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WITTS THEOREM FOR QUADRATIC FORMS 
OVER NON-DYADIC DISCRETE VALUATION RINGS 

DAVID MORDECAI COHEN 

Introduction. Let 7? be a discrete valuation ring, with maximal ideal pR, 
such that \ G 7?. Let L be a finitely generated Tv-module and B : L X L —> 7? a 
non-degenerate symmetric bilinear form. The module L is called a quadratic 
module. For notational convenience we shall write xy = B(x, y). Let O(L) be 
the group of isometries, i.e. all 7?-linear isomorphisms <p : L —> L such that 
B((p(x), (f(y)) = B(x, y). Given two submodules M and N of L and an iso-
metry r : M —> TV defined on M, we shall find necessary and sufficient condi­
tions for T to extend to L, i.e. there exists <£ Ç 0(L) such that ^ f I = r. 

Our starting point is the observation that when L is unimodular (i.e. the 
form B : L X L —> 7? induces an isomorphism L ^ Hom^ (L,7?)), our theorem 
can be proved by imitating the proof of Witt's theorem for L/pL over the field 
R/pR. We are therefore led to define, for an arbitrary quadratic module L, 
a family of invariant submodules Lj such that L = lim<_ L/Lj} and the induced 
bilinear forms B : L / L ; X 7./!^ —> R/pj are non-degenerate. Since the "forms" 
L/Lj are non-degenerate, the submodules Lj are in some sense more "natural" 
for the study of quadratic forms than the usual filtration, pjL. Using the Lj 
we define a family of normal subgroups Oj(L) which form a neighborhood 
system of the identity of 0(L) in the usual topology. 

For L/Lj we show that if M + Lj_x = N + L;-_i then only a length and a 
primality condition are needed to give an isometry <p G 0(L) such that 
(p(M) + Lj = TV + 7^. Since L = lim L/L;- we use a limit argument to prove 
our theorem for L. 

To illustrate the techniques involved we first prove the theorem for the case 
of two vectors x and y with x2 = y2. This case is originally due to James and 
Rosenzweig [1]. The main theorem generalizes a theorem of Band [2]. 

We will first assume that 7? is complete. The non complete case follows by an 
easy argument (cf. [1] and [5]). 

Section I. In this section we discuss the topologies on L and 0(L) which are 
induced by the valuation on R. 

Definition. For x G L, we define ord (x) = min {ord# (xy)\ for all y Ç L). 

Clearly, 
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i) ord (ax) = ord (a) + ord (x) for any a Ç R 
ii) ord (x + y) ^ min {ord (x), ord (3/)} 

iii) ord (x) S ord (x2) 
iv) If L = Li J_ L 2 a n d x = Xi + x2 ,X; £ Lt-, then ord (x) = min {ordLi(Xi)} 

By selecting a vector xi, such tha t ord (xi) is a minimum, we can decompose 
L = (xi) ± Li. By induction, we can prove tha t L is an orthogonal sum of 
lines. Therefore by property iv) above it follows tha t for a large integer N, 
if ord (x) > N, then x Ç pL. 

We now define the submodules Lj. 

Definition. Lj = {x £ L\ord (x) ^ j ) 

Clearly then, 
( l . l ) i O i / + 0 ^ for all j , 
(1.2) Ly CpL for a l i i > JV, 
(1.3) L , + 1 = £ L , j > TV. 

From properties (1.1) and (1.3) it follows tha t the topology on L induced 
by the Lj agrees with the £>-adic topology. Therefore L = lirm_ L/Lj. Since for 
any isometry <p £ 0(L), ord (x) = ord (<p(x)), the submodule Lj is invariant , 
i.e. <p(Lj) = Lj. Clearly the induced forms B : L/LjXL/Lj —» R/pj are non-
degenerate. 

The orthogonal group 0(L) has a natural £-adic topology inherited from R 
in which it is complete. 

Definition. Oj(L) = {<p £ 0(L)\ for all x £ L, <^(x) = x(mod £ , ) } • 

Since the L ; are invariant under the action of 0(L), the Oj(L) are normal 
subgroups. Since L = lim<_ L/Ljy the Oj(L) satisfy 

(1.4) 0,(L) D 0j+1(L) 
(1.5) n O / L ) = | 1 ) . 

The Oj(L) therefore form a neighborhood of the identi ty in 0(L). 

We now define some special types of vectors. 

Definition, v Ç S£ is orthogonal if ord (y) = ord (^2), or equivalently if L = 

If v is orthogonal of order j , then for any x £ L, ord (xz/) ^ ord (v2) and so 
(r:r/z/2)z; G Lj. Therefore the reflection about v, defined as usual by setting 
<JV(X) = x — 2 (vx/v2)v [4], is an isometry of L. Since av

2 = 1, if v = w(mod Lk) 
and w is also orthogonal then <JW(X) = <rv(v) (mod Lfc), <TV<TW(X) = x (mod L/c) 

and <TV(JW £ 0k(L). 

Definition. A vector z; Ç L is called simple if there exists a vector w, neces­
sarily also simple, such tha t ord (v) = ord (vw) = ord (w). 
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Since ord (pwv) > ord (wv) ^ ord (w), a simple vector v is primitive (i.e. 
v (t pL). If v is simple, and ord (z) > ord (z;), then ord ((v + z)w) = ord (vw) 
= ord (w) = ord (v + s) and v + s is also simple. If i> is orthogonal then 
ord (v) = ord (v2) and z; is simple. Therefore simple vectors are a generaliza­
tion of orthogonal vectors. Our interest in them is further explained by the 
following lemma. 

LEMMA 1. Let x Ç L be primitive. Then there exists v and z Ç L such that 
x = pz + v and either v is orthogonal, or v is simple and isotropic (i.e. v2 = 0). 

Proof. Using an orthogonal basis of L, we can write x = pzx + u where u 
is the sum of mutually perpendicular orthogonal vectors. Such a vector is 
simple. If u is orthogonal then set v = u. 

If ord (u2) > ord (u) then choose w £ L such that ord (u) = ord (TO) = 
ord (w). Using Hensel's lemma we can find an a 6 R such that (apw + u)2 = 
0. Since ord (apw) > ord (w) = ord (u), apw + u is simple. Then set z = 
2i — a^w and v = apw + u. 

If ^ is a simple vector for which ord (v2) > ord (v) then using Hensel's 
lemma we can find a simple isotropic vector v* such that ord (v) = ord (w*) = 
ord (v*). Therefore we have an isotropic vector v* such that L = {ZJ, v*} _L X. 

Definition. The exponent of a vector x modulo L& will denote the greatest 
integer / for which there is a z £ £ such that 

x = plz (mod Lfc). 

If x ? £>L + L*. then x has exponent zero modulo Lk and is called primitive 
modulo Lk. 

Note that if tk is the exponent of x modulo Lk then ^ ^ Z +̂i. Suppose that 
x £ plL and x $ pt+lL, i.e. x has exponent / in L. Suppose that N is sufficiently 
large so that for all j > N,Lj C pL.Then L3+t C pt+1L and x g £'+1L + Lj+t. 
Therefore for all k > N + / the exponent of x modulo Lk equals t. In particular 
if x is primitive in L and & is large, then x is primitive modulo Lk. Conversely 
if x is primitive modulo Lk, for any k, then x $ £>L + Lk and x is primitive 
in L. If z; is simple and ord (v) < k, then z; is primitive modulo Lk. 

LEMMA 2. If ord (x) = & and x is primitive modulo Lk+i, then x is simple. 

Proof. Write x = pz + v for some simple vector v. Since x is primitive 
modulo Lk+i, ord (v) ^ k. Choose a simple vector w such that ord (v) — 
ord (zw) = ord (w). Then 

& ̂  ord (xw) = ord (£sw + zw) = ord (zw) = ord (v) S k 

Therefore ord (xw) = ord (w) = &, and x is s'mple. 

COROLLARY. If v is simple, ord (v) ^ k, v = w(moà Lk) and w is primitive 
modulo Lk+i, then w is simple and ord (v) — ord (w). 
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Proof. If ord (v) < k, then w = v + z where ord (z) ^ k > ord (v). Then it 
is clear that w is simple and that ord (w) = ord (v). If ord (v) = k, then 
ord (w) = k and the lemma applies. 

If % = plX\ = plx2 (mod Lk) then pl(xi — x2) G Lk, x\ = x2 (mod Lk-t) 
and Xi2 = x2

2 (mod pk~l). Therefore even though the vector x\ is not unique 
its length modulo pk~l is an invariant of x. Thus we make the following 
definition. 

Definition. For x and y G L, we shall write x œ 3> (mod Lk) if 
1) x and y have the same exponent t modulo Lky and 
2) given any xi and 3/1 such that x = plX\ and y = ply\ (mod Lk) then 

X12 = 3;^ (mod pk-1). 

Remark 1. xtty (mod Lk) does not necessarily imply that xtty (modLk_i). 
However if the exponent of x and y modulo Lk equals the exponent of x and y 
modulo Lk_i then a fortiori x & y (mod 1^) does imply that x tt y (mod Lk_i). 
Since for large enough &, the exponent of x and 3> modulo Lk equals the exponent 
of x and y in L, if x2 = ;y2 then for all sufficiently large k, x tt y (mod Lk). 

LEMMA 3. The congruence relation x tt y (mod Lk) satisfies the following 
properties. 

1) If <p G 0(L), then for all k,x tt <p(x) (modL*). 
2) If x = y (mod Lk), then x tt y (mod L*) 
3) If px œ ^ (mod Lfc), /&ew x œ y (mod L*-i) 
4) / / v is simple, ord (v) ^ &, and v = w (mod Lfc) /Aew £2 + v tt pz + w 

(mod Z^+i) implies that w is simple and that v tt w (mod Lk+i). 

Proof. Only (4) is not immediate. Since ord (v) ^ k, pz + v and pz + w, 
and therefore w are all primitive modulo Lk+i. By the corollary to Lemma 2, 
since y = w (mod L*), w is simple. Finally 

0 = (pz + w)2 - (pz + v)2 = 2pz(v - w) + (w2 - v2) 

= w2 - v2 (modpk+1). 

In Section 2 we shall prove that ii x tt y (mod Lk) for all k, then there is an 
isometry <p G 0(1/) such that <p(x) = 3>. By Remark 1, if x2 = y2 and x and y 
have the same exponent in L, then for all large k, x tt y (mod Lk). Therefore 
the theorem will involve only a finite number of k. In particular if L is uni-
modular, then Lk = pkL and for primitive vectors x and y we will get Witt's 
original theorem, i.e. x2 = y2 if and only if there exists <p G 0(L), <p(x) = y. 

Section 2. We now prove that if x œ y (mod Lfc) for all k, then there is an 
isometry cp G 0(L) such that <p(x) = y. We prove this first for simple vectors 
and then use the properties of Lemma 3 to extend it to all x and y in L. 

LEMMA 4. Let v be a simple vector such that ord (v) ^ k and either vis orthogonal 
or v is isotropic. Then for any w G L such that 
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i) v = w (mod Lk) 
ii) v tt w (mod Lk+i) 

there exists an isometry <p G 0(L) such that <p(v) = w (mod Lk+i). 

Proof. By Lemma 3, we already know that w is simple. Let u = v — u. Then 
u G Lk. If u were orthogonal, then au 6 Ok(L). 

Since w = A — w, and v2 = w2 (mod pk+1), 

au(v) = v - [2(»-^(ft - w)2](v - w) = v - (ft - w) = w (mod Lk+l). 

Then <p = au is the desired isometry. 
Therefore we may assume that ord (u2) > ord (u) ^ k. Since?;2 = (w + u)2 

= w2 + 2wu (mod pk+1), 

(2.1) wu = vu = u2 = 0 (mod £>*+1). 

If ^ is orthogonal, then ord (w) = ord (ft) = ord (ft2) = ord (w2) and w is 
orthogonal. Similarly it follows from (2.1) that ft + w = 2w + u is also 
orthogonal. Following the proof of Witt's theorem for a field, av+w(v) = — w 
(mod Lk+i) and (TW<TV+W(V) = w (mod Z^+i). Since 2^ = v + if (mod Lfc), 
(T2W(TV+W 6 0k(L). Then let <£ = o^o-^,. 

Therefore we may assume that ft is isotropic. Then neither w nor ft + w is 
orthogonal and there are no reflections aw or crv+w. Assume though that there is 
a simple isotropic vector ft* such that 

(2.2) L = {ft, ft*} _L K and L = {w, ft*} _1_ K'. 

Then ft — ft*, and w — ft* are both orthogonal and o-c_p*(fl) = ft* (mod Lk+1) 
and <rw-v*(v*) = w (mod L^+i). Since ft — ft* = w — ft* (mod Lfc), ^ = 
(Tt-fau-t,* G Ot(^) and <̂ (ft) = w (mod L*+i). 

We shall now show that such a ft* exists. Choose any simple isotropic vector 
ft such tha tL = {ft, ft} _1_ K. If ord (vw) ^ k, then ord (vw) = ord (vv + vu) = 
ord (vv) = ord (ft) = ord (w) and ft* = ft is the desired vector. If ord (vw) > k, 
then find a, b £ R and Wi £ i£ so that w = av + 5ft + wx. Since ord (ftw) > k, 
and ord (ftw) > k, av + 5ft G Lk+1. Therefore w = wx (mod Lk+X) and w/i is 
thus a simple vector of order k in i£. Choose a simple isotropic vector $ in K 
such that i£ = {wi, w) _L i£". Then let ft* = v + w. Since ord (ft*w) = 
ord (wwi) = fe, ft* is the desired vector. 

COROLLARY. Let x and y £ L. If 

1) x == 3/ (mod L*), awd 
2) x œ y (mod L^+i) 

//zew /feere exists <p £ 0(L), such that <p(x) = y (mod Z^+i). 
Moreover, if x is primitive modulo Lk+i, we can choose <p £ 0k(L). 

Proof. By (3) of Lemma 3, we may assume that x is primitive modulo Lk+1. 
Write x = pz + v where ft is simple, ord (ft) ^ k, and ft is either orthogonal or 
isotropic. If w = v + y — x, then y = pz + w. Since x = y (mod Lfc), ft = w 

https://doi.org/10.4153/CJM-1977-093-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-093-7


QUADRATIC FORMS 933 

(mod Lk). By Lemma 3, v œ w (mod Lk+i). By Lemma 4, there is an isometry 
ç G 0k(L), such tha t <p(v) = w (mod Lk+1). Since v G Ok(L), <p(pz) = £s 
(mod Z^+i) and is the desired isometry. 

For x, y Ç L we shall write x œ 3>if there is <£ 6 O(L) such tha t <^(x) = 3/. 

T H E O R E M 1. Given x, y £ L. Then x tt y if and only if 

(2.3) x tt y (mod Lk) for all k. 

Proof. By dividing x by p, we may assume tha t x and 3/ are both primitive 
in L. We shall construct a convergent sequence of isometries <pkl such tha t 
tf>*(tf) = y (mod Z,*)- Then for <p = lim_, < .̂, <p(x) = y. 

The classical Wi t t ' s theorem for fields gives <pi such tha t <£>i(x) = y (mod L i ) . 
Assume tha t we have <̂ -, such tha t (pk(x) = y (mod Lfc). Since yk is an 

isometry, by Lemma 3, <pk(x) tt y (mod Lk+1). By the above corollary, there is 
a % G O(L) , such tha t X P * ( * ) = y ( m o d £*+i). Let <pk+i = x<£V For large fe, 
x is primitive modulo Lfc, and we can choose x 6 0k(L), and, thus, the sequence 
converges. 

Remark 2. If x2 = 3>2 and x tt y (mod Lfc), for large enough k, then auto­
matically x tt y (mod L ; ) for all j > k. So if we add the to theorem the hypo­
thesis t ha t x2 = y2, we need (2.3) for only a finite number of k. Also, by 
Remark 1, we would then need (2.3) for only those k for which the primality 
of x or y changes in passing from Lk_i to Lk. This theorem gives Rosenzweig's 
Theorem. 

S e c t i o n 3. We now extend the results of Section 2 to arbi t rary submodules. 
We first generalize Lemma 1. 

Definition. A set of simple vectors Vi, . . . , vn will be called completely ortho­
gonal if 

1) each Vi is either orthogonal or isotropic, and 
2) L = {vx) _L . . . _L {vr} _L {vr+i, v*r+i} J_ . . . J_ \vn, vn*} J_ K for some 

simple isotropic vectors v*. 

Note, ord (aiVi + . . . + anvn) = min {ord (a^*)} . 

For convenience we shall extend the definition of simple vector to allow some 
of the v{ to be the zero vector. 

LEMMA 5. Every submodule M has a basis pzx + V\, . . . , pzn + vn where the vt 

are completely orthogonal simple vectors. 

Proof. Il M contains any vector y = pz + v where v is orthogonal, then 
ord (yv) = ord (pzv + v2) = ord (v2) = ord (v). Thus for any x £ M, x — 
(xv/yv)y G M. We can then write L = {v} J_ K, and M = {pz + v) © M' 
where M' C K, and can then proceed by induction. Therefore assume tha t M 
contains no y = pz + v with v orthogonal. 

https://doi.org/10.4153/CJM-1977-093-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-093-7


934 DAVID MORDECAI COHEN 

Choose a simple vector w £ M -\- pL whose order is maximal, i.e. if Vj is 
simple and Vj G M + pL then ord (w) ^ ord (Vj). Then M = {pz + w] ® M' 
for some z G L. 

By induction on the dimension of M we have a basis pz + w, pz2 + v2, . . . , 
Pzn + *V of M where the Vj are simple vectors completely orthogonal. Then 
ord (wvj) > ord (v^. Otherwise, ord (w) ^ ord (vj) = ord (wVj) ^ ord (w), 
and w; + ^- would be orthogonal. 

Since v2, . . . , vn are completely orthogonal we can write 

L = [v2, v2*} J_ . . . ± {vn, vn*} ± K, vt* isotropic 

and 

w = a2v2 + . . . + anvn + b2v2* + . . . + bnvn* + v', v' G K. 

Since ord (wVj) > ord (Vj), p divides bj. Therefore 

pz + w - a2{pz2 + v2) - . . . - an(pzn + vn) = pz' + v'. 

LEMMA 6. If Vi, . . . , vn are simple isotropic vectors, completely orthogonal, 
ord (vt) ^ k, and ord (a2v2 + . . . + anvn) ^ k at G R, then there exists <p G 
0k(L) such that 

<p(vi) = Vi + a2v2 + . . . + anvn 

<P(VJ) = Vj forj ?* 1. 

Proof. Choose simple isotropic vectors v* such that L = {vi, v{*\ J_ . . . J_ 
{vn, vn*} J_ K. Then define <p G 0(L) by <p(fli*) = Vi* and <p(vj*) = v* — 
(djVjVf/viVi*^!* and <p\K = identity. Since (apflf/viV^Vi* G Lk, <p G Ok{L). 

LEMMA 7. Le/ Vi, . . . , vn be simple vectors completely orthogonal, ord (vt) ^ &. 
Let Wj be simple vectors such that 

1) Vj = Wj (mod Lk). 
2) Far any a^ G i^, Z ï cijVj tt YTj ajwj (mod -Z^+i)-

TT^w /A r̂g is a?z isometry <p G 0k{L) such that <P(VJ) = Wj (mod Lk+Ï). 

Proof. Suppose that V\ is orthogonal. By Lemma 4 there is an isometry 
\p G Ok(L) such that ^(^i) = wx (mod Lk+1). By properties (1) and (2) of 
Lemma 2, 

YAa$(Vj) œ Z ï ^ ^ i œ TïiajWj tt ai^(vi) + Z ^ / ^ - (mod L ^ i ) . 

Since ^ G Ok(L), we may assume that z>i = Wi. 
Write L = j ^ } J_ i£. Let w/ = Wj — (WjVi/vi2)vi. Then w/ G i£, and 

Wj == Wj (mod Z/A;+I)- By property (2) of Lemma 3 we can complete the proof 
by induction. 

Suppose that all the vt are isotropic. By induction assume that v2 = w2, 
. . . , vn = wn. Choose simple isotropic v* such that 

L = {v2,v2*} ± . . . ± {vn,vn*} ±K 
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and 
Wi = a2v2 + b2v2* + . . . + anvn + bnv* + w, w 6 K-

By Condition 2 above WiVj = v\Vj = 0 (mod pk+l). Thus ô^/* G L^i, and 
^! = a2̂ 2 + • • • + Mn + w (m°d Lk+\). Since Wi = V\ (mod 1̂ ) and the vt 

are completely orthogonal each apj G Lfc, and w = vx (mod Lfc). 
By Lemma 3, Condition 2, and Lemma 6, 

w tt w\ — a2v-2 — . . . — anvn œ V\ — a2v2 — . . . — anvn ttvi (mod Lk+i). 

Therefore by Lemma 4 applied to w and V\ and i£, there is an isometry ^ G Ok (L) 
such that ^(w) = vx (mod Lk+Ï) and such that \l/(wi) = a2^2 + . . . + anvn + z>i 
(mod Z/fc+i). Now Lemma 6 completes the proof. 

COROLLARY. Le£ M and N be submodules of L. Let % : M —> N be a linear 
transformation such that for all x G M, 

1) xW = x (mod Lfc) 
2) x(^) ~ * (mod L*+i). 

Suppose that M has a basis xiT . . . , xw szic/̂  / t o each Xj is primitive modulo 
Lk+i. Then there is an isometry <p G 0K(L) such that 

<p(x) = x(*0 (mod Lk+i). 

Proof. Let xx = pzt + vt be a basis of M such that ord (vt) ^ &. Let wt = 
x(#*) ~~ Pst- Then wt ^ vt (mod L*). 

For any x = £z + v G M, if w = x(#) ~~ £z, then v = w (mod L&). Since 
£>s + 0 ^ pz + ze> (mod LA+i), by Lemma 3, v œ w (mod Lk+i). 

Therefore the vt and wt satisfy the conditions of the lemma, and there is an 
isometry <p G Ok{L) such that <p(Vi) = wt (mod Lk+1). Therefore (p(xt) = 
<p(pZi + vt) = pzi + wt = x(Xi) (mod Lk+i). 

LEMMA 8. Let M and N be submodules of L and x : M —> N a linear transfor­
mation such that for all x G M, 

1) xM = x (mod Lk) 
2) x(x) &x (mod Lk+1). 

Then there is an isometry ç> G 0(L) such that 

<p(x) = x(%) (mod Lk+1). 

Proof. We shall show that there is an isometry \f/ G 0(L) such that if x G M 
is imprimitive modulo Lk+U then 

^(x) = xM (mod Lfc+i). 

We can then apply the corollary to Lemma 7 to find an isometry \(/f G Ok(L) 
such that \p'\l/(x) = x(x) (mod Lk+i) for all x G M primitive modulo Lk+1. 
Since \p' G Ok(L)y if x is imprimitive modulo Lfc+i, then \p'\//(x) = x(^) (mod 
Ljt+i), and the lemma would be proved. 

We shall use induction to construct \p. Assume that the lemma is true for 
k - 1. 
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Using Lemma 5, choose a basis Xi, . . . , xn of M. Suppose that for i fg s, 
%t = pzt + Vi and ord (vt) ^ k, and that for i > s, xt = pzt (mod Lk+i). 

Let M' be the submodule of L generated by Xi, . . . , xs, zs+i, . . . ,zn. Choose a 
basis xi, . . . , x / of M'. For each x / choose a vector w* in AT such that px/ = 
Ui (mod Lk+i). Since x(^i) ^ Pxl (mod Z^+i), there is a ;y/ in L such that 
x(Ui) ~py/ (mod Lyt+i). Now define a linear transformation x on M' by 
setting, for each x / , x ' (# / ) = y/- Then for any x' 6 AT if £x' = x (mod 
Lfc+i) t hen^x 'OO = x(^) (mod Lk+1). The key fact is that although x is not an 
isometry, if x = u (mod L*+i) where x and w are elements of M, then x(#) = 
x(u) (mod Lfc+i). Therefore for any x' £ M', px (x') ~ x{x) ^ ^ ^ £#' (mod 
Ljt+i)» a n d so x'(#') ~ x ' (m°d £*)• 

Thus AT and x' satisfy the hypotheses of the lemma for k — 1. By induction 
there is an isometry \f/ £ 0(L) such that IA(X') = x'OO (mod Lk). If x 6 Af is 
imprimitive, choose x' G M' such that px' = x (mod L*+i). Then i^(x) = 
\//(px') = pi/(xf) = px{x') = x(x) (mod Lk+i). Thus yp is desired isometry 
and the lemma is proved. 

THEOREM. Let M and N be subtnodules of L, and r : M —> N an isometry 
defined on M. Then r extends to an isometry oj L if and only if r(x) ttxfor all 
x G M. 

Proof. By Theorem 1, that condition is equivalent to r(x) tt x (mod Lk) 
for all k. 

We shall construct a convergent sequence of isometries <pk Ç O(L) such that 
^OO = T(X) (mod Z,*). Then for <p = lim < ,̂ <£>(x) = r(x). 

By the classical Witt's theorem for fields there is an isometry <pi £ O(L) 
such that <pi(x) = r(x) (mod Li). 

Assume that we have an isometry <pk such that <pk{x) = r(x) (mod L*). 
Then <^(x) ^ x œ r(x) (mod ^ + i ) by Lemma 3. Therefore by Lemma 8, we 
have \p G O(L) such that ^ - ( x ) = x(*0 (mod Lk+1). Let <pk+1 = xp <pk. 

For large enough k, M will satisfy the conditions of the corollary to Lemma 7. 
Thus for large enough k, <pk+i £ <pkOk(L), and so the sequence <pk converges. 

I would like to thank Professor N. C. Ankeny for the encouragement and 
guidence he has given me while writing this paper. 
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