we perform first a re-summation, in finite volume, of the physicists’ expansion.
Although the re-summed expansion is no longer a power series in the intensity of the underly-
ing Poisson point process, it has the (conjectured) advantage of converging in a bigger domain
than the physicists’ expansion. We provide quantitative bounds on the intensity that allow us
to pass to the infinite-volume limit in the re-summed expansion of the direct-connectedness
function. The proof uses the continuum BK inequality proved in [10].

In addition, we discuss the relationship of the physicists’ and our expansion to the lace
expansion for the continuum random connection model [10]. Roughly, the lace expansion
could in theory be rederived from the graphical expansion by yet another re-summation step.
In fact a notion of laces similar to the laces for the self-avoiding random walk [2, 22] already
enters the proof of our main result on graphical expansions (see Section 4.3). Thus, contrary
to what is stated in [9, Chapter 6.1], the denomination ‘lace expansion’ for percolation is not a
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The direct-connectedness function in the random connection model 181

misnomer, at least for continuum systems. It is unclear, however, whether the discussion offers
a new angle of attack on the intricate convergence problems in the theory of lace expansions.

Let us properly introduce the RCM and state our results. The RCM depends on two param-
eters, namely its intensity λ≥ 0 and the (measurable) connection function ϕ : Rd → [0, 1],
satisfying

0 <

∫
ϕ(x)dx <∞

as well as radial symmetry ϕ(x)= ϕ(−x) for all x ∈Rd. The model is described informally
as follows: the vertex set is taken to be a homogeneous Poisson point process (PPP) in Rd of
intensity λ, denoted by η. For any pair x, y ∈ η, we add the edge {x, y}with probability ϕ(x− y)
and independently of all other pairs. We refer to [10, 18] for a formal construction.

The RCM is an undirected simple random spatial graph and a standard model of continuum
percolation. We denote it by ξ and we use Pλ to denote the corresponding probability measure.
Its vertex set is V(ξ )= η, and we let E(ξ ) denote its edge set.

For x ∈Rd, we let ξ x be the RCM augmented by the point x. In other words, the vertex
set of ξ x is η ∪ {x} and the edges are formed as described above. In particular, edges between
x and points of η are drawn independently and according to ϕ. More generally, for a set of
points x1, . . . , xk, we let ξ x1,...,xk be the RCM with vertex set η ∪ {x1, . . . , xk} (also here, edges
between deterministic points x1, x2 are drawn independently and according to ϕ).

We say that x, y ∈ η are connected (and write x←→ y in ξ ) if there is a path from x to y in
ξ . For x ∈Rd, we let C(x)=C(x, ξ x)= {y ∈ ηx : x←→ y in ξ x} be the cluster of x and define
the pair-connectedness (or two-point) function τλ : Rd ×Rd → [0, 1] to be

τλ(x, y) := Pλ

(
x←→ y in ξ x,y). (1.1)

Thanks to the translation-invariance of the model, we have τλ(x, y)= τλ(0, x− y)
(
where 0

denotes the origin in Rd
)
, and we can also define τλ as a function τλ : Rd → [0, 1] with τλ(x)=

Pλ

(
0←→ x in ξ0,x

)
.

We say that x, y ∈ η are 2-connected (or doubly connected) and write x⇐⇒ y in ξ if there
are two paths from x to y that have only their endpoints in common (or if x and y are directly
connected by an edge or if x= y). We define

σλ(x) := Pλ

(
0⇐⇒ x in ξ0,x).

Recall that the critical intensity for percolation is defined by

λc = sup{λ≥ 0 : Pλ(|C(0)| =∞)= 0}
and that the identity

sup{λ≥ 0 : Pλ(|C(0)| =∞)= 0} = sup{λ≥ 0 :
∫

τλ(x)dx <∞}

has been shown to hold true for connection functions φ that are nonincreasing in the Euclidean
distance (see [17]). It is proved in [15] that for λ < λc, there exists a uniquely defined integrable
and essentially bounded function gλ : Rd ×Rd →Rd such that

τλ(x, y)= gλ(x, y)+ λ

∫
Rd

gλ(x, z)τλ(z, y) d(z), x, y ∈Rd. (1.2)
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This equation is known as the Ornstein–Zernike equation (OZE), and gλ is called the direct-
connectedness function.

For two integrable functions f , g : Rd →R, we recall the convolution f ∗ g to be given by

(f ∗ g)(x)=
∫
Rd

f (x)g(x− y)dy.

We let f ∗1 = f and f ∗m = f ∗(m−1) ∗ f . Notice that we can interpret both the pair-connectedness
function τλ and the direct-connectedness function gλ as functions on Rd, thanks to translation-
invariance. The OZE then can be formulated as

τλ = gλ + λ(gλ ∗ τλ). (1.3)

Naturally, the question arises whether one can provide an explicit form for the direct-
connectedness function gλ. Unfortunately, an immediate probabilistic interpretation of gλ is
not known. One classical approach from the physics literature is to obtain explicit approx-
imations for the solution gλ of (1.2) by introducing complementary equations, known as
closure relations, the choice of which depends on the specifics of the model considered.
Different closure relations provide different explicit approximations for gλ and thus also for the
pair-connectedness function τλ, e.g., via a reformulation of the OZE (1.2) for the Fourier trans-
forms of the connectedness functions. Most prominent are the Percus–Yevick closure relations
[5, 25]; other examples can be found in [7]. Another approach [6] is to directly provide an inde-
pendent definition of gλ in terms of a graphical expansion and then argue that this expansion
satisfies the OZE (1.2). We follow the spirit of the latter approach: our main result is a graph-
ical expansion for the direct-connectedness function, with quantitative bounds on the domain
of convergence.

Let

λ∗ := sup

{
λ≥ 0 : sup

x∈Rd

∑
k≥1

λk−1σ ∗k
λ (x) <∞

}
, λ̃∗ := sup

{
λ≥ 0 : λ

∫
σλ(x) dx < 1

}
.

(1.4)

It is not hard to see that λ̃∗ ≤ λ∗ ≤ λc using (1.5) below.
We can now state our main theorem. It provides (in general dimension) the first rigorous

quantitative bounds on λ under which the direct-connectedness function admits a convergent
graphical expansion.

Theorem 1.1. (Graphical expansion of the direct-connectedness function.) For λ < λ∗, the
direct-connectedness function gλ(x1, x2) is given by the expansion (4.24), which is abso-
lutely convergent pointwise for all (x1, x2) ∈R2d. Moreover, for λ < λ̃∗, the expansion (4.24)
converges in the L1(Rd, dx2)-norm for all x1 ∈Rd.

The convergence results for the expansion (4.24) are proved in Theorem 4.1 and Theorem 4.2;
the equality with the direct-connectedness function is proved in Section 5.

Last and Ziesche show that there is some λ0 > 0 such that gλ is given by a power series
for λ ∈ [0, λ0). No quantitative bounds for λ0 are provided, however. In Section 6.2, we dis-
cuss how to relate this expansion to our expression for gλ. We now make several remarks on
Theorem 1.1 and the quantitative nature of the bounds provided there.
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• Since 0≤ σλ ≤ 1, we can bound

∑
k≥1

λk−1σ ∗k
λ (x)≤

∑
k≥0

(
λ

∫
σλ(x) dx

)k

=
∑
k≥0

(
Eλ

[∣∣{x ∈ η : 0⇐⇒ x in ξ0}∣∣])k
, (1.5)

where the identity is due to the Mecke equation (2.1). This shows that λ̃∗ ≤ λ∗ and that
λ̃∗ is the point where the expected number of points in η that are 2-connected to the
origin passes 1 (i.e., we have Eλ

[∣∣{x ∈ η : 0⇐⇒ x in ξ0
}∣∣]≥ 1 for all λ > λ̃∗).

• The argument of the geometric series in (1.5) can be further bounded from above by

λ

∫
τλ(x)dx=Eλ

[∣∣{x ∈ η : 0←→ x in ξ0}∣∣],
the expected cluster size (minus 1). A classical branching-process argument gives that
λ̃∗ ≥ 1/2 (see, for example, [21, Theorem 3]).

• In high dimension, we have the following result, proven in [10]: under some additional
assumptions on ϕ (see [10, Section 1.2]), there is an absolute constant c0 such that

λc

∫
σλc (x) dx≤ 1+ c0/d

in sufficiently high dimension, or, for a class of spread-out models (closely related to
Kac potentials in statistical mechanics; see [8]) with a parameter L,

λc

∫
σλc (x) dx≤ 1+ c0L−d

for all dimensions d > 6 (in the spread-out case, c0 is independent of L but may depend
on d). As σλ is nondecreasing in λ, this provides a bound for the whole subcritical
regime. This also implies that for every ε > 0, there is d0 (respectively, L0) such that
λ̃∗ ≥ 1− ε for all d≥ d0 (respectively, L≥ L0 and d > 6). As we also know that λc ↘ 1
as the dimension becomes large, this shows that in high dimension, λ̃∗ (and thus also λ∗)
gets arbitrarily close to λc.

Outline of the paper. The paper proceeds as follows. We introduce most of our important
notation in Section 2. This allows us to demonstrate some basic (and mostly well-known)
central ideas in Section 3, where the two-point function is discussed in finite volume. Section 4
contains the main body of work for the proof of Theorem 1.1 (the convergence results). The
remainder of Theorem 1.1 regarding the OZE is then proved in Section 5.

We discuss our results in Section 6. In particular, we point out where many of the formulas
can be found in the physics literature (not rigorously proven) and allude to generalizations to
Gibbs point processes. Moreover, we highlight the connection to two other expressions for
the pair-connectedness function; in particular, we show how our expansions relate to the lace
expansion. Lastly, we address other percolation models very briefly in Section 6.4.

2. Fixing notation

2.1. General notation

We let [n] := {1, . . . , n} and [n]0 := [n]∪ {0}. For a set V , we write
(V

2

)
:= {E⊆ V : |E| = 2}.

For I = {i1, i2, . . . , iκ} ⊂N, let �xI =
(
xi1 , . . . , xiκ

)
. For compact intervals [a, b]⊂R, we write
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FIGURE 1. A schematic sketch of the pivot decomposition (u0, V0, . . . , V7, u8) of G, setting x= u0 and
y= uk+1.

�x[a,b] = �xI with I = [a, b]∩N. If a= 1, we write �x[b] = �x[1,b]. By some abuse of notation, we
are going to interpret �x[a,b] both as an ordered vector and as a set.

If not specified otherwise, � denotes a bounded, measurable subset of Rd.

2.2. Graph theory

We recall that a (simple) graph G= (V, E)= (V(G), E(G)) is a tuple with vertex set (or
set of points, sites, nodes) V and edge set (or set of bonds) E⊆ (V

2

)
. In this paper, we will

always consider graphs with V ⊂Rd, and for x, y ∈Rd, an edge {x, y} will sometimes be
abbreviated xy.

If xy ∈ E, we write x∼ y (and say that x and y are adjacent). We extend this notation and
write x∼W for x ∈ V and W ⊆ V if there is y ∈W such that x∼ y; also, we write A∼ B if there
is x ∈ A such that x∼ B. For W ⊆ V , we define the W-neighborhood NW (x)= {y ∈W : x∼ y}
and the W-degree of a vertex x ∈ V as degW (x)= |NW (x)|, and we write N(x)=NV (x) as well
as deg(x)= degV (x). For two sets A, B⊆ V , we write E(A, B)= {xy ∈ E(G) : x ∈ A, y ∈ B}.

Given a graph G= (V, E) and W ⊆ V , we denote by G[W] := (W, {e ∈ E : e⊆W}) the
subgraph of G induced by W. Given two simple graphs G, H, we let G⊕H := (V(G)∪
V(H), E(G)∪ E(H)).

Connectivity. Given a graph G and two of its vertices x, y ∈ V(G), we say that x and y are con-
nected if there is a path between x and y—that is, a sequence of vertices x= v0, v1, . . . , vk = y
for some k ∈N0 such that vi−1vi ∈ E(G) for i ∈ [k]. We write x←→ y in G or simply x←→ y.
We call C(x)=C(x; G)= {y ∈ V(G) : x←→ y} the cluster (or connected component) of x in G.
If there is only one cluster in G, we say that G is connected.

For x←→ y in G, we let Piv(x, y; G) denote the set of pivotal vertices for the connection
between x and y. That is, v /∈ {x, y} is in Piv(x, y; G) if every path from x to y in G passes through
v. We say that x is doubly connected to y in G (and write x⇐⇒ y in G) if Piv(x, y; G)=∅. We
remark that in the physics literature, pivotal points are usually known as nodal points.

In the pathological case x= y, we use the convention x←→ x in G and set Piv(x, x; G)=∅
for any graph G with x ∈ V(G) (equivalently, x⇐⇒ x in G).

We observe that the pivotal points {u1, . . . , uk} can be ordered in a way such that every path
from x to y passes through the pivotal points in the order (u1, . . . , uk). We define PD(x, y, G)=
PD(G) to be the pivot decomposition of G, that is, a partition of the vertex set V into a sequence,
(x, V0, u1, V1, . . . , uk, Vk, y), where (u1, . . . , uk) are the ordered pivotal points and Vi is the
(possibly empty) set of vertices that can be reached only by passing through ui and that is still
connected to x after the removal of ui+1. See Figure 1.

Classes of graphs. Given a (locally finite) set X ⊂Rd, we let G(X) be the set of graphs with
vertex set X. We let C(X) be the set of connected graphs on X. Moreover, for x, y ∈ X, we let
Dx,y(X)⊆ C(X) be the set of non-pivotal graphs, i.e., the set of connected graphs such that
Piv(x, y; G)=∅.

Given m bags X1, . . . , Xm ⊂Rd with |Xi ∩ Xj| ≤ 1 for all 1≤ i < j≤m, we let
G(X1, . . . , Xm) denote the set of m-partite graphs on X1, . . . , Xm, i.e., the set of graphs G
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with V(G)=∪m
i=1Xi and E(G[Xi])=∅ for i ∈ [m]. Note that we allow bags to have (at most)

one vertex in common, which is a slight abuse of the notation in graph theory, where m-partite
graphs have disjoint bags.

The notion of (±)-graphs. We introduce a (±)-graph as a triple

G± = (V(G), E+(G), E−(G))= (V, E+, E−),

where V is the vertex set and E+, E− ⊆ (V
2

)
are disjoint. In other words G± is a graph where

every edge is of exactly one of two types (plus or minus). We set E := E+ ∪ E− and associate
to G± the two simple graphs G|±| := (V, E) and G+ := (V+, E+), where V+ := {x ∈ V : ∃e ∈
E+ : x ∈ e} are the vertices incident to at least one (+)-edge.

We extend all the notions for simple graphs to (±)-graphs. In particular, given X ⊂Rd,
we let G±(X) be the set of (±)-graphs on X. Moreover, C±(X) are the (±)-connected graphs
on X, that is, the graphs such that G|±| is connected. Similarly, C+(X)⊂ C±(X) are the (+)-
connected graphs, that is, those where G+ is connected and V(G)= V+. For x, y ∈ X, we
denote by D±x,y(X) the set of those (±)-connected graphs on X where Piv(x, y; G|±|)=∅, and
by D+x,y(X)⊂D±x,y(X) the set of those (±)-connected graphs on X where Piv

(
x, y; G+

)=∅.
We also define the (±)-pivot decomposition PD±

(
x, y, G±

)=PD±
(
G±

)=PD(G|±|) and the

(+)-pivot decomposition PD+
(
x, y, G±

)=PD+
(
G±

)=PD
(
G+

)
. Lastly, we write x

+←→ y if
there is a path from x to y in E+.

Given a (±)-graph G and a simple graph H, we define

G⊕H := (V(G)∪ V(H), E+(G), E−(G)∪ E(H)).

Weights. Given a simple graph G, a (±)-graph H on X ⊂Rd, and the connection function ϕ,
we define the weights

w(G) := (−1)|E(G)| ∏
{x,y}∈E(G)

ϕ(x− y), w±(H) := (−1)|E−(H)| ∏
{x,y}∈E(H)

ϕ(x− y).

2.3. The random connection model

The RCM ξ can be formally constructed as a point process, that is, a random variable taking
values in the space of locally finite counting measures (N,N ) on some underlying metric space
X. There are various ways to choose X. One option is to let X=Rd ×M for an appropriate
mark space M (see [18]); another way can be found in [10, 15]. In any case, one can reconstruct
from ξ the point process η on Rd which makes up the vertex set of ξ . We treat η both as a
counting measure and as a set, giving meaning to statements of the form x ∈ η.

If e= {x, y} is an edge, then we write ϕ(e)= ϕ(x− y). For a bounded set �⊂Rd, we write
η� = η ∩� and let ξ� denote the RCM restricted to �, that is, ξ [η�]. The two-point function
restricted to � is defined as τ�

λ (x, y)= Pλ

(
x←→ y in ξ

x,y
�

)
for x, y ∈� and zero otherwise.

For V ⊂W, there is a natural way to couple the models ξV and ξW , which is by deleting
from ξW all points in W \ V along with their incident edges. We implicitly assume throughout
this paper that this coupling for different sets of added points is used.

The Mecke equation. Since it is used repeatedly throughout this paper, we state the
Mecke equation, a standard tool in point process theory, in its version for the RCM (see
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[15]). For m ∈N and a measurable function f : N×Rdm →R≥0, the Mecke equation states
that

Eλ

[ ∑
�x[m]∈η(m)

f
(
ξ, �x[m]

)]= λm
∫

Eλ

[
f
(
ξ x1,...,xm , �x[m]

)]
d�x[m], (2.1)

where η(m) = {�x[m] ∈ ηm : xi �= xj for i �= j
}

are the pairwise distinct tuples.

Rescaling. It is a standard trick in continuum percolation to rescale space in order to normal-
ize a quantity of interest, which is

∫
ϕ(x) dx in our case. We refer to [18, Section 2.2]. As a

consequence, we may without loss of generality assume that
∫

ϕ(x) dx= 1.

The BK inequality. We say that A ∈N lives on � if 1A(μ)= 1A(μ�) for every μ ∈N. We call
an event A ∈N increasing if μ ∈ A implies ν ∈ A for each ν ∈N with μ⊆ ν. Let R denote the
ring of all finite unions of half-open rectangles with rational coordinates. For two increasing
events A, B ∈N we define

A ◦ B := {μ ∈N : ∃K, L ∈R s.t. K ∩ L=∅ and μK ∈ A, μL ∈ B}. (2.2)

Informally, this is the event that A and B take place in spatially disjoint regions. It is proved in
[10, Theorem 2.1] that for two increasing events A and B living on �, we have

Pλ(A ◦ B)≤ Pλ(A)Pλ(B).

The RCM on a fixed vertex set. Given some (finite) set X ⊂Rd and a function ϕ : Rd → [0, 1],
we will often have to deal with the following random graph: its vertex set is X, and two vertices
x, y ∈ X are adjacent with probability ϕ(x− y), independently of other pairs of vertices. This
is simply the RCM conditioned to have the vertex set X. To highlight the difference from ξ ,
which depends on the PPP η, we denote this random graph by ϕ(X). If Y ⊂ X, then we write
ϕ(Y) for ϕ(X)[Y]. Since there is no dependence on λ, we write P for the probability measure
of the RCM with fixed vertex set.

3. Fixing ideas: the two-point function in finite volume

We use this section to put the definitions of Section 2 into action and to derive a power
series expansion for τλ in finite volume. We start by motivating the introduction of (±)-graphs
by linking them to the RCM ϕ .

Observation 3.1. (Connection between (±)-graphs and probabilities.) Let X ⊂Rd be finite.
Let P⊆ G(X) be a graph property. Then∑

G∈G±(X):
(V(G),E+(G))∈P

w±(G)= P
(
ϕ(X) ∈P

)
.

Proof. Note that

P
(
ϕ(X) ∈P

)= ∑
G∈G(X) :

G∈P

∏
e∈E(G)

ϕ(e)
∏

e∈(X
2)\E(G)

(1− ϕ(e)).

Expanding the factor
∏

e∈(X
2)\E(G) (1− ϕ(e)) into a sum proves the claim. �
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Note that the weight of a (±)-graph may also be calculated by taking the product over all
its edges, with factors ϕ(·) and −ϕ(·) for edges in E+ and E−, respectively. Observation 3.1
motivates that the edges in E+ correspond to the edges in the random graph ϕ .

Next we prove a power series expansion for τλ in terms of the intensity λ. The expansion
(3.1) has already been given by Coniglio, De Angelis and Forlani [6, Equation (12)], who
work in the more general context of Gibbs point processes but do not prove convergence. The
proposition enters the proof of Proposition 5.1.

Notice that the coefficients of power series expansions like (3.1) are given by integrals
with respect to the Lebesgue measure, and it is sufficient that the integrands be defined up
to Lebesgue null sets for those integrals to be well-defined. Since vectors �x[3,n+2] ∈Rdn with
fewer than n distinct entries constitute a Lebesgue null set, we can assume that for x1 �= x2 only
graphs with vertex sets of cardinality n+ 2 contribute to the nth coefficient in (3.1). The same
considerations apply to all graphical expansions appearing from here on, including our main
definition (4.6).

Proposition 3.1. (Graphical expansion for the two-point function.) Consider the RCM
restricted to a bounded measurable set �⊂Rd, and let x1, x2 ∈�. Then

τ�
λ (x1, x2)=

∑
n≥0

λn

n!
∫

�n

∑
G∈C±

(
�x[n+2]

)
:

x1
+←→x2

w±(G) d�x[3,n+2] (3.1)

with ∑
n≥0

λn

n!
∫

�n

∣∣∣ ∑
G∈C±

(
�x[n+2]

)
:

x1
+←→x2

w±(G)
∣∣∣ d�x[3,n+2] ≤ exp

{
2λ+ λ|�|eλ

}
<∞.

Note that Proposition 3.1 is valid for all intensities λ≥ 0. This situation is completely
different from familiar cluster expansions [2], where the radius of convergence of relevant
expansions is finite in finite volume as well.

The expansion (3.1) amounts to the physicists’ expansion in powers of the activity. The
expansion in powers of the density instead involves sums over a smaller class of graphs. For
PPPs, activity and density are the same and the two expansions must coincide. In our context,
we point out that the sum over graphs in (3.1) can be reduced to the sum over the subset
of graphs in C± that contain a (+)-path from x1 to x2 and that have no articulation points
(with respect to x1, x2). To define articulation points, recall that a cut vertex leaves a connected
graph disconnected upon its deletion. Now, an articulation point is a cut vertex that is not
pivotal for the x1–x2 connection. It is not difficult to see that for fixed points x[n+2], the graphs
with articulation points in the sum over graphs G in (3.1) exactly cancel out. This cancellation
happens at fixed n and does not require any re-summations between graphs with different
numbers of vertices.

The proof of Proposition 3.1 builds on yet another equivalent representation: in Equation
(3.1) we can discard those graphs G for which G+ is not connected and those for which not
every (−)-edge has at least one endpoint in V

(
G+

)
; see Equation (3.6) below for a precise

statement. To the best of our knowledge, Equation (3.6) is new.
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Proof of Proposition 3.1. We write τλ = τ�
λ and η= η�. Given x1, x2 ∈�, we can

partition

τλ(x1, x2)=
∑
n≥0

Pλ

(
x1 ←→ x2 in ξ

x1,x2
� ,

∣∣C(x1, ξ
x1,x2
�

)∣∣= n+ 2
)

=
∑
n≥0

λn

n!
∫

�n
P
(
ϕ

(�x[n+2]
) ∈ C(�x[n+2]

))

× exp

{
− λ

∫
�

(
1−

n+2∏
i=1

(1− ϕ(xi − y))

)
dy

}
d�x[3,n+2] (3.2)

The second identity can be found, for example, in [15, Proposition 3.1]. Set

f
(�x[n+2], �y[m]

)= P
(
ϕ

(�x[n+2]
) ∈ C(�x[n+2]

)) m∏
j=1

(
n+2∏
i=1

(1− ϕ(xi − yj))− 1

)
.

Expanding the exponential in (3.2), we find

τλ(x1, x2)=
∑

n,m≥0

λn+m

m!n!
∫

�n

∫
�m

f
(�x[n+2], �y[m]

)
d�y[m] d�x[3,n+2], (3.3)

with

∑
n,m≥0

λn+m

m!n!
∫

�n

∫
�m

∣∣f (�x[n+2], �y[m]
)∣∣ d�y[m] d�x[3,n+2]

=
∑
n≥0

λn

n!
∫

�n
P
(
ϕ

(�x[n+2]
) ∈ C(�x[n+2]

))
exp

{
λ

∫
�

(
1−

n+2∏
i=1

(1− ϕ(xi − y))

)
dy

}
d�x[3,n+2]

≤
∑
n≥0

λn

n!
∫

�n
eλ(n+2) d�x[3,n+2]

= exp
{
2λ+ λ|�|eλ

}
<∞. (3.4)

In the third line, we have used the inequality

∫
�

(
1−

n+2∏
i=1

(1− ϕ(xi − y))

)
dy≤

∫
�

n+2∑
i=1

ϕ(xi − y) dy≤ n+ 2, (3.5)

which can be shown as follows. Let n ∈N and let 0≤ a1, . . . , an ≤ 1. Notice that the identity
1−∏n

i=1 (1− ai)= (1− an)
(
1−∏n−1

i=1 (1− ai)
)+ an and the estimate (1− an)≤ 1 hold for

all n ∈N. The inequality between the integrands in (3.5) now follows by induction with the
choice ai = ϕ(xi − y). The rescaling introduced in Section 2.3 ensures that

∫
�

ϕ(xi − y) dy≤ 1,
i ∈ [n+ 2], yielding the second inequality.
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Next we turn to a combinatorial representation of f as a sum over (±)-graphs. Recall that
C+ denotes sets of (±)-graphs that are (+)-connected. The definition of f and Observation 3.1
yield

f
(�x[n+2], �y[m]

)=
⎛
⎜⎝ ∑

G∈C+
(
�x[n+2]

) w±(G)

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎝

∑
H∈G

(
�x[n+2],�y[m]

)
:

yi∼�x[n+2] ∀i∈[m]

w(H)

⎞
⎟⎟⎟⎟⎠=

∑
G⊕H

w±(G⊕H),

where the last sum is over all (±)-graphs G′ =G⊕H in C±(�x[n+2] ∪ �y[m]
)

such that, first,
there are no edges between points of �y; second, (G⊕H)+ is connected; and third, the vertices
of (G⊕H)+ are precisely �x[n+2].

We rearrange the double sum (3.3) over m, n into one sum, indexed by the value of m+ n,
and obtain

τλ(x1, x2)=
∑
n≥0

λn

n!
∫

�n

∑
G∈C±

(
�x[n+2]

)
:

{x1,x2}⊆V
(

G+
)
,G+ connected,

E(G|±|[V\V+])=∅

w±(G) d�x[3,n+2] (3.6)

=
∑
n≥0

λn

n!
∫

�n

∑
G∈C±

(
�x[n+2]

)
:

x1
+←→x2

w±(G) d�x[3,n+2]. (3.7)

In the second identity, we have added some graphs to the sum, namely those in which G+ is
not connected or where there exist edges between vertices of V \ V+.

We claim that the weights of these added graphs sum up to zero. To see this, first iden-
tify [n+ 2] with the vertices �x[n+2] and fix a graph G ∈ C([n+ 2]). Now, let C⊆ [n+ 2] with
{1, 2} ⊆C and consider the set GG(C) of all (±)-connected graphs G± on [n+ 2] such that
G|±| =G and C is the vertex set of the (+)-component of 1 in G±. If there is at least one edge
e in G that has both endpoints outside of C, we partition GG(C) into those graphs where e is in
E+ and those where e is in E−. This induces a pairing between the graphs of GG(C), and they
cancel out. What remain are precisely the graphs in (3.6). �

4. The direct-connectedness function

4.1. Motivation and rough outline

The expansion of the direct-connectedness function in powers of the activity given by [6],
without proofs and convergence bounds, is

g�
λ (x1, x2)=

∑
n≥0

λn

n!
∫

�n

∑
G∈D±

x1,x2

(
�x[n+2]

)
:

x1
+←→x2

w±(G) d�x[3,n+2]. (4.1)

It is obtained from the expansion of the pair-connectedness function in Proposition 3.1 by dis-
carding graphs that have pivotal points (i.e., graphs G where Piv±(G) is nonempty). Before we
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pass to the thermodynamic limit, we perform a re-summation and find another representation
of g�

λ which has the conjectured advantage of increasing the domain of convergence.
Let G= (V, E+, E−) ∈ C±(�x[n+2]

)
be a (±)-graph appearing in the expansion (3.6). Thus

V = {xi : 1≤ i≤ n+ 2}, the graph G+ is connected, x1 and x2 belong to V+ = V
(
G+

)
, every

vertex y ∈ V(G) \ V
(
G+

)
is linked by at least one (−)-edge to V+, and there are no edges

between two vertices in V \ V+. We impose the additional constraint that G|±| = (�x[n+2], E+ ∪
E−

)
has no pivotal points for paths from x1 to x2.

Since x1 and x2 are connected by a path of (+)-edges, G admits a (+)-pivot decom-
position �W = (u0, V0, . . . , uk, Vk, uk+1) (with u0 = x1 and uk+1 = x2), where k ∈N0 is the
number of pivotal points in Piv+(x1, x2; G). Then, G decomposes into a core graph Gcore =(
V
(
G+

)
, E+, E−core

)
, with E−core the set of (−)-edges of G with both endpoints in Vi ∪ {ui, ui+1}

for some i ∈ [k]0, and a shell graph H = (
V,∅, E− \ E−core

)
. By our choice of E−core, we have

PD±
(
Gcore

)=PD+
(
Gcore

)= �W. Clearly

w±(G)=w±
(
Gcore

)
w±(H).

In the right-hand side of (4.1), we restrict to graphs that also appear in (3.6) and rewrite the
resulting sum as a double sum over core graphs and shell graphs. This gives rise to the series

∞∑
r=0

λr

r!
∫

�r

∑
�W

∑
Gcore

w±
(
Gcore

)( ∞∑
m=0

λm

m!
∫

�m

∑
H

w±(H) d�y[m]

)
d�x[3,r+2].

The outer sum is over potential pivot decompositions �W of core vertices �x[r+2], the second
sum over (±)-graphs Gcore =

(�x[r+2], E+, E−core

)
that are (+)-connected and for which �W is

both the (±)-pivot decomposition and the (+)-pivot decomposition (in other words, the simple
graph

(�x[r+2], E+
)

is connected and PD±(x1, x2, G)=PD+(x1, x2, G)= �W). The inner sum
is over (±)-graphs H = (V(H),∅, E−(H)) with vertex set �x[r+2] ∪ �y[m] and (−)-edges {yi, xj}
such that every vertex yi is linked to at least one vertex xj, under the additional constraint that
(�x[r+2] ∪ �y[m], E+, E−core ∪ E−(H)) has no (±)-pivotal points for paths from x1 to x2. Let us
denote the series associated to such graphs H by h�

λ

(
Gcore

)
:

h�
λ

(
Gcore

)= ∞∑
m=0

λm

m!
∫

�m

∑
H

w±(H) d�y[m]. (4.2)

The right-hand side of (4.2) depends on Gcore only through the pivot decomposition �W. We
obtain the representation

g�
λ (x1, x2)=

∞∑
r=1

λr

r!
∫

�r

∑
�W

∑
Gcore

w±
(
Gcore

)
h�
λ

(
Gcore

)
d�x[3,r+3]. (4.3)

This expression, written in a slightly different form (see Definition 4.2), forms the starting
point of this section. The main results of this section are the following:

1. Let Gcore be a (±)-graph as above. Then the corresponding power series h�
λ

(
Gcore

)
is

absolutely convergent for all intensities λ≥ 0 (Proposition 4.1). In addition, h�
λ

(
Gcore

)
can be expressed in terms of probabilities involving the random connection model on
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the fixed vertex set V
(
Gcore

)
and of Poisson processes in �. This alternative expression

is used to show that the (pointwise) limit

hλ

(
Gcore

)= lim
�↗Rd

h�
λ

(
Gcore

)
exists for all λ > 0 (Lemma 4.5).

2. Then we show in Theorem 4.1 that

∞∑
r=0

λr

r!
∫

(Rd)r

∑
�W

∑
Gcore

w±
(
Gcore

)∣∣∣hλ

(
Gcore

)∣∣∣ d�x[3,r+3] <∞.

This allows us to define

gλ(x1, x2) :=
∞∑

r=0

λr

r!
∫

(Rd)r

∑
Gcore

w±
(
Gcore

)
hλ

(
Gcore

)
d�x[3,r+3]

and to pass to the limit in (4.3), showing that

lim
�↗Rd

g�
λ (x1, x2)= gλ(x1, x2)

as part of Theorem 4.1.

4.2. Definition

Here we introduce the precise definitions of core graphs and shell graphs as well as of
the functions h�

λ and g�
λ . We follow the ideas outlined in the previous section but make two

small changes. First, shell graphs H are defined not as (±)-graphs with minus edges only but
right away as standard graphs. Second, a close look reveals that the shell function h�

λ

(
Gcore

)
defined in (4.2) depends on the core graph only via �W; accordingly we view h�

λ as a function
of a sequence of sets. In addition we drop the index from the core graph; thus the graph G in
Definition 4.1 below corresponds to Gcore in the previous section (see Figure 2).

Definition 4.1. (Core graphs and shell graphs.)

1. Let x1, x2 ∈Rd and let {x1, x2} ⊂W ⊂Rd be a finite set of vertices. We call a
graph G ∈ C+(W) with PD±(x1, x2, G)=PD+(x1, x2, G)= �W a core graph with pivot
decomposition �W and denote the set of such graphs by G �Wcore.

2. Let G ∈ C+(W) be a core graph with pivot decomposition �W = (u0, V0, . . . , Vk, uk+1),
k ∈N0, where we set u0 := x1 and uk+1 := x2. Moreover, let Vi := Vi ∪ {ui, ui+1} and
let Y be a finite subset of Rd. A shell graph on W ∪ Y associated to �W is a (k+ 1)-partite
graph H ∈ G(V1, . . . , Vk, Y

)
such that G⊕H ∈D±x1,x2

(W ∪ Y). We call the vertices Y ⊂
V(H) satellite vertices and write S(H)= Y . Notice that the set of all shell graphs on
W ∪ Y associated to �W does not depend on the choice of the core graph G. We denote it

by GY, �W
shell .

We define h�
λ and g�

λ by expansions similar to (4.2) and (4.3) and postpone the proof of
convergence to Proposition 4.3 and Theorem 4.4. By some abuse of language, we refer to the
series (4.6) as the direct-connectedness function, and we use the same letter gλ as in (1.2). This
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FIGURE 2. In the first line, we see an example of two (±)-graphs; the (+)-edges are depicted by dotted
lines and the (minus;)-edges by dashed lines. Notice that both graphs are (+)-connected. However, the
solid black vertex—which is (+)-pivotal for the x1–x2 connection in both graphs—is (±)-pivotal for the
x1–x2 connection in the graph on the left but not in the graph on the right. Hence, the graph on the
left is a core graph according to Definition 4.2 but the graph on the right is not. In the second line, the
simple graph on the left is a shell graph for the core graph above, since the (±)-graph given by their sum
(depicted on the right) is (±)-doubly connected; in particular there are no (±)-pivotal points for the x1–x2
connection.

is justified a posteriori by the proof of Theorem 1.1, where we show that the series is indeed
the expansion for the direct-connectedness function gλ defined as the unique solution of the
OZE (1.2).

Definition 4.2. (Shell functions and direct-connectedness function.)

1. Let W ⊂Rd be finite and let �W be given as in Definition 4.2. For m ∈N0, define the
m-shell function h(m) by

h(m)( �W, Y) :=
∑

H∈GY, �W
shell

w(H), Y = {y1, . . . , ym} ⊂Rd, (4.4)

and the shell function h�
λ in finite volume �⊂Rd by

h�
λ

( �W)
:=

∑
m≥0

λm

m!
∫

�m
h(m)( �W, �y[m]

)
d�y[m]. (4.5)

2. Let λ < λ∗. We define the direct-connectedness function as gλ : Rd ×Rd →R,

g�
λ (x1, x2) :=

∑
r≥0

λr

r!
∫

�r

∑
�W

( ∑
G∈G �W

core

w±(G)

)
h�
λ

( �W)
d�x[3,r+2], (4.6)

where W := {x1, . . . , xr+2} and we sum over decompositions �W of W given as in
Definition 4.1. In the pathological case x1 = x2, (4.6) is to be read as g�

λ (x1, x2) := 1.
Let g�

λ : Rd →R be defined by g�
λ (x)= g�

λ (0, x).
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The 0-shell function h(0) is understood to be given in terms of shell graphs without satellite
vertices, i.e.,

h(0)( �W)= ∑
H∈G∅, �W

shell

w(H).

Note that because of translation-invariance, g�
λ (x1, x2)= g�

λ (0, x2 − x1)= g�
λ (x2 − x1).

4.3. Analysis of the shell functions: laces

If we take a look at the graphs that are summed over in the shell function, we note that the
associated minimal structures have a form which is very reminiscent of graphs that are known
as laces and famously appear in the analysis of, for example, self-avoiding walks [3, 22]. They
are also the namesake of the lace-expansion technique.

Proposition 4.1 is the central result of this section. It allows us to bound the shell function
by the probability that the points in a PPP η are not connected to the core vertices W. Moreover,
we introduce laces and partition the shell graphs with respect to them. For every lace, we obtain
a precise expression for its contribution to the shell function.

To prove Proposition 4.1, we will need quite a few definitions (see Definitions 4.3, 4.4, and
4.5) and some intermediate results thereon.

Proposition 4.1. (Bounds on the shell functions) Let λ≥ 0 and let �⊂Rd be bounded.
Let u0, . . . , uk+1 ∈� for k ∈N0, let V0, . . . , Vk ⊂� be finite sets, and set �W =
(u0, V0, . . . , Vk, uk+1). Then ∣∣h�

λ

( �W)∣∣≤ Pλ

(
η� �←→W in ξW)

. (4.7)

Moreover, ∑
m≥0

λm

m!
∫

�m

∣∣h(m)( �W, �y[m]
)∣∣ d�y[m] ≤ 1√

5
e3λ|W|(3+√5

)|W|. (4.8)

Proposition 4.1 consists of two parts, and it is (4.8) that guarantees the well-definedness of
the shell function h�

λ of Definition 4.2.
Proposition 4.1 is easy to prove for k= 0, and we mostly focus on k≥ 1. Throughout the

remainder of this section, we fix a pivot decomposition �W = (u0, V0, . . . , Vk, uk+1) and recall
that Vi = Vi ∪ {ui, ui+1}.

We now work towards a deeper understanding of the shell graphs H summed over in (4.4).

Definition 4.3. (Skeletons) Let W ⊂Rd and let �W = (u0, V0, . . . , uk+1) be a pivot decompo-
sition of some core graph on W. Furthermore, let Y ⊂Rd be finite and let H be a shell graph
associated to �W with satellite vertices S(H)= Y . Then we define the skeleton Ĥ of H as the
following graph: its vertex set is V(Ĥ)= {0, . . . , k+ 1}. A bond αβ is in E(Ĥ) if and only if
|α− β| ≥ 2 and there exist s ∈ {uα} ∪ Vα , t ∈ Vβ−1 ∪ {uβ} such that

• st ∈ E(H), or

• sy, yt ∈ E(H) for some y ∈ S(H).

In the first case we call {s, t} a direct stitch, and in the second case we call it an indirect
stitch. We call an edge αβ in E(Ĥ) a bond to distinguish it from the edge of the underlying
graph H.

Thus, the graph Ĥ has no nearest-neighbor bonds, and αβ with |α− β| ≥ 2 is a bond in
E(Ĥ) if and only if {uα} ∪ Vα and Vβ−1 ∪ {uβ} are connected by a direct or indirect stitch. See
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FIGURE 3. In the first line, we see a schematic shell graph H1. Its skeleton Ĥ1 is already a lace, namely L.
The skeleton of the graph H2 in the second line is not a lace, but H2 ∈ 〈〈L〉〉. The structure of L is indicated
in H2 and in Ĥ2 by the thicker edges.

Figure 3 for an illustration. We may now apply the standard vocabulary of lace expansion (for
self-avoiding walks) to the graph Ĥ [22, Section 3.3].

Definition 4.4. (Laces)

• The graph Ĥ with vertex set {0, . . . , k+ 1} is irreducible if 0 and k+ 1 are endpoints of
edges in E(Ĥ) and for every i ∈ [k] there exists αβ ∈ E(Ĥ) with α < i < β.

• The graph Ĥ is a lace if it is irreducible and, for every bond αβ ∈ E(Ĥ), removal of the
bond destroys the irreducibility.

• We denote by Lk the set of all laces on {0, . . . , k+ 1}.
In the context of lace expansions, usually the word ‘connected’ is used instead of ‘irreducible’,
but ‘connected’ is clearly misleading in our setup; Brydges and Spencer originally called those
graphs ‘primitive’ [3]. We observe that the skeleton graphs Ĥ arising from our shell graphs
H are precisely the irreducible graphs (and so G⊕H being 2-connected corresponds to the
skeleton Ĥ being irreducible).

We map irreducible graphs to laces by following a standard procedure [22, Section 3.3],
performed backwards. That is, we define bonds α′jβ ′j with β ′1 > β ′2 > · · · inductively as follows:
we set

β ′1 := k+ 1, α′1 := min
{
α : αβ ′1 ∈ E(Ĥ)

}
,

and

α′j+1 =min
{
α : ∃β > α′j with αβ ∈ E(Ĥ)

}
, β ′j+1 =max

{
β : α′j+1β ∈ E(Ĥ)

}
.

The procedure terminates when α′j = 0. At the end, we let αjβj be a relabeling of the bonds
α′jβ ′j from left to right.

It is well known that the algorithm maps irreducible graphs to laces; moreover, the set of
irreducible graphs that are mapped to a given lace L can be characterized as follows.
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Definition 4.5. (Compatible bonds and the span of a lace.)

1. Let L be a lace with vertex set {0, . . . , k+ 1}. A bond is compatible with a lace L if the
algorithm described above maps the graph (V(L), E(L)∪ {αβ}) to the lace L.

2. Let W ⊂Rd and let �W = (u0, V0, . . . , uk+1) be a pivot decomposition of some core
graph on W. Further let Y ⊂Rd be finite and let H be a shell graph associated to �W with
S(H)= Y . Then we say that H belongs to the span of the lace L, and write H ∈ 〈〈L〉〉, if
E(L)⊆ E(Ĥ) and every bond αβ ∈ E(Ĥ) \ E(L) is compatible with L.

In other words, H is in the span of L if the above algorithm maps Ĥ to L. See Figure 3.
Given �W and a lace L, we define

h�
λ ( �W; L) :=

∑
m≥0

λm

m!
∫

�m

∑
H∈〈〈L〉〉 :S(H)=�y[m]

w(H) d�y[m]. (4.9)

The series h�
λ

( �W; L
)

converges absolutely for every fixed λ. This is shown as part of the proof
of (4.8) in Proposition 4.1. Now,

h�
λ

( �W)= ∑
L∈Lk

h�
λ ( �W; L).

The following characterization of compatible bonds will be useful. We recall that the bonds
of a lace with m bonds can be labeled as αjβj with

0= α1 < α2 < β1 ≤ α3 < β2 ≤ · · · ≤ αm < βm−1 < βm = k+ 1;

see [22, Equations (3.15) and (3.16)].

Lemma 4.1. (Characterization of compatible bonds.) Let L be a lace with vertex set V(L)=
{0, . . . , k+ 1} and bonds αjβj, j= 1, . . . , m, labeled from left to right (i.e., αj < αj+1). Then a
bond αβ /∈ E(L) with α < β − 1 is compatible with L if and only if either

(a) αi ≤ α < β ≤ βi for i ∈ [m] or

(b) αi < α < β ≤ αi+2 for i ∈ [m− 1] (where we set αm+1 := k).

Proof. Let αβ /∈ E(L) be compatible with L; that is, the algorithm below Definition 4.4 maps
E(L)∪ {αβ} to E(L), which in turn means that αβ is not selected to be part of the output lace.
We show that then either (a) or (b) is satisfied. Assume the algorithm has already constructed
the partial lace up to some j < m, producing the bonds

(
α′i, β ′i

)j
i=1 (note that they are in reverse

order and make up the last j bonds of the lace). Assume moreover that α′j < β ≤ α′j−1; that is,
αβ is a potential candidate to be chosen as the next bond of the lace. Since it is not chosen,
there is α′j+1β

′
j+1 with β ′j+1 ∈

(
α′j, α′j−1

]
such that either

• α′j+1 < α, or

• α′j+1 = α and β ′j+1 > β.

Both the second case and the first case under the additional assumption β ′j+1 ≥ β imply that
αβ satisfies (a). Let us thus focus on the case where α′j+1 < α and β ′j+1 < β. Remembering the
stage of the algorithm, we have β ≤ α′j−1, implying (b).
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FIGURE 4. Schematic illustration of Ai from the proof of Lemma 4.2 for i= 0, 2, 3, 4, 5, 6.

Now let αβ /∈ E(L) be a bond that satisfies (a) or (b). We claim that αβ is compatible with L.
Let i be the index such that αiβi satisfies (a) or (b). Note that in the execution of the algorithm
below Definition 4.3, αβ does not appear as a candidate to be added to the constructed lace up
until the point where αmβm, αm−1βm−1, . . . , αi+1βi+1 have already been added to the partial
lace. At this stage of the algorithm, if αβ satisfies (b), then it is not picked, because the left
endpoint of the bond αiβi has a smaller value (i.e., αi < α). If αβ satisfies (a), however, then
either also αi < α, or αi = α, but αiβi has its right endpoint further to the right (i.e., β < βi,
since the two bonds cannot be equal), and so again, αiβi is picked by the algorithm. �

To prove the second result of Proposition 4.1, we need the following counting lemma, which
may be of independent interest.

Lemma 4.2. (On the number of laces.) Let fi be the ith Fibonacci number with f1 = 0, f2 = 1.
Then

|Lk| = 1+
k∑

i=1

(
k

i

)
fi and, as k→∞, |Lk| ∼ 1√

5

(
3+√5

2

)k

.

Proof. We first choose i vertices in {1, . . . , k} and then count the laces that use exactly
those vertices. To this end, let Ai be the set of laces L with V(L)= {0, . . . , i+ 1} so that every
vertex is the endpoint of at least one stitch. We claim that |Ai| = fi for i≥ 1. Clearly, |A0| = 1,
|A1| = 0, |A2| = 1. See Figure 4 for an illustration.

Let i≥ 3. We now establish the Fibonacci recursion. First, note that the bond incident to 0
(the ‘first’ bond) must always have 2 as the second endpoint. Now, depending on whether
or not the third bond is incident to 2, the remaining lace lives on {1, 2, . . . , i+ 1} or on
{1, 3, 4, . . . , i+ 1}, and so |Ai| = |Ai−1| + |Ai−2|.

The asymptotic behavior follows from the fact that fn ∼�n/
√

5, where �= 1
2

(
1+√5

)
is

the golden ratio. �
We can now work towards finding an explicit expression for h�

λ

( �W; L
)

for a fixed lace. The
next lemma is in the spirit of Observation 3.1 and will help us find probabilistic factors in the
shell function.

Lemma 4.3. (Bipartite graphs and probabilities.) Let Y, A, B, C⊂Rd be finite, disjoint sets.

1. Then ∑
H∈G(A∪C,Y) :
∀y∈Y : y∼A

w(H)=
∏
y∈Y

(−P(A∼ y � C)
)= (−1)|Y|P(∀y ∈ Y : A∼ y � C).

2. Moreover, ∑
H∈G(A∪B∪C,Y) :
∀y∈Y : A∼y∼B

w(H)=
∏
y∈Y

P
(
A∼ y∼ B, y � C

)
.
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3. Lastly, ∑
H∈G(A,Y) :

E(H)�=∅

w(H)=−P(A∼ Y).

Proof. The first part of the statement is rather straightforward. If Y = {y}, then G(A∪C, {y})
is the set of star graphs (with center y). Observe first that

∑
H∈G(A∪C,{y}) : y∼A

w(H)=
( ∑

H′∈G(A,{y}) : y∼A

w(H′)
)( ∑

H′′∈G(C,{y})
w
(
H′′

))
.

The first sum is over all star graphs in G(A, {y}) except the empty one, the second is over all
star graphs in G(C, {y}), and so

∑
H∈G(A∪C,{y}) : y∼A

w(H)=−
(

1−
∏
x∈A

(1− ϕ(y, x))

)∏
x∈C

(1− ϕ(y, x))=−P(A∼ y � C).

It is an easy induction to prove that for general Y , the sum factors into a product over sums
over star graphs. For the second statement, assume again that Y = {y} and observe that

∑
H∈G(A∪B∪C,{y}) :

A∼y∼B

w(H)=
( ∑

H∈G(A∪C,{y}) : y∼A

w(H)

)( ∑
H∈G(B,{y}) : y∼B

w(H)

)

= P(A∼ y∼ B, y � C),

where the last identity is due to independence. The statement easily extends to general Y (again,
the sum factors).

For the third statement, note that we sum over every graph except the empty one. �
Since the explicit expression for h�

λ

( �W; L
)

is a lengthy product of probabilities, we first
introduce some notation to represent the factors of this product compactly. Let A, B be two
subsets of [k+ 1]0. We define the set of all possible direct stitches in H leading to bonds
αβ ∈ E(Ĥ) with α ∈ A, β ∈ B as

ϒ(A, B) := {
xy⊂W : ∃α ∈ A, β ∈ B with α < β − 1 and x ∈ {uα}∪Vα, y ∈ Vβ−1∪{uβ}

}
,

and we write ϒ(A)=ϒ(A, A). We define

qα,β :=
∏

xy∈ϒ([α,β))∪ϒ((α,β])

(1− ϕ(x− y))

and, for α1 < α2 < α3,

qα1,α2,α3 :=
∏

xy∈ϒ([α1+1,α2),[α2,α3))

(1− ϕ(x− y)).

Note that these products encode the sum over all w-weighted graphs on the set of edges
multiplied over.

To lighten notation, for 0≤ α ≤ β ≤ k+ 1, set

[uα]] := {uα} ∪ Vα, [[uβ ] := Vβ−1 ∪ {uβ},
[uα, uβ ] := {uα} ∪ Vα ∪ · · · ∪ Vβ−1 ∪ {uβ}.
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FIGURE 5. Illustration of the induction proof of Lemma 4.4. The lace L is sketched using dashed lines.
The left picture shows the base case m= 1, where u0 = s1 and uk+1 = t1. To the right, the first three
stitches of L are (partially) sketched. The sets C, D are defined as C= [s2, t1)) and D= [[t1].

We extend this notation further: for a, b ∈ {u0, . . . , uk+1}, let (a, b) := [a, b] \ {a, b}, let
[a, b) := [a, b] \ {b}, and let (a, b] := [a, b] \ {a}. We set ((a, b)) := [a, b] \ ([a]]∪ [[b]) and
define sets ((a, b] etc. accordingly.

Moreover, define

Qα,β = Pλ

(
�y ∈ η� s.t. [uα]]∼ y∼ [[uβ ], y � [uα+1, uβ−1]

)
for β ≥ α+ 2. We extend this notation by writing

QA,B =
∏
α∈A

∏
β∈B

Qα,β

for sets of pivotal points A, B; we abbreviate Qa,[b,c] =Q{a},[b,c].
We are now ready to state Lemma 4.4, for which we recall the definition of h�

λ

( �W; L
)

in
(4.9).

Lemma 4.4. (The shell function of a lace.) Let λ≥ 0 and let �⊂Rd be bounded. Let W ⊂Rd

be a core vertex set with pivot decomposition �W = (u0, V0, . . . , uk+1). Let L be a lace with
vertex set [k+ 1]0 and m bonds αiβi, i ∈ [m]. Then, setting αm+1 = k, we have

h�
λ

( �W; L
)= Pλ(η� �←→W)

m∏
i=1

qαi,βi

[
1−Qαi,βi − P([uαi]]∼ [[uβi ])

]

×
m−1∏
i=1

qαi,αi+1,αi+2 Qαi,(βi,k+1]Q(αi,αi+1),(αi+2,k+1]. (4.10)

Moreover, ∑
n≥0

λn

n!
∫

�n

∣∣∣ ∑
H∈〈〈L〉〉:S(H)=�y[n]

w(H)
∣∣∣ d�y[n] ≤ 2me3λ|W|. (4.11)

Proof. We abbreviate η= η�, h= h�
λ , and prove the statement by induction on m.

Base case. Let m= 1, which means that α1 = 0 and β1 = k+ 1. Set A= [u0]], B= [u1, uk],
and C= [[uk+1]. See Figure 5 for an illustration of A, B, C.

Note first that the edge set ϒ([k+ 1]0) \ E(A, C), that is, the possible direct stitches between
points of W except the direct ones between A and C, do not determine membership of H in
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〈〈L〉〉. Any such edge xy may or may not be present, resulting in a factor (1− ϕ(x− y)) that can
be extracted. In total, this produces the factor q0,k+1, and we can restrict to considering graphs
H ∈ 〈〈L〉〉 that do not possess any such edge. The remaining graphs H only have edges that are
incident to A∪C ∪ S(H).

We split this set of remaining graphs H into those that have a direct stitch between A and C
and those that do not. Among the former, the sum over graphs factors into graphs H′ ∈ G(A, C)
(the direct stitches) and graphs H′′ ∈ G(W, S(H)). With Lemma 4.3,

h
( �W; L

)= q0,k+1

⎡
⎢⎢⎢⎢⎢⎣
∑
n≥0

λn

n!
∫

�n

( ∑
H′∈G(A,C):E(H′)�=∅

w(H′)
)⎛
⎜⎜⎜⎝

∑
H′′∈G(W,�y[n]):

yi∼W∀i∈[n]

w
(
H′′

)
⎞
⎟⎟⎟⎠ d�y[n]

+
∑
n≥0

λn

n!
∫

�n

∑
H∈G(W,�y[n]):

deg (yi)≥1∀i∈[n],
∃i:A∼yi∼C

w(H) d�y[n]

⎤
⎥⎥⎥⎥⎥⎦

= q0,k+1

⎡
⎢⎢⎢⎢⎢⎣−P(A∼C)Pλ(η �←→W)+

∑
n≥0

λn

n!
∫

�n

∑
H∈G(W,�y[n]):

deg (yi)≥1∀i∈[n],
∃i:A∼yi∼C

w(H) d�y[n]

⎤
⎥⎥⎥⎥⎥⎦ .

(4.12)

For now the power series are treated as formal power series; convergence is proven later. To
treat the sum in (4.12), we define

S1 := {y : A∼ y∼C}, S2 := {y : C � y∼ (A∪ B)}, and S3 := {y : C∼ y � A}.
With these definitions, we can partition �y= S(H)= S1 ∪ S2 ∪ S3. Moreover, we know that
S1 �=∅. Re-summing and then applying Lemma 4.3, the sum over n in (4.12) becomes∑

n1,n2,n3≥0

λn1+n2+n3

n1!n2!n3!
∫

�n1+n2+n3

∑
H∈〈〈L〉〉:

Si(H)=�yi,[ni]∀i∈[3]

w(H) d
(�y1,[n1], �y2,[n2], �y3,[n3]

)

=
(∑

n≥1

λn

n!
∫

�n

∑
H∈G(A∪B∪C,�y[n]):
∀i∈[n]:A∼yi∼C

w(H) d�y[n]

)(∑
n≥0

λn

n!
∫

�n

∑
H∈G(A∪B,�y[n]):
∀i∈[n]:yi∼(A∪B)

w(H) d�y[n]

)

×
(∑

n≥0

λn

n!
∫

�n

∑
H∈G(B∪C,�y[n]):
∀i∈[n]:yi∼C

w(H) d�y[n]

)

=
(∑

n≥1

λn

n!
( ∫

�

P(A∼ y∼C, y � B)dy

)n
)(∑

n≥0

λn

n!
(
−

∫
�

P(y∼ (A∪ B)) dy

)n
)

×
(∑

n≥0

λn

n!
(
−

∫
�

P(C∼ y � B) dy

)n
)

. (4.13)
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Recognizing the exponential series in the expression above, we can rewrite the probabilities
with respect to P (appearing in the exponents) as probabilities with respect to Pλ associated
to ξ y, e.g., P(y∼ (A∪ B))= Pλ(y∼ (A∪ B) in ξ y). Then we can apply the univariate Mecke
formula (see (2.1) for m= 1) to rewrite (4.13) as(

eEλ[|{y∈η:A∼y∼C,y�B}|] − 1
)

e−Eλ[|{y∈η:y∼(A∪B)}|]e−Eλ[|{y∈η:C∼y�B}|]

=
(

1− e−Eλ[|{y∈η:A∼y∼C,y�B}|])e−Eλ[|{y∈η:y∼(A∪B)}|]e−Eλ[|{y∈η:C∼y�(A∪B)}|]

=(1−Q0,k+1)e−Eλ[|{y∈η:y∼(A∪B∪C)}|].

Since e−Eλ[|{y∈η:y∼(A∪B∪C)}|] = Pλ(η �←→W), we can plug this back into (4.12) and obtain

h
( �W; L

)= Pλ(η �←→W)q0,k+1

(
1−Q0,k+1 − P(A∼C)

)
on the level of formal power series. Now we prove convergence and check that the previous
computational steps are justified not only on the level of formal power series. We first revisit
Equation (4.13). On the left-hand side, let us put absolute values inside the integral (but outside
the sum over shell graphs H). The resulting expression is bounded by the middle part of (4.13),
again with absolute values inside the integral. Each integrand is bounded in absolute value by
a probability; hence it is smaller than or equal to 1. The resulting series are exponential series
and, in particular, absolutely convergent. As a consequence, Equation (4.13) is justified and the
last sum in (4.12) is bounded as

∑
n≥0

λn

n!
∫

�n

∣∣∣∣∣∣∣∣∣∣∣
∑

H∈G(W,�y[n]):
deg (yi)≥1∀i∈[n],
∃i:A∼yi∼C

w(H)

∣∣∣∣∣∣∣∣∣∣∣
d�y[n]

≤ eEλ[|{y∈η:A∼y∼C,y�B}|]eEλ[|{y∈η:y∼(A∪B)}|]eEλ[|{y∈η:C∼y�B}|]

≤ eEλ[|{y∈η:y∼A}|]eEλ[|{y∈η:y∼(A∪B)}|]eEλ[|{y∈η:y∼C}|]

≤ e2λ|W|, (4.14)

where for the last inequality we use the fact that the expected number of direct neighbors of any
fixed element of W with respect to η is given by λ

∫
ϕ(x) dx, as well as the rescaling introduced

in Section 2.3 ensuring that
∫

ϕ(x) dx= 1; compare this bound to the one used in (3.4). For the
other contribution to h

( �W; L
)
, we notice that

∑
n≥0

λn

n!
∫

�n

∣∣∣∣∣∣∣∣∣
( ∑

H′∈G(A,C):E(H)�=∅
w(H′)

)⎛
⎜⎜⎜⎝

∑
H′′∈G(W,�y[n]):

yi∼W∀i∈[n]

w
(
H′′

)
⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

d�y[n]

≤ P(A∼C) eEλ[|{y∈η:y∼W}|] ≤ eλ|W|, (4.15)

by the same argument as in (4.14).
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Combining (4.14) and (4.15) with (4.12) and 0≤ q0,k+1 ≤ 1, we deduce

∑
n≥0

λn

n!
∫

�n

∣∣∣∣∣∣
∑

H∈〈〈L〉〉:S(H)=�y[n]

w(H)

∣∣∣∣∣∣ d�y[n] ≤ eλ|W| + e2λ|W| ≤ 2e2λ|W| <∞.

Inductive step. For the inductive step, let m > 1. We write the lace L in terms of its vertices
(si, ti) in W (that is si = uαi and ti = uβi ) and let L′ be the lace on W ′ := W \ [s1, s2) obtained
from L by deleting the first stitch. We note that if H ∈ 〈〈L〉〉, then H[[s2, uk+1]] ∈ 〈〈L′〉〉. Observe
that

h
( �W; L

)= h
( �W ′; L′

)∑
n≥0

λn

n!
∫

�n

∑
H∈G(V0,...,Vα3−1,�y[n]) :

H⊕L′∈〈〈L〉〉

w(H) d�y[n]. (4.16)

Again we first prove (4.10) and carry out computations on the level of formal power series;
we prove convergence (and thus (4.11)) at the end. We can apply the induction hypothesis
to h( �W ′; L); it remains to deal with the second factor. We partition the vertices in [s1, s3] as
A= [s1]], B= ((s1, s2), C= [s2, t1)), D= [[t1], and E= (t1, s3] (see Figure 5). If m= 2, we let
E= (t1, uk].

The graphs summed over in (4.16) must satisfy the following restraints: there must be at
least one direct or indirect stitch between A and D, and there cannot be any (direct or indirect)
edge between A and E. In particular, the remaining direct stitches may or may not be there, and
thus can be extracted as the factor qα1,α2,α3 .

We partition S(H)=∪4
i=1Si, where

S1 = {y : A∼ y∼D, N(y)⊆ [s1, t1]}, S2 = {y : A∼ y∼C, N(y)⊆ [s1, t1))},
S3 = {y : ∅ �=N(y)⊆ [s1, s2)}, S4 = {y : B∼ y∼ (C ∪D∪ E), N(y)⊆ ((s1, s3]}.

Again, we intend to split the sum over graphs into those that have at least one direct stitch
between A and D, and those that do not. We can thus rewrite the second factor in (4.16) as

qα1,α2,α3

∑
n≥0

λn

n!
∫

�n

∑
H∈G(V0,...,Vα3−1,�y[n]):

H⊕L′∈〈〈L〉〉,
∀e∈E(H):e∩(A∪D∪�y[n])�=∅

w(H) d�y[n]

= qα1,α2,α3

4∏
i=2

( ∑
ni≥0

λni

ni!
∫

�ni

∑
H∈G(W,�yi,[ni]):S(H)=Si

w(H) d�y[i,[ni]

)

×
[
− P(A∼D)

∑
n≥0

λn

n!
∫

�n

∑
H∈G([s1,s3],�y[n]):

yi∼A∪B∀i∈[n]

w(H) d�y[n]

+
∑
n≥1

λn

n!
∫

�n

∑
H∈G([s1,s3],�y[n]):

yi∼A∪B∀i∈[n]

w(H) d�y[n]

]

= qα1,α2,α3

(
−P(A∼D)eEλ[|{y∈η:y∈S1}|] + eEλ[|{y∈η:y∈S1}|] − 1

)
× exp

{
Eλ[|{y ∈ η:y ∈ S2}|]−Eλ[|{y ∈ η:y ∈ S3}|]+Eλ[|{y ∈ η:y ∈ S4}|]

}
, (4.17)
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where the last identity was obtained using Lemma 4.3. Note that the factor h
( �W ′; L′

)
con-

tains the factor P(η �←→ [s2, uk+1])= e−Eλ[|{y∈η:y∼[s2,uk+1]}|]. Together with this factor, (4.17)
equals

exp
{
Eλ

[− |{y ∈ η : (A∪ B∼ y∼ [s2, uk+1]}| + |{y ∈ η : A∼ y∼D, y � (B∪C)}|
+ |{y ∈ η : A∼ y∼C, y � B}| + |{y ∈ η : B∼ y∼ (C ∪D∪ E)}|]} (4.18)

× Pλ(η �←→W)
(
1−QA,D − P(A∼D)

)
.

It remains to rewrite the argument in the expectation of the exponent in (4.18). Note that

− |{y ∈ η : A∼ y∼ [s2, uk+1], y � B}| − |{y ∈ η : B∼ y∼ [s2, uk+1]}|
+ |{y ∈ η : A∼ y∼ (C ∪D), y � B}| + |{y ∈ η : B∼ y∼ (C ∪D∪ E)}|

=− |{y ∈ η : A∼ y∼ (t1, uk+1], y � (B∪C ∪D)}|
− |{y ∈ η : B∼ y∼ (s3, uk+1], y � (C ∪D∪ E)}|.

This gives two exponential terms. The first is

exp
{
−Eλ

[∣∣{y ∈ η : [uα1 ]]∼ y∼ (uβ1 , uk+1], y �
((

uα1 , uβ1

]}∣∣]}

=
k+1∏

j=β1+1

exp
{
−Eλ

[∣∣{y ∈ η : [uα1 ]]∼ y∼ [[uj], y �
((

uα1 , uj
))}∣∣]}

=Qα1,(β1,k+1].

Similarly, the second exponential term equals Q(α1,α2),(α3,k+1].
Again, we prove convergence and justify the previous computational steps. Revisiting the

left-hand side of (4.17), we insert absolute values inside the integral (and outside the sum over
graphs H). As in the base case, this is bounded by the middle part of (4.17) with absolute values
in the integrals, and each integrand is a probability. With the Mecke equation, we obtain

∑
n≥0

λn

n!
∫

�n

∣∣∣∣ ∑
H∈G(V0,...,Vα3−1,�y[n]):

H⊕L′∈〈〈L〉〉,
∀e∈E(H):e∩(A∪D∪�y[n])�=∅

w(H)

∣∣∣∣ d�y[n]

≤ 2 exp
{
Eλ[|{y ∈ η : y ∈ S1}|]+Eλ[|{y ∈ η : y ∈ S2}|]
+Eλ[|{y ∈ η : y ∈ S3}|]+Eλ[|{y ∈ η : y ∈ S4}|]

}
≤ 2e3λ|A∪B|,

arguing as in (4.14) for the last inequality.
Note that by the induction hypothesis, the term h

( �W ′; L′
)

with absolute values in the

respective integrals is bounded by 2m−1e3λ|W ′|. Since A∪ B and W ′ are disjoint, this proves
(4.11). �

Proof of Proposition 4.1. Again, we abbreviate η= η� and h= h�
λ . First, consider k= 0,

i.e., pivot decompositions with no pivotal points. Then there are no direct stitches, and we have

h(m)( �W, �y[m]
)= (−1)m

m∏
i=1

P(yi ∼W), h
( �W)= Pλ(η �←→W).
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Moreover, ∑
m≥0

λm

m!
∫

�m
|h(m)( �W, �y[m]

)| d�y[m] = eEλ[|{y∈η:y∼W}|] ≤ eλ|W|,

using the same bound as in (4.15). Since this proves the proposition for k= 0, we turn to k≥ 1
and we first prove (4.7).

We rewrite h
( �W)

by explicitly writing out the sum over laces L in terms of the endpoints of
their stitches in W (note that any lace can have at most k stitches). We first exhibit this for k= 2,
where �W = (u0, V0, u1, V1, u2, V2, u3) and there are two different laces. With the abbreviation
Q̃i,j =Qi,j + P([ui]]∼ [[uj]),

h
( �W)= h

( �W; L1
)+ h

( �W; L2
)= Pλ(η �←→W)

(
q0,3

(
1− Q̃0,3

)+Q0,3
(
1− Q̃0,2

)(
1− Q̃1,3

))
= Pλ(η �←→W)

3∑
β1=2

q0,β1

(
1− Q̃0,β1

)[
1{β1=3} + 1{β1<3}

β1−1∑
α2=1

Q0,3
(
1− Q̃α2,3

)]
.

(4.19)

Clearly, this is unnecessarily complicated for k= 2, as the sum over α2 contains only one term
and q0,2 = 1. However, this turns out to be convenient for general k. We use the convention
that Q[a,b],∅ =Q∅,[a,b] = 1. Carefully rearranging the sum over all laces yields

h
( �W)= ∑

L∈L
( �W) h

( �W; L
)= Pλ(η �←→W)

k+1∑
β1=2

q0,β1

(
1− Q̃0,β1

)
Q0,(β1,k+1]

×
[
1{β1=k+1} +

β1−1∑
α2=1

k+1∑
β2=β1+1

qα2,β2

(
1− Q̃α2,β2

)
Q(0,α2],(β2,k+1]Q(0,α2),β2

×
[
1{β2=k+1} +

β2−1∑
α3=β1

k+1∑
β3=β2+1

qα3,β3

(
1− Q̃α3,β3

)
qα1,α2,α3

Q(α2,α3],(β3,k+1]Q(α2,α3),β3 Q(0,α2),(α3,β2)

×
[
1{β3=k+1} +

β3−1∑
α4=β2

k+1∑
β4=β3+1

qα4,β4

(
1− Q̃α4,β4

)
qα2,α3,α4

Q(α3,α4],(β4,k+1]Q(α3,α4),β4 Q(α2,α3),(α4,β3) × · · ·

×
[
1{βk−1=k+1} + 1{βk−1<k+1}

βk−1−1∑
αk=βk−2

qαk,k+1
(
1− Q̃αk,k+1

) ∏
j=k,k+1

qαj−2,αj−1,αj

Q(αk−1,αk),k+1Q(αk−2,αk−1),(αk,βk−1)

]
· · ·

]]]
.

Note that if β = k+ 1 for some i, then the double sum following the corresponding indicator
breaks down to 0. Also, only the innermost bracketed term contains two factors of qa,b,c.

We now show that, starting with the innermost square brackets, the bracketed terms are
bounded by 1 in absolute value.

To lighten notation, we write the innermost sum as
∑b2−1

α=b1
R(α). We split the factor

1− Q̃αk,k+1 = (1−Qαk,k+1)− P([uαk]∼ [[uk+1]).
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This yields two sums
b2−1∑
α=b1

R(α)=
b2−1∑
α=b1

R′(α)−
b2−1∑
α=b1

R′′(α),

where R′ and R′′ are both nonnegative. Now, with the estimate Q(αk−1,α),k+1 ≤Q[βk−2,α),k+1 =
Q[b1,α),k+1, we can bound

b2−1∑
α=b1

R′(α)≤
b2−1∑
α=b1

(1−Qα,k+1)Q[b1,α),k+1

= (1−Qb1,k+1)+Qb1,k+1

b2−1∑
α=b1+1

(1−Qα,k+1)Q[b1+1,α),k+1, (4.20)

which is readily proven to be at most 1 by induction. Moreover,

b2−1∑
α=b1

R′′(α)≤
b2−1∑
α=b1

qα,k+1P([uα]]∼ [[uk+1]). (4.21)

The above summands can be rewritten as the probability of the event that the direct stitch
(α, k+ 1) is present, while all direct stitches (j, k+ 1) for j ∈ (α, k+ 1] are not. Hence, these
are disjoint events for different values of α, and so the sum is at most 1.

In total, we rewrote
∑b2−1

α=b1
R(α) as the difference of two nonnegative values, both at most 1,

proving our claim.
To deal with the summands for 2≤ i < k, we write the double sum as

b2−1∑
α=b1

k+1∑
β=b2+1

R(α, β)

and split the term 1− Q̃αi,βi = (1−Qαi,βi )− P([uαi]∼ [[uβi ]) so that

b2−1∑
α=b1

k+1∑
β=b2+1

R(α, β)=
b2−1∑
α=b1

k+1∑
β=b2+1

R′(α, β)−
b2−1∑
α=b1

k+1∑
β=b2+1

R′′(α, β) (4.22)

for nonnegative summands R′, R′′. We prove a bound on the sum over R′(α, β) by induction on
k− b2. If b2 = k, then the bound is the same as for the bound (4.20). For b2 < k, we first bound
Q(αi,α],(β,k+1] ≤Q[b1,α],(β,k+1] and then extract the summand for β = k+ 1, yielding

b2−1∑
α=b1

k+1∑
β=b2+1

R′(α, β)≤
b2−1∑
α=b1

k+1∑
β=b2+1

(1−Qα,β )Q[b1,α],(β,k+1]Q[b1,α),β

≤
b2−1∑
α=b1

(1−Qα,k+1)Q[b1,α),k+1

+Q[b1,b2−1],k+1

b2−1∑
α=b1

k∑
β=b2+1

(1−Qα,β )Q[b1,α],(β,k]Q[b1,α),β .

(4.23)
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By the induction hypothesis, the double sum in (4.23) is at most 1. Therefore,

b2−1∑
α=b1

k+1∑
β=b2+1

R′(α, β)≤
b2−2∑
α=b1

(1−Qα,k+1)Q[b1,α),k+1

+ (1−Qb2−1,k+1)Q[b1,b2−1),k+1 +Qb2−1,k+1Q[b1,b2−1),k+1

=
b2−2∑
α=b1

(1−Qα,k+1)Q[b1,α),k+1 +Q[b1,b2−2],k+1

= 1,

where the last identity is now an easy induction.
Turning to the second summand in (4.22), by the same argument used to treat (4.21), the

summands R′′(α, β) are probabilities of events which are disjoint for different values of (α, β),
and so they sum to at most 1.

The observation that the bracket term for i= 1 is handled analogously finishes the proof
of (4.7).

We proceed to prove (4.8) for k > 1. By combining Lemma 4.2 with Lemma 4.4, we obtain

∑
m≥0

λm

m!
∫

�m

∣∣h(m)( �W, �y[m]
)∣∣ d�y[m] ≤

∑
L∈Lk

∑
m≥0

λm

m!
∫

�m

∣∣∣ ∑
H∈〈〈L〉〉:S(H)=�y[m]

w(H)
∣∣∣ d�y[m]

≤ 1√
5

(
3+√5

2

)k

2ke3λ|W|.

Using the bound k≤ |W| finishes the proof. �
Lemma 4.5. (Thermodynamic limit of the shell function.) For every λ≥ 0, the pointwise limit

lim
�↗Rd

h�
λ

( �W)= hλ

( �W)
along Rd-exhausting sequences exists.

Proof. Let (�n)n∈N be an Rd-exhausting sequence. For fixed �W = (u0, V0, . . . , uk+1), note
that

h�n
λ

( �W)= ∑
L∈Lk

h�n
λ

( �W; L
)
.

For each lace L, the limit
hλ

( �W; L
)= lim

n→∞ h�n
λ

( �W; L
)

exists and does not depend on the precise choice of Rd-exhausting sequence. This is clear from
the representation for h�

λ

( �W; L
)

proven in Lemma 4.4. In particular, h�
λ

( �W; L
)

is given as the
finite product of �-independent factors and factors that describe the probability of certain point
processes containing no points (namely, Pλ(η� �←→W) and the factors Qi,j). As probabilities
that are decreasing in the volume, the latter admit a �↗Rd limit. It follows that the limit of
the shell function exists as well and is given by

hλ

( �W)= ∑
L∈Lk

hλ

( �W; L
)
.

�
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4.4. The direct-connectedness function in infinite volume

In this section, we consider the limit lim�↗Rd g�
λ with g�

λ as in (4.6) and give suffi-
cient conditions under which it exists, thereby proving the two convergence statements from
Theorem 1.1.

The candidate limit is given by the analogue of (4.6) with � replaced by Rd; the existence
of hR

d

λ ≡ hλ has been checked in Lemma 4.5. Thus,

gλ(x1, x2)=
∞∑

r=0

λr

r!
∫

(Rd)r

∑
�W

⎛
⎜⎝ ∑

G∈G �W
core

w±(G)

⎞
⎟⎠ hλ

( �W)
d�x[3,r+2], (4.24)

where the inner sum is over core graphs G on �x[r+2] with pivot decomposition �W, i.e., over
(+)-connected graphs G on �x[r+2] with PD+(x1, x2, G)=PD±(x1, x2, G)= �W. Remember the
quantities 0 < λ̃∗ ≤ λ∗ introduced before Theorem 1.1. We will see in (4.25) that the sum over
core graphs for a given pivot decomposition is a probability, hence in particular nonnegative.

Theorem 4.1. (The thermodynamic limit of g�
λ : pointwise convergence.) If λ < λ∗, then

∞∑
r=0

λr

r!
∫

(Rd)r

∑
�W

⎛
⎜⎝ ∑

G∈G �W
core

w±(G)

⎞
⎟⎠ ∣∣hλ

( �W)∣∣ d�x[3,r+2] <∞

for all x1, x2 ∈Rd. Moreover, for every Rd-exhausting sequence (�n)n∈N, we have the
pointwise convergence

lim
n→∞ g�n

λ (x1, x2)= gλ(x1, x2)

with gλ given in (4.24) (equivalently, Equation (4.6) with � replaced by Rd).

Theorem 4.2. (Integrability and convergence in the L1-norm.) If λ < λ̃∗, then for all x1 ∈Rd,

∫
Rd
|gλ(x1, x2)| dx2 ≤

∞∑
r=0

λr

r!
∫
Rd

( ∫
(Rd)r

∑
�W

( ∑
G∈G �W

core

w±(G)

)∣∣hλ

( �W)∣∣ d�x[3,r+2]

)
dx2 <∞.

Proof of Theorem 4.1. We consider a summand in (4.24) for fixed �W and set x1 = u0 as
well as x2 = uk+1. Let �W = (u0, V0, . . . , Vk, uk+1). Remember Vi = {ui} ∪ Vi ∪ {ui+1}. A first
important observation is the fact that the weight of a core graph with pivot decomposition �W
factors into the product over the k(±)-subgraphs induced by the vertex sets Vi. The sum over
core graphs thus factors as

∑
G∈C+(W) :

PD+(G)=PD±(G)= �W

w±(G)=
k∏

i=0

( ∑
H∈D+

ui,ui+1 (Vi)

w±(H)

)

=
k∏

i=0

P
(
ϕ(Vi) ∈Dui,ui+1

)

= P

(
k⋂

i=0

{ϕ(Vi) ∈Dui,ui+1}
)

. (4.25)
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Hence, the core can be written as a probability. Combining this with Proposition 4.1,
we get⎛
⎜⎜⎜⎝

∑
G∈C+(W) :

PD+(G)=PD±(G)= �W

w±(G)

⎞
⎟⎟⎟⎠

∣∣h�
λ

( �W)∣∣≤ Pλ(η� �←→W)P

(
k⋂

i=0

{ϕ(Vi) ∈Dui,ui+1}
)

= Pλ

({
C
(
u0, ξW

�

)=W
}
∩

k⋂
i=0

{
ξW
�

[
Vi

] ∈Dui,ui+1

})
.

Above, we used independence as well as the fact that for V ⊆W, the two random graphs
ϕ(V) and ξW [V] are identical in distribution. The inequality holds true for bounded � as well
as �=Rd.

We now go back to (4.6) and rearrange the sum by first summing over the number of pivotal
points k, giving

∞∑
r=0

λr

r!
∫

�r

∑
�W

( ∑
G∈G �W

core

w±(G)

)∣∣h�
λ

( �W)∣∣ d�x[3,r+2]

=
∑
k≥0

λk
∑
n≥0

λn

n!
∫

�k+n

∑
�W

( ∑
G∈G �W

core

w±(G)

)∣∣h�
λ

( �W)∣∣ d�v[n] d�u[k]. (4.26)

In the second term, the sum is over pivot decompositions �W = (u0, V0, . . . , Vk, uk+1) where
u0 = x1, uk+1 = x2, and ∪k

i=0Vi = {v1, . . . , vn}.
When rewriting the integrand of (4.26) as a probability, the event that ui and ui+1 are 2-

connected for i ∈ [k]0 in disjoint vertex sets Vi becomes the event that these connection events
occur disjointly within W; see Section 2 and recall the definition (2.2). The inner series can
thus be bounded as

∑
n≥0

λn

n!
∫

�n

∑
�W

( ∑
G∈G �W

core

w±(G)

)
|h�

λ

( �W)| d�v[n]

≤
∑
n≥0

λn

n!
∫

�n
Pλ

({
C
(

u0, ξ
�u[k],�v[n]
�

)
= �u[k] ∪ �v[n]

}

∩
({

u0 ⇐⇒ u1 in ξu0,u1,�v[n]
} ◦ · · · ◦ {uk ⇐⇒ uk+1 in ξuk,uk+1,�v[n]

}))
d�v[n]

= Pλ

({
u0 ⇐⇒ u1 in ξu0,u1

} ◦ · · · ◦ {uk ⇐⇒ uk+1 in ξuk,uk+1
})

, (4.27)

where the identity is due to the Mecke equation and the fact that by summing over �v, we were
partitioning over what the joint cluster of �u[0,k+1] is. We can now use the BK inequality ([10,
Theorem 2.1]) to bound (4.27) by

k∏
i=0

Pλ

(
ui ⇐⇒ ui+1 in ξ

ui,ui+1
�

)
≤

k∏
i=0

σλ(ui+1 − ui). (4.28)
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Inserting this back into (4.26),

∑
k≥0

λk
∑
n≥0

λn

n!
∫

�k+n

∑
�W

( ∑
G∈G �W

core

w±(G)

)∣∣h�
λ

( �W)∣∣ d�v[n] d�u[k]

≤
∑
k≥0

λkσ
∗(k+1)
λ (x2 − x1). (4.29)

The last expression is finite for λ < λ∗, by the definition of λ∗. The pointwise convergence of
g�n
λ to gλ follows by dominated convergence. �

Proof of Theorem 4.2. If we integrate over x2 in (4.29), this yields the upper bound

λ−1
∑
k≥1

(
λ

∫
σλ(x) dx

)k

,

which is finite for λ < λ̃∗, by definition of λ̃∗. The theorem follows by Fubini–Tonelli and the
triangle inequality. �

5. The Ornstein–Zernike equation

Here we complete the proof of Theorem 1.1. In view of Theorems 4.1 and 4.2, it remains to
prove that the expansion (4.24) is indeed equal to the direct-connectedness function given by
the OZE (1.2). This is proven by showing first that g�

λ from Definition 4.2 fulfills the OZE in
finite volume and then passing to the limit �↗Rd.

The idea of the proof in finite volume is basically well known; the same proof works for the
OZE for the total correlation function.

Proposition 5.1. (The Ornstein–Zernike equation in finite volume.) Let �⊂Rd be bounded
and let x1, x2 ∈�. Then

τ�
λ (x1, x2)= g�

λ (x1, x2)+ λ

∫
�

g�
λ (x1, x3)τ�

λ (x3, x2) dx3.

Proof. We drop the �-dependence in the superscript of τ�
λ and g�

λ . Thanks to
Proposition 3.1, we can re-sum the series expansion for τλ at will. Given a pivot decomposition
�W = (u0, V0, . . . , uk+1) of an arbitrary core graph G with the vertex set W, define

h̄(m)
λ

( �W, �y[m]
)

:=
∑

H∈G(V1,...,Vk,�y[m]):

G⊕H∈C±u0,uk+1

(
W∪�y[m]

)
w(H), h̄λ

( �W)
:=

∑
m≥0

λm

m!
∫

�m
h̄(m)
λ

( �W, �y[m]
)

d�y[m],

(5.1)

in analogy to the shell function hλ in (4.5) (just like the latter, h̄λ only depends on G through
its pivot decomposition �W). To be more precise, the shell function hλ is recovered from h̄λ by
summing over a smaller subset of graphs H in (5.1), adding the restriction that G⊕H shall not
contain (±)-pivot points for the u0–uk+1 connection. Note that

0≤ h̄λ

( �W)= e−Eλ[|{y∈η:y∼W}|] ∏
x,y∈W:�i∈[k]0:{x,y}⊆V̄i

(1− ϕ(x− y))
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FIGURE 6. The schematic representation of a (±)-graph G⊕H in C±u0,u4
(W ∪ �y[3]) illustrates the factor-

ization of the graph weight from Equation (5.2): the edges of H are explicitly depicted in the picture,
while the core graph G is represented by its pivot decomposition (u0, V0, . . . , u4). The vertices �y[3] are
depicted by squares, ordered from left to right. The first (±)-pivot point for the u0–u4 connection in
G⊕H is u2. Thus, the weight of the simple graph H factors into the weight of its subgraph induced by
�W ′

2 ∪ �y[1] = {u0, u1, u2} ∪ V0 ∪ V1 ∪ {y1} (hatched on the left) and the weight of the subgraph induced by
�W ′′

2 ∪ �y[3]\[1] = {u3, u4} ∪ V2 ∪ V3 ∪ {y2, y3} (crosshatched on the right).

and that when replacing hλ with h̄λ in the right-hand side of (4.6), we get τλ instead of gλ. We
can split the sum h̄(m)

λ

( �W, �y[m]
)= h(m)

λ

( �W, �y[m]
)+ f (m)

λ

( �W, �y[m]
)
, where f (m)

λ contains the sum
over those graphs H such that G⊕H does have (±)-pivotal points with respect to the u0–uk+1
connection. We set

fλ
( �W)

:=
∑
m≥0

λm

m!
∫

�m
f (m)
λ

( �W, �y[m]
)

d�y[m].

Assume now that uj for j ∈ [k] is the first pivotal point of G⊕H ∈ C±x1,x2

(
W ∪ �y[m]

)
.

Furthermore, let �W ′
j := (

u0, V0, . . . , uj
)
, let �W ′′

j := (uj, Vj, . . . , uk+1), and let y[s] for s≤m

be the points adjacent to �W ′
j (possibly after reordering the vertices). The weight of such a

graph H then factors into the product of the weights of two graphs, namely the subgraphs of H
induced by �W ′

j ∪ �y[s] ⊂ V(H) and by �W ′′
j ∪ �y[m]\[s] ⊂ V(H); see Figure 6. That is,

w(H)=w
(
H
[ �W ′

j ∪ �y[s]
])

w
(
H
[ �W ′′

j ∪ �y[m]\[s]
])

. (5.2)

Moreover, we see that H
[ �W ′

j ∪ �y[s]
]⊕G

[
W ′

j

]
does not contain (±)-pivot points (for the u0–uj

connection) and H
[ �W ′′

j ∪ �y[m]\[s]
]⊕G

[
W ′′

j

]
is in general just (±)-connected.

By partitioning over j, we thus obtain the decomposition

fλ
( �W)= k∑

j=1

hλ

( �W ′
j

)
h̄λ

( �W ′′
j

)
.

Since both hλ and h̄λ converge absolutely, so does fλ, justifying all re-summations. Letting
x1 = u0 and x2 = uk+1,

(τλ − gλ)(x1, x2)=
∑
k≥1

λk
∑

n0,...,nk≥0

λ
∑k

i=0 ni∏k
i=0 ni!

∫
�

k+∑k
i=0 ni

(
k∏

i=0

P
(
ϕ(V̄i) ∈Dui,ui+1 (V̄i)

))

×
(

k∑
j=1

hλ

( �W ′
j

)
h̄λ

( �W ′′
j

)) k∏
i=0

d�vi,[ni] d�u[k]
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=
∑

j≥1,k≥0

λj+k
∫

�

∑
n0,...,nj+k≥0

λ
∑j+k

i=0 ni∏j+k
i=0 ni!

[ ∫
�

j−1+∑j−1
i=0 ni

j−1∏
i=0

P
(
ϕ(V̄i) ∈Dui,ui+1 (V̄i)

))

× hλ

( �W ′
j

) j−1∏
i=0

d�vi,[ni] d�u[j−1]

]

×
[ ∫

�
k+∑j+k

i=j ni

j+k∏
i=j

P
(
ϕ(V̄i) ∈Dui,ui+1 (V̄i)

))

× h̄λ

( �W ′′
j

) j+k∏
i=j

d�vi,[ni] d�u[j+1,j+k]

]
duj

= λ

∫
�

gλ(x1, u)τλ(u, x2) du.

The re-summation with respect to j and k is justified as the resulting series converges for λ < λ∗
even when we put hλ in absolute values. �

We can now extend the result of Proposition 5.1 to �↗Rd and thus prove that the expan-
sion (4.24) is indeed equal to the direct-connectedness function for λ < λ∗, finalizing the proof
of our main result.

Proof of Theorem 1.1. We have

τλ(x1, x2)= lim
�↗Rd

τ�
λ (x1, x2)

= lim
�↗Rd

g�
λ (x1, x2)+ λ lim

�↗Rd

∫
Rd

g�
λ (x1, x3)1�(x3)τ�

λ (x3, x2) dx3, (5.3)

where the first equality holds by the continuity of probability measures along sequences of
increasing events and the second one by Proposition 5.1.

Note that the integrand in (5.3) is bounded uniformly in � by

Cτλ(x3, x2),

where C= supy∈Rd
∑

k λkσ
∗(k+1)
λ (y) is a constant obtained in (4.29). Since τλ is integrable for

all λ < λc, the theorem follows by dominated convergence. �

6. Discussion

6.1. Connections to percolation on Gibbs point processes

The Ornstein–Zernike equation gets its name from the seminal paper [20] and has since been
a well-known formalism in liquid-state statistical mechanics. It relates the total correlation
function to the direct correlation function and it naturally connects to power series expansions
of these correlation functions (see [6, 23, 24]; the terminology is not the same in all of these
references).

The correlation functions admit graphical expansions that also consist of connected graphs.
It was observed [11] that a similar formalism can be formulated for the pair-connectedness
function, and a key reference for this is [6]. The pair-connectedness function is deemed part
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of the pair-correlation function. The connected graphs appearing in the expansion of the latter
are referred to as ‘mathematical clusters’, and they correspond to our (±)-connected graphs.
Isolating the (+)-connected components within these graphs yields the ‘physical clusters’, and
the graphs in which x1 and x2 lie in the same physical cluster make up the expansion for
τλ(x1, x2). In the following, we elaborate on this.

The percolation models considered in the physics literature are mostly based not on a PPP
(Stell calls the Poisson setup random percolation [24]), but on a Gibbs point process (called
correlated percolation in the language of Stell). (The denomination ‘random percolation’ for
the Poisson setup feels quite misleading for probabilists; but it reflects language commonly
adopted across physics, with ‘random’ understood as ‘completely random’ in the sense of
completely random measures [13], a class comprising the PPP.)

To define the latter, consider a nonnegative pair potential v : Rd →R≥0 and some finite
volume �. Let N(�) be the set of finite counting measures on � and let μ ∈N(�). Then the
energy of {x1, . . . , xn} under the boundary condition μ is

H({x1, . . . , xn} |μ)=
∑

1≤i<j≤n

v
(
xi − xj

)+ n∑
i=1

∑
y∈μ

v(xi − y).

Let f : N(�)→R be bounded. We define a probability measure as

Ez[f ] := 1

�(z)

∑
n≥0

zn

n!
∫

�n
f ({x1, . . . , xn})e−H({x1,...,xn}) d�x[n],

where the partition function �(z) is such that Ez[1]= 1 and z ∈R≥0 is called the activity. If we
denote by η a random variable with law Ez, then η is a point process. Note that we recover the
homogeneous PPP with intensity λ= z by setting v≡ 0.

We can define the RCM ξ on this general point process, and we denote its probability
measure by Pz,ϕ . We furthermore define the (one-particle) density as

ρ1(x)= zEz
[
e−H({x}|η)]= ρ,

and we define the pair-correlation function as

ρ2(x, y)= z2Ez
[
e−H({x,y}|η)].

Again, in the case of a homogeneous PPP with intensity λ= z, we have ρ = z and ρ2 = z2.
Defining the pair-connectedness function as

τz,ϕ(x, y) := Ez,ϕ
[
e−H({x,y}|η)1{x←→y in ξ x,y}

]
,

we can decompose

ρ2(x, y)= z2τz,ϕ(x, y)+ z2Ez,ϕ
[
e−H({x,y}|η)1{x �←→y in ξ x,y}

]
.

In [6], Coniglio et al. define the pair-connectedness function as τ̃z,ϕ =
(
z2/ρ2

)
τz,ϕ .

The function τ̃z,ϕ has a density expansion (note that τz,ϕ is better suited for activity
expansions) that can be found in [6, Equation (12)], which can be obtained from the den-
sity expansion of the pair-correlation function: the latter is obtained by expanding the Mayer
f -functions f (x, y)= e−v(x,y) − 1 in the partition function, which is the starting point of a cluster
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expansion. Splitting the Mayer f -function as f = f+ + f ∗ with f+ = e−v(x,y)ϕ(x− y) and exe-
cuting the same expansion for the correlation function ‘doubles’ every edge into a (+)-edge
and a (∗)-edge. Only summing over graphs in which x and y are connected by (+)-edges yields
the pair-connectedness function.

In general, the graphs appearing in the density expansion are a subset of those in the activity
expansion, namely the ones without articulation points (articulation points were defined after
Proposition 3.1). In the case of a homogeneous PPP, we have λ= z= ρ, and so activity and
density expansion coincide (and the graphs with articulation points cancel out). Moreover,
f+(x, y)=−f ∗(x, y)= ϕ(x− y), and the graphs summed over in the expansion become the
(±)-graphs, yielding the expansion (3.1) for τλ.

It is an interesting question which ideas of this paper can be generalized to RCMs based
on Gibbs point processes. While some aspects generalize without much effort, the crucial
difference lies in the fact that the weight of graphs showing up in expansions for Gibbs point
processes also encodes the pair interaction induced by the potential v. To recover probabilistic
interpretations for terms after performing re-summations and bounds is therefore much more
delicate.

6.2. Connections to Last and Ziesche

In [15], Last and Ziesche use a Margulis–Russo-type formula to prove analyticity of τλ in
presumably the whole subcritical regime. Moreover, they show the existence of some λ0 > 0
(which is not quantified) such that both τλ and gλ have an absolutely convergent graphical
expansion in [0, λ0) that seems closely related to the ones discussed here. We want to illustrate
how to relate the respective expressions.

The two-point function. Last and Ziesche show that τλ(x1, x2) is equal to

∑
n≥0

λn

n!
∫ ∑

J⊂[3,n+2]

(−1)n−|J|P
(
x1 ←→ x2 in ϕ

(�xJ∪{1,2}
)
, ϕ

(�x[n+2]
)

is connected
)

d�x[3,n+2].

(6.1)

We show that the above integrand is the same as the one in (3.1). We can rewrite the one in
(6.1) as

E

[
1{

ϕ

(
�x[n+2]

)
is connected

} ∑
J⊂[n+2]

(−1)n−|J|1{
x1←→x2 in ϕ (�xJ )

}]. (6.2)

Note that now, any nonvanishing J needs to contain {1, 2}. We are now going to observe some
cancellations. For a fixed graph G ∈ C(�x[n+2]

)
,

∑
J⊆[n+2]

(−1)n−|J|1{x1←→x2 in G[�xJ ]} =
∑

I,J⊆[n+2]

(−1)n−|J|1{{1,2}⊆I⊆J}1{C(x1,G[�xJ ])=�xI }

=
∑

I,J⊆[n+2]

(−1)n−|J|1{{1,2}⊆I⊆J}1{G[�xI ] connected}1{∀j∈J\I:xj��xI }

=
∑

{1,2}⊆I⊆[n+2]

(−1)n−|I|1{G[�xI ] connected}

×
∑

J⊆[n+2]\I
(−1)|J|1{∀j∈J:xj��xI }. (6.3)
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Note that for given G and I, defining I(G, I)= {j ∈ [n+ 2] \ I : xj � �xI}, we can rewrite∑
J⊆[n+2]\I

(−1)|J|1{∀j∈J:xj��xI} =
∑

J⊆I(G,I)

(−1)|J|. (6.4)

The only case for which (6.4) does not vanish is when I(G, I)=∅. We can therefore rewrite
(6.3) as∑
J⊆[n+2]

(−1)n−|J|1{
x1←→x2 in G[�xJ ]

} = ∑
{1,2}⊆I⊆[n+2]

(−1)n−|I|1{G[�xI ] connected}1{∀j∈[n+2]\I:xj∼�xI

},
and so (6.2) becomes∑

{1,2}⊆I⊆[n+2]

(−1)n−|I|P
(
ϕ(�xI) is connected, xj ∼ �xI∀j ∈ [n+ 2] \ I

)

=
∑

{1,2}⊆I⊆[n+2]

P
(
ϕ(�xI) is connected

) ∏
j∈[n+2]\I

[∏
i∈I

(
1− ϕ

(
xi − xj

))− 1

]

=
∑

I⊆[n+2]

∑
G

w±(G).

In the last line, summation is over the same set of graphs as in (3.6), with the additional
restriction that V

(
G+

)= I. Resolving the partition over I gives that (6.1) is equal to (3.6).

The direct-connectedness function. In [15, Theorem 5.1], it is shown that there exists λ0 such
that for λ ∈ [0, λ0),

gλ(x1, x2)=
∑
n≥0

λn

n!
∫ ∑

G∈Dx1,x2

(
�x[n+2]

)
∏

e∈E(G)

ϕ(e)

×
∑

H∈C
(
�x[n+2]

)
:

H⊆G

∑
J⊆[n+2] :

x1←→x2 in H[�xJ ]

(−1)n−|J|+|E(G)\E(H)| d�x[3,n+2]. (6.5)

We show that the integrand in (6.5) is equal to the one in (4.1). With the calculations (6.3) and
(6.4) performed for the two-point function, letting Ic = [n+ 2] \ I, we have∑
J⊆[n+2]

(−1)n−|J|1{
x1←→x2 in H[�xJ ]

} = ∑
{1,2}⊆I⊆[n+2]

(−1)n−|I|1{H[�xI ] is connected}1{∀j∈Ic:xj∼�xI in H
}.

The two indicators imply that H is connected, and so∑
H∈C

(
�x[n+2]

)
:

H⊆G

∑
J⊆[n+2]:

x1←→x2 in H[�xJ ]

(−1)n−|J|+|E(G)\E(H)|

=
∑

{1,2}⊆I⊆[n+2]

∑
H⊆G

(−1)n−|I|+|E(G)\E(H)|1{H[�xI ] is connected}1{∀j∈Ic:xj∼�xI in H
}

=
∑

{1,2}⊆I⊆[n+2]

∑
H′∈C(�xI ):

H′⊆G

(−1)n−|I|+|E(G)\E(H′)| ∑
F⊂E(G)∩

(
(I×Ic)∪(Ic

2 )
)

:
∀j∈Ic:F∩(I×{j})�=∅

(−1)|F|. (6.6)
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Note that for the second identity in (6.6), we split the edges of H into those contained in H′
(the subgraph induced by I) and the remaining ones, called F.

When E(G)∩ (Ic

2

) �=∅, the sum over F vanishes. Hence, the sum over I can be reduced to
those I such that G[Ic] contains no edges. For such sets I, we have∑

F⊂E(G)∩(I×Ic):
∀j∈Ic:F∩(I×{j})�=∅

(−1)|F| =
∏
j∈Ic

∑
∅ �=Fj⊆E(G)∩(I×{j})

(−1)|Fj| =
∏
j∈Ic

(−1)= (−1)n−|I|. (6.7)

If we insert (6.7) back into (6.6), the two factors (−1)n−|I| cancel out, and so∑
H∈C

(
�x[n+2]

)
:

H⊆G

∑
J⊆[n+2]:

x1←→x2 in H[�xJ ]

(−1)n−|J|+|E(G)\E(H)|

=
∑

{1,2}⊆I⊆[n+2]:
E(G[Ic])=∅

∑
H∈C(�xI ):

H⊆G

(−1)|E(G)\E(H)|

=
∑

H∈G
(
�x[n+2]

)
:G�H

1{{1,2}⊆V(H)}(−1)|E(G)\E(H)|, (6.8)

where G � H means that E(H)⊆ E(G), the subgraph of H induced by the vertices incident
to at least one edge (call this set V≥1(H)) is connected, and the subgraph of G induced by
[n+ 2] \ V≥1(H) contains no edges.

With the identity (6.8), and letting X = �x[n+2], the integrand of (6.5) is equal to∑
H∈G(X):

{x1,x2}⊆V≥1(H),
H[V≥1(H)] connected

∏
e∈E(H)

ϕ(e)
∑

F⊆(X
2)\E(H):

∀e∈F:e∩V≥1(H)�=∅,

(X,F∪E(H))∈Dx1,x2 (X)

(−1)|F|
∏
e∈F

ϕ(e)

=
∑

H∈G(X):
x1←→x2

∏
e∈E(H)

ϕ(e)
∑

F⊆(X
2)\E(H):

(X,F∪E(H))∈Dx1,x2 (X)

(−1)|F|
∏
e∈F

ϕ(e)

=
∑

C∈D±
x1,x2

(X):

x1
+←→x2

w±(G). (6.9)

The argument for the first identity in (6.9) is the same as for the identity of (3.6) and (3.7).

6.3. Connections to the lace expansion

Both the graphical power series expansions and the lace expansion provide expressions for
the direct-connectedness function. In this section, we show how to get from one to the other.
Note that the statements to follow hold for sufficiently small intensities and cannot replace
the lace expansion, which works all the way up to λc. The emphasis of this section is on the
qualitative nature of the results.

We first summarize some results of [10], where the lace expansion is applied to the RCM.
We keep some of the definitions brief and informal, and we refer to [10] for the detailed
definitions in these cases.

https://doi.org/10.1017/apr.2022.22 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.22


The direct-connectedness function in the random connection model 215

On the lace expansion. In [10], among other things, the OZE is proved for τλ in high dimen-
sion (and for certain classes of connection functions ϕ; see [10, Section 1.2]). In particular, it
is shown that

gλ(x)= ϕ(x)+�λ(x),

with �λ(x)=∑
n≥0 (−1)n�

(n)
λ (x). The functions �

(n)
λ are called the lace-expansion coeffi-

cients; they are nonnegative and have a quite involved probabilistic interpretation. To briefly

define them, let
{
x

A←→ y in ξ x,y
}

be the event that x←→ y in ξ x,y, but x is no longer connected
to y in an A-thinning of ηy. Informally, every point z ∈ η survives an A-thinning with probability∏

y∈A (1− ϕ(z− y)). See [10, Definition 3.2] for a formal definition. Letting

E
(
x, y; A, ξ x,y)= {

x
A←→ y in ξ x,y}∩ {

�w ∈Piv
(
x, y; ξ x,y) : x

A←→w in ξ x},
we introduce a sequence ξ0, . . . , ξn of independent RCMs and define

�
(0)
λ (x) := σλ(x)− ϕ(x),

�
(n)
λ (un) := λn

∫
Pλ

({
0⇐⇒ u0 in ξ

0,u0
0

}∩ n⋂
i=1

E
(

ui−1, ui; C
(
ui−2, ξ

ui−2
i−1

)
, ξ

ui−1,ui
i

))
d�u[0,n−1]

(6.10)

for n≥ 1 (with u−1 = 0). The method of proof is called the lace expansion, a perturbative
technique in which one first proves via induction that

τλ(x)= ϕ(x)+
n∑

m=0

(−1)m�
(m)
λ (x)+ λ

((
ϕ +

n∑
m=0

(−1)m�
(m)
λ

)
∗ τλ

)
(x)+ Rλ,n(x) (6.11)

for n ∈N0 and some remainder term Rλ,n (see [10, Definition 3.7]), and then shows that the
partial sum converges to �λ = gλ − ϕ and that Rλ,n → 0 as n→∞.

The lace expansion was first devised for self-avoiding walks by Brydges and Spencer [3] and
takes some inspiration from cluster expansions. It was later applied to percolation (specifically,
bond percolation on Zd) by Hara and Slade [8]. While the name stems from laces that appear in
the pictorial representation in [3], laces are absent in the representation for percolation models.

We show that we can rewrite �
(n)
λ in terms of graphs that are associated to a lace of size

n. More generally, rewriting �
(n)
λ should serve as a bridge between the graphical expansions

for gλ that are well known in the physics literature, and the expression for gλ in terms of
lace-expansion coefficients.

The big advantage in the lace expansion lies in the probabilistic nature of all the terms that
appear, allowing one to bound most of the integrals that appear by the expected cluster size,
which is finite for λ < λc. The downside is the absence of a direct expression for gλ and thus a
direct proof of the OZE, which is only obtained after performing the n→∞ limit in (6.11).

We now show how to re-sum the graphical expansion for τλ and how to obtain the lace-
expansion coefficients by appropriate grouping of terms.

Building the connection. For x, y ∈ X, let C̃±x,y(X)⊂ C±(X) be the set of graphs in C±(X) such
that G+ is connected and contains {x, y}, and E(G[V \ V+])=∅. Hence, all (−)-edges are
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incident to at least one vertex in V
(
G+

)
. This is exactly the set of graphs summed over in (3.6).

Indeed,

τλ(x1, x2)=
∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈C̃±x1,x2

(
�x[n+2]

) w±(G) d�x[3,n+2]. (6.12)

If we define D̃±x,y(X) := D±x,y(X)∩ C̃±x,y(X), we can express gλ(x1, x2) by replacing the graphs

summed over in (6.12) by D̃±x,y
(�x[n+2]

)
.

We are going to recycle some notation from Section 4. We split G into its core Gcore and its
shell H, so that

PD+(x, y, Gcore)=PD±(x, y, Gcore)= (u0, V0, u1, . . . , uk, Vk, uk+1)

for some k (where u0 = x and uk+1 = y). We also recall that G ‘contains’ a skeleton (see
Definition 4.3), a graph on [k+ 1]0.

Definition 6.1. (The minimal lace.) Let G be a graph with core Gcore and shell H; let
�W = (u0, V0 . . . , uk+1) for k ∈N be its (+)-pivot decomposition. We define the minimal lace
Lmin(x, y; G) as the lace with the following properties:

• L (having bonds αiβi with i ∈ [m] for some m ∈N) is contained as a subgraph in the
skeleton Ĥ;

• for every i ∈ [m], among all the bonds αβ in Ĥ satisfying α < βi−1, the bond αiβi

maximizes the value of β. For i= 1, we take β0 = 1.

If Piv+(x, y; G)=∅, we say that G has a minimal lace of size 0.

In other words, the first stitch 0β1 maximizes the value of β1 among all stitches starting at 0,
the second stitch has a maximal value of β2 among the stitches with 1≤ α2 < β1, and so on.

As a side remark, it is worth noting that the minimal laces offer an alternative way of par-
titioning the set of all shell graphs by mapping every shell graph H onto its minimal lace.
This gives a standard procedure used in lace expansion for self-avoiding walks; performing it
‘backwards’ yields precisely the mapping described below Definition 4.4.

With the notion of minimal laces, we partition

gλ(x1, x2)=
∑
m≥0

π
(m)
λ (x1, x2), (6.13)

where

π
(m)
λ (x1, x2) :=

∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈D̃±

x1,x2

(
�x[n+2]

)
:

‖Lmin‖=m

w±(G) d�x[3,n+2]. (6.14)

We also set π
(m)
λ (x)= π

(m)
λ (0, x).

We strongly expect that the (pointwise) absolute convergence of the power series on the
right-hand side of (6.14) holds (at least) in the domain of absolute convergence of the physi-
cists’ expansion (4.1) and thus, as already discussed, for sufficiently small intensities λ > 0.
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However, a proof would go beyond the scope of the discussion here; therefore we formulate
the absolute convergence of π

(m)
λ (in the above sense) as an assumption for the following result

(Lemma 6.1).

Assumption 6.1. There exists 0 < λ� ≤ λc such that the right-hand side of (6.14) is (point-
wise) absolutely convergent for all m ∈N and λ < λ�.

Under Assumption 6.1, we show that the coefficients defined in (6.14) are basically identical
to the lace-expansion coefficients introduced in (6.10).

Lemma 6.1. (Identity for the lace-expansion coefficients.) Let m≥ 1 and let λ < λ�. Then

�
(0)
λ (x)= π

(0)
λ (0, x)− ϕ(x),

(−1)m�
(m)
λ (x)= π

(m)
λ (0, x).

As a side note, since �
(m)
λ is nonnegative, Lemma 6.1 shows that the sign of π

(m)
λ alternates,

which is far from obvious from the definition in (6.14).
Next, we prove an approximate version of the OZE in analogy to [10, Proposition 3.8].

Clearly, Lemma 6.2 follows immediately from the latter via Lemma ; however, we want to
present a short independent proof on the level of formal power series, which we consider
instructive for the understanding of the underlying combinatorics. We emphasize that the proof
presented here treats the claim of Lemma 6.2 as an identity between formal power series;
in particular, we do not concern ourselves with absolute convergence of the power series
appearing in (6.20) and in (6.21).

Lemma 6.2. (The lace expansion in terms of (±)-graph coefficients.) Let m ∈N0, let λ < λ�,

and set πλ,m(x) := ∑m
i=0 π

(i)
λ (0, x). Then

τλ(x)= πλ,m(x)+ (
πλ,m ∗ τλ

)
(x)+ Rλ,m(x),

where Rλ,m is defined in [10, Definition 3.7].

Before carrying out the proof of Lemma 6.1, we define

ϕ̄(A, B)=
∏
a∈A

∏
b∈B

(1− ϕ(a− b))

and ϕ̄(a, B)= ϕ̄({a}, B). Now, observe that, given a set A⊂Rd and an RCM event F,

∑
n≥0

λn

n!
∫

(Rd)n
ϕ̄
(
A, �v[n+2]

) ∑
G∈C̃±v1,v2

(�v[n+2]) :

G+∈F

w±(G) d�v[3,n+2] = Pλ

(
ξ
(
η

v1,v2〈A〉
) ∈ F

)
, (6.15)

where ξ (η) is the RCM on the basis of the point process η and ηv
〈A〉 is an A-thinning of ηv (the

usual PPP of intensity λ and added point v). In particular, v may be thinned out as well. We
remark that η〈A〉 has the same distribution as a PPP of intensity λϕ̄(A, ·).
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FIGURE 7. Illustration for the proof of Lemma 6.1. On the left, we see an example graph G ∈B; the grey
bags on the bottom represent PD+(u−1, um, G) (note that there can be pivotal points within a grey bag).
The minimal lace Lmin is not depicted; however, note that pm ∈ B. On the right, we see a schematic zoom
into G[Z], where Z =�z[n], together with the partition Z = S ∪ T .

Proof of Lemma 6.1. The statement for m= 0 is clear. For m > 0, we can rewrite π
(m)
λ as

π
(m)
λ (u−1, um)= λm

∫
(Rd)m

∑
k,n≥0

λk+n

k!n!
∫

(Rd)k+n

∑
G∈B

w±(G) d
(�u[0,m−1], �x[k], �z[n]

)
, (6.16)

where B⊆ D̃±u−1,um

(�u[−1,m] ∪ �x[k] ∪�z[n]
)

are the graphs such that

• u0 is the first pivotal point in Piv+(u−1, um; G) (i.e., ord(u0)= 2);

• �u[0,m−1] ⊆Piv+(u−1, um; G) and ui−1 ≺ ui;

• there are points p2, . . . , pm such that Lmin =̂ {(u−1, u1), (p2, u2), . . . , (pm, um)};
• �z[n] are those vertices z /∈ {um−1, um} in G such that {z} ∪N(z) contains at least one vertex

y of order y" um−1.

Given a graph G ∈B, let B denote the set of points x in V
(
G+

)
with um−2 � x≺ um−1. See

Figure 7 for an illustration of such a graph G. We integrate out the points �z first and claim that
their contribution to (6.16) is

λ
∑
n≥0

λn

n!
∫

(Rd)n

∑
H∈B�

w±(H) d�z[n] =−λPλ

(
E
(
um−1, um; B, ξum−1,um

))
, (6.17)

where every H ∈B� is the subgraph of some G ∈B and has vertex set B∪ {um−1, um} ∪ �z[n]
and precisely those edges in G that have at least one endpoint in {um} ∪ �z[n].

We let y be the last pivotal point in V
(
G+

)
, that is, ord(y)= ord(um)− 2. We write Z =�z[n]

and split Z once more into those vertices ‘in front of’ and ‘behind’ y; that is, Z = S ∪ T , where
T are the points in G+ of order ord(um)− 1 together with the points in V \ V

(
G+

)
that are

adjacent to the former, and S= Z \ T . Possibly y= um−1, in which case S=∅. See Figure 7
for an illustration of this split of the vertices in Z.

Note that there are no restrictions on the (−)-edges between B and S ∪ {y}, whereas there
must be at least one (−)-edge between B and T ∪ {um}. There are no restrictions on the
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(−)-edges between {um−1} ∪ S ∩ V
(
G+

)
and T ∪ {um}, whereas there cannot be any (−)-edges

between S \ V
(
G+

)
and T ∪ {um}. By distinguishing whether or not S=∅, we find that the

left-hand side of (6.17) is equal to

∑
n≥0

λn

n!
∫

(Rd)n

(
ϕ̄(B, �z[n] ∪ {um})− 1

) ∑
G∈C̃±um−1,um

(
{um−1,um}∪�z[n]

)
:

um−1
+⇐⇒um

w±(G) d�z[n]

+ λ
∑
k≥0

λk

k!
∫

(Rd)k+1
ϕ̄
(
B, �s[k] ∪ {y}

) ∑
H∈C̃±um−1,y

(
{um−1,y}∪�s[k]

)
:

um−1
+←→y

w±(H)

×
(∑

n≥0

λn

n!
∫

(Rd)n

(
ϕ̄(B,�t[n] ∪ {um})− 1

)
ϕ̄
(
V+(H) \ {y},�t[n] ∪ {um}

)
∑

G∈C̃±y,um ({y,um}∪�t[n]) :

y
+⇐⇒um

w±(G) d�t[n]

)
d�s[k] dy

= Pλ

(
um−1 ⇐⇒ um in ξ

({um−1} ∪ η
um〈B〉

))− Pλ

(
um−1 ⇐⇒ um in ξum−1,um

)
+ λ

∫
Rd

Eλ

[
1{

um−1←→y in ξ
(
{um−1}∪η

y
〈B〉
)}

×
(
Pλ

(
y⇐⇒ um in ξ

(
{y} ∪ η

um
〈B∪C〉

))
− Pλ

(
y⇐⇒ um in ξ

(
{y} ∪ η

um
〈C〉

)))]
dy,

(6.18)

where we abbreviate C=C(um−1, ξum−1 ). Note that the inner probabilities are conditional on
the random variable C. We now resolve the integral over y by use of the Mecke equation and
incorporate the first two summands as the case y= um−1. With this, (6.18) becomes

Eλ

[ ∑
y∈ηum−1

1{
um−1←→y in ξ

(
{um−1}∪η

y
〈B〉
)}1{

y⇐⇒um in ξ
(
{y}∪(ηum\C ′)〈B〉

)}]

−Eλ

[ ∑
y∈ηum−1

1{
um−1←→y in ξum−1

}1{
y⇐⇒um in ξ

(
ηum\C ′

)}], (6.19)

where C ′ =C
(
um−1, ξ

(
ηum−1 \ {y})). But both terms in (6.19) are simply a partition over the

last pivotal point for the connection between um−1 and um, and so (6.19) equals

Pλ

(
um−1 ←→ um in ξ

(
{um−1} ∪ η

um〈B〉
))
− τλ(um − um−1)=−Pλ

(
E
(
um−1, um; B, ξum−1,um

))
,

proving (6.17). Lemma 6.1 can now be proven by iteratively applying (6.17). �
Proof of Lemma 6.2. For m ∈N0, we can write

τλ(x1, x2)=
m∑

l=0

π
(l)
λ (x1, x2)+

∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈A

w±(G) d�x[3,n+2], (6.20)
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where A is the set of graphs G ∈ C̃±x1,x2

(�x[n+2]
) \ D̃±x1,x2

(�x[n+2]
)

together with the graphs G ∈
D̃±x1,x2

(�x[n+2]
)

where ‖Lmin‖> m. Note that if G ∈A, then Piv+(x1, x2; G) �=∅.
For G ∈A and u ∈Piv+(x1, x2; G), define

V�(u) := {y ∈ V
(
G+

)
: y � u} ∪ {y ∈ V(G) \ V

(
G+

)
: ∃z ∈N(y)∩ V

(
G+

)
with z≺ u},

that is, all the core vertices of order at most that of u together with the shell vertices adjacent to
at least one vertex of strictly smaller order than u. Next, let ucut = ucut(x1, x2; G) be the vertex
in Piv+(x1, x2; G) such that

E
(
V�(

ucut) \ {ucut}, V \ V�(
ucut))=∅ and G

[
V�(

ucut)] ∈ D̃±x1,ucut .

If such a point exists, it is unique; if no such point exists, set ucut = x2. We can now partition
A as

A=
(

m⋃
i=1

Ai

)
∪A>m,

where

Ai := {
G ∈A : ucut �= x2 and

∥∥Lmin
(
x1, ucut; G

[
V�(

ucut)])∥∥= i
}
,

A>m := {
G ∈A :

∥∥Lmin
(
x1, ucut; G

[
V�(

ucut)])∥∥> m
}
.

Now, if xs = ucut and V ′ := V�(ucut) as well as V ′′ := {xs} ∪
(�x[n+2] \ V ′

)
, then

w±(G)=w±
(
G
[
V ′

])
w±

(
G
[
V ′′

])
;

that is, the weight factors. Therefore, for every i ∈ [m],

∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈Ai

w±(G) d�x[3,n+2] = λ

∫
Rd

π
(i)
λ (x1, u)τλ(u, x2) du. (6.21)

Setting

R̄λ,m(x2 − x1) :=
∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈A>m

w±(G) d�x[3,n+2],

we can rewrite (6.20) as

τλ(x)= πλ,m(x)+ λ
(
πλ,m ∗ τλ

)
(x)+ R̄λ,m(x).

One can now prove by hand or by employing Lemma 6.1 that R̄λ,m = Rλ,m. �

6.4. Other percolation models

The results of this paper should apply in quite analogous fashion to all other percolation
models that enjoy sufficient independence—in particular, to (long-range) bond and site perco-
lation on Zd. We take bond percolation on Zd with edge parameter p as an example. We can
adjust our notation by using C(x, y,Zd

)
to denote the connected subgraphs of Zd containing x
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and y, and we define Dx,y(Zd) and the notions for (±)-graphs analogously. Then one can show
that, if we restrict to a finite box �⊂Zd, the two-point function satisfies

τ�
p (x1, x2)=

∑
n≥0

pn
∑

G∈C±(x1,x2,�):|E(G)|=n,

x1
+←→x2

(−1)|E−(G)|. (6.22)

One can easily observe that all graphs summed over in (6.22) that contain more than one
(+)-cluster cancel out, which is also what happens in the RCM. The direct-connectedness
function can be defined analogously to Definition 4.2, providing a suitable setup for an analysis
analogous to the one in Section 4.
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