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Multiple Solutions for
Nonlinear Periodic Problems

Sophia Th. Kyritsi and Nikolaos S. Papageorgiou

Abstract. 'We consider a nonlinear periodic problem driven by a nonlinear nonhomogeneous differ-
ential operator and a Carathéodory reaction term f(t, x) that exhibits a (p — 1)-superlinear growth
inx € R near +c0 and near zero. A special case of the differential operator is the scalar p-Laplacian.
Using a combination of variational methods based on the critical point theory with Morse theory (crit-
ical groups), we show that the problem has three nontrivial solutions, two of which have constant sign
(one positive, the other negative).

1 Introduction

The aim of this paper is to study the existence of multiple nontrivial solutions for the
following nonlinear periodic problem:

(1.1) —(a(t,u'®)))" = f(t,u®)) ae. on T =[0,b],
u(0) = u(b), u'(0)=u'(b).

Here a: T x R — R is a continuous map such that for all t € T, «aft, -) is
strictly monotone and C! on R \ {0}. A special case of the differential operator in
(1.1), is the scalar p-Laplacian. The reaction term f (¢, x) is a Carathéodory function
(ie, t — f(t,x) is measurable and x — f(f,x) is continuous), and we assume
that f(t, -) exhibits a (p — 1)-superlinear growth near o0 and near 0, 1 < p <
0o. However, to express this (p — 1)-superlinearity at +c0, we do not employ the
Ambrosetti—Rabinowitz condition (AR-condition), which is normally used in such
cases, but instead we use a less restrictive hypothesis.

Multiplicity results for nonlinear Sturm-Liouville and periodic problems were
proved by Aizicovici, Papageorgiou, and Staicu [1]; Ben Naoum and De Coster [2];
De Coster [5]; del Pino, Manasevich, and Murta [6]; Gasinski and Papageorgiou [8];
Manasevich, Njoku, and Zanolin [10]; Njoku and Zanolin [12]; Papageorgiou and
Papageorgiou [14]; Papageorgiou and Papalini [15], and Yang [16]. In all of these
papers, the differential operator is the scalar p-Laplacian, and the reaction term is
either (p — 1)-linear or (p — 1)-sublinear near +oco. It appears that the question
of the existence of multiple solutions for “(p — 1)-superlinear” periodic problems
has not previously been addressed. We also emphasize that in contrast to the scalar
p-Laplacian, the differential operator here needs not be homogeneous.
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2 Mathematical Background and Hypotheses

Our approach combines variational methods based on the critical point theory with
Morse theory (critical groups).

Let X be a Banach space and X* its topological dual. By (-, ) we denote the du-
ality brackets for the pair (X*, X). Let ¢ € C!(X). We say that ¢ satisfies the Cerami
condition (C-condition) if the following is true: “Every sequence {x, },>1 C X such
that {¢(x,) }»>1 C Risbounded and (1+]|x,||)¢’(x,) — 0in X* asn — oo admitsa
strongly convergent subsequence.” Using this notion, we can have the following min-
imax characterization of certain critical values of ¢, known in the literature as the
mountain pass theorem.

Theorem 2.1 If X is a Banach space and o € C'(X) satisfies the C-condition, and for
X0, %1 € X, 7> 0, ||xog — x1]| > 1, we have

max{p(xg), p(x1)} < inf[p(x) : [|x — x| = 1] =,
and ¢ = inf,er maxo<;<) go(’y(t)) , where
r'= {’Y S C([07 1]7X) : ’Y(O) = an,y(l) = xl}a

then ¢ > 0, and c is a critical value of .

Forp € C'(X)andc € Rweset p° = {x € X : p(x) < c}and K, = {x € X :
©'(x) = 0}.

Let Y, C Y; C X. Then for every integer k > 0, let Hx(Y1,Y,) denote the kth-
singular relative homology group for the pair (Y, Y,) with the coefficients in Z. The
critical groups of ¢ at an isolated critical point xy € X with ¢ = ¢(x) are defined by
Crlp,x9) = Hk(gpc NU,e"NU\ {xo}) for all k > 0, where U is a neighborhood of
xp such that K, Np°NU = {xo}. The excision property of singular homology implies
that this definition is independent of the particular choice of the neighborhood U.
Suppose that ¢ € C'(X) satisfies the C-condition and —oo < infp(K,). Let ¢ <
inf p(K,). The critical groups of ¢ at infinity, are defined by Cy(, 0c0) = Hi(X, ¢°)
for all k > 0. The deformation theorem implies that this definition is independent
of the choice of c. Suppose K, is finite. We set M(t,x) = > _,-,rank Crl, x)t5,

P(t,00) = )~ rank Ci(¢p, 00)tk. The Morse relation says that

(2.1) > M(t,x) = P(t,00) + (1 +1)Q(1),

x€K,

where Q(t) = > ;5 Btk is a formal series with nonnegative integer coefficients Sy
(see Chang [3]).
In the study of problem (1.1), we shall use the following two spaces:

W;g;’(o, b) = {u € W"P(0,b) : u(0) = u(b)},

C(T) = CN(T) NWLE(0,b) = {u € C'(T) : u(0) = u(b)}.
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Note that C (T) is an ordered Banach space with positive cone C+ ={uce C (T)
u(t) > 0 forallt € T}. This cone has a nonempty interior int C+ ={u € C+ :
u(t) > 0foralltr € T}.

The hypotheses on «(t, x) are the following:

H(a): a(t,x) = h(t, |x|)x for all (#,x) € T x R, where h(t,x) > 0 forallt € T, all
x > 0,and
(i) aeC(TxR)NCHTx R\ {0});
(i) there exist 0 < ¢y < ¢; such that ¢o|x|?72 < al(t,x) < ¢|x|P72,1 <
p < oo, forall (t,x) € T x (R\ {0});
(iii) ifG(t,x) = [; (¢, s)ds, then thereexists y € L'(T) such that pG(t, x)—
a(t,x)x > n(t) foraa.t € T,allx € R.

Remark 2.2 Evidently, fora.a.t € T, a(t, -) is strictly monotone, G(t, - ) is strictly
convex, and G(t, x) < a(t, x)x. Moreover,

1 _ )]
< p—l1 > P
la(t, x)| < p_llx\ ,alt)x > ——
o
and 796‘0 < G(t,x <7xp
pp—n = OIS

forall (t,x) € T x R.

Example 2.3 The following functions «a(t,x) satistfy hypotheses H(«). Here ¥ €
CHT) with ¥(t) > O forallt € T:

e a(t,x) = J(@)|x|P72x, 1 < p < oo (corresponds to the weighted scalar p-

Laplacian);
o aft,x) = 9@) [ |x[P~2x + |x]72x] for2 < p;
p—2 q—2 i <
. altx) = () [ []P~2x + x| 2x] %f|x|_17
D) [ [x]P2x + c|x| 2% — (¢ — x| if [x] > 1.

withl <r<p<gandr<2<por2<r<p<g

x|~
} forl < p<2.

o aft,x) =9() [|x|P*2x+ T+

H(f): f: T x R — Risa Carathéodory function such that f(t,0) = O fora.a.t € T
and
() |ft,x)] < a1+ |x]""Y) foraat € T,allx € Rwitha € LY(T),,
p <r < oo;
(i) if F(t,x) = fox f(t,s)ds, then limy o % = +o00 uniformly for a.a.
t € T and there exist ;1 > r — p and 3, > 0 such that

Bo < liminf f(t,x) — pF(t,x)

ir B uniformly for a.a. t € T;
x|—00 X

(iif) limy o { ,{I‘;;Jx

= O uniformly fora.a. t € T;
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(iv) there exist ¢ > 0 and §y > 0 such that f(t,x)x > —¢|x|P fora.a.t € T,
allx € Rand F(t,x) < 0fora.a.t € T, all |x| < d.

Remark 2.4 Hypotheses H(f)(ii) and (iii) imply the (p — 1)-superlinear growth
near o0 and near 0. However, we do not employ the AR-condition, which says that
there exist 7 > pand M > 0 such that 0 < 7F(t,x) < f(t,x)x fora.a.t € T and
all |x|] > M. Integrating this inequality, we obtain ¢ |x|” < F(¢,x) for a.a. t € T and
all |x| > M. Therefore the AR-condition dictates at least a 7-growth near +oo for
F(t, -). In contrast, H(f)(ii) is much weaker and permits slower growth near f-cc.
Similar conditions were also used by Costa and Magalhaes [4] and Fei [7].

Example 2.5 The following functions satisfy H(f) (for the sake of simplicity we
drop the ¢-dependence):

filx) = |x|""2x — |x|P~*x with p < r and
fr(x) = |x|P2x(In |x|P + 1).
Note that f, does not satisfy the AR-condition.

In what follows, for the sake of notational simplicity, we set W = W;éf (0,b). Let

A : W — W* be the nonlinear map defined by (A(u), y) = fob a(t,u’)y’dr for all
u,y € W. From Papageorgiou and Kyritsi [13], we have the following proposition.

Proposition 2.6 Themap A: W — W* defined above is maximal monotone, strictly
monotone and of type (S), i.e., if u, — uin W and lim sup,,_, o (Auy), g — u) <0,
then u, — uin W.

3 Solutions of Constant Sign
Let ¢: W — R be the Euler functional for problem (1.1) defined by

b b
p(u) = / G(t,u")dt — / F(t,x)dt forallu e W.
0 0

Evidently ¢ € C'(W). Also for A > 0, let

fA(t,x): 0 ifx <0, and
* flt,x) + AP~ ifx > 0,

Pltx) = flt,x) + P! ifx <0
- 0 if x > 0.

Set F)(t,x) = fob f2(t, s)ds and consider the C'-functionals ¢} : W — R defined
b b
by o (u) = [ G(t,u')dt + %Hu”ﬁ — J Fi(t,u)dt.
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Proposition 3.1 If hypotheses H(a) and H(f) hold, then ¢ and ) satisfy the C-
condition.

Proof First we prove this for ¢. So, let {1, },>1 C W be a sequence such that

(3.1) lo(u,)| < M for some M; > 0,

and (1 + ||u,|)¢ (u,) — 0 in W* as n — co.

From the convergence in (3.1) we have

(3.2) ‘ (ACu), ) —/b Fet upyhde| < eI
" 0o " T L u]
forallh € W, withe, — 0%,
b b
(3.3) = —/0 alt,u)udt +/0 f(t,uy)u,dt < e, foralln > 1

(choosing h = u, € W). From (3.1), we also have

b b
(3.4) / pG(t,u,)dt — / pE(t,u,)dt < pM, foralln > 1,
0 0

b
= / [f(t, )ity — pE(, un)} dt <M, forsome M, > 0, all n > 1
0

(adding (3.3) and using H(«)(iii)).
Hypotheses H(f)(i) and (ii) imply that we can find 3, € (0, 3y) and a; € L'(T),
such that

(3.5) Bilx! — a1(¢) < f(t,x)x — pF(t,x) forallr € T, all x € R.

Using (3.5) in (3.4) we infer that {u, },>1 C L*(T) is bounded. It is clear that we
can always assume that p < r. Lett € (0,1) be such that % = % Invoking the
interpolation inequality, we can find M3 > 0 such that

(3.6) [lunllr < Ms]ju,||"" foralln > 1.

In (3.2) we choose h = u,, € W, and using the properties of a(t, x), H(f)(i) and
(3.6), we have

(3.7) %Hu,’lﬂg < (1 + ||un|| + |Jun||") for some ¢, >0, alln > 1.

Recall that u — ||u’||, +||u|, is equivalent to the Sobolev norm. Since {u, },>1 C
L*(T) is bounded and using (3.7) (note tr = r — u < p), we infer that {u,},>; CW
is bounded. So, we may assume that u, X uin W and u, — uin C(T). In (3.2) we
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set h = u, —u and pass to the limit as n — oo. We obtain lim,—, o0 (A(uy,), u, — u) =
0, and so u, — uin W (see Proposition 2.6). Therefore,  satisfies the C-condition.

Next, with a slight variation of the above proof, we show that ¢} satisfy the
C-condition. So, as before, let {u,},>1 C W be a sequence such that

(3.8) |<pi(un)| < M; forsomeM; >0, alln>1

and (1 + [lu,|)(@}) (4y) = 0 inW* asn — oo.

From the convergence in (3.8), we have

b b b
(3.9) | (A(uy), h) + )\/ [P, hdt — / f(t,ul)hdt — )\/ (u;r)Pfl‘
0 0 0

< M foralln > 1.
1 [fua |
In (3.9) we choose h = —u,” € W and obtain 5% ([ [|5 + Ay |5 < e, for

alln > 1, hence
(3.10) u, -0 in W asn— oo.

Next, if in (3.9) we choose h = u}; € W and as before, we use (3.8) and (3.10),
we obtain fob[f(nu;)u:; — pE(t,u})] dt < My for some My > 0, all n > 1. From
this, as in the first part of the proof, using H( f)(ii) and the interpolation inequality,
we show that {#} },>; C W is bounded. This fact and (3.10), imply that {u,},>1 C
W is bounded, from which via Proposition 2.6, we conclude that ) satisfies the
C-condition. We proceed similarly for ¢* . [

Proposition 3.2 If hypotheses H(«v) and H(f) hold, then u = 0 is a local minimizer
of X and .

Proof We prove this for (o}, the proofs for ¢* and ¢ being similar. Let §, > 0

be as postulated by hypothesis H(f)(iv) and let u € C(T) such that lullcrry < o

Then ¢ (u) > p(;"_l)Hu/Hg + %||u*||§ > 0 = ¢}(0). Hence u = 0 is a local

C(T)-minimizer of ¢?. From Papageorgiou—Papalini [15, Proposition 5], we infer
that u = 0 is also a local W -minimizer of (7. ]

Clearly hypothesis H( f)(ii) implies the following proposition.

Proposition 3.3 If hypotheses H(«) and H(f) hold, then cpi(f) — +ooas € —
+o0, £ €R.

Now we are ready to produce two nontrivial solutions of constant sign.

Proposition 3.4 If hypotheses H(«) and H( f) hold, then problem (1.1) has two non-
trivial solutions of constant sign uy € intC,, vy € —intC,.
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Proof From Proposition 3.2, we know that u = 0 is a local minimizer of ). We
may assume that u = 0 is isolated, or, otherwise, we can easily see that we have a
whole sequence of distinct positive solutions. Hence, reasoning as in Papageorgiou
and Papalini [ 15, Proposition 6], we can find ¢ € (0, 1) small such that

(3.11) @0) =0 < inf[ ) (u) : |[ul| = o] =

Then (3.11) together with Propositions 3.1 and 3.4 permits the use of Theorem 2.1
(the mountain pass theorem), and we obtain uy € W such that

(3.12) ©N0) =0 < m, < @}up) and (¢}) () = 0.

From the inequality in (3.12), we infer that 1y # 0. From the equality in (3.12), we
have

(3.13) Alug) + Nuo|? 1o = NN uy),

where Nﬁ(u)( -) = ff‘( Sou( - )) for u € W. Acting on (3.13) with —u; € W, we
obtain uy > 0, uy # 0. Then (3.13) befomes A(ug) = N(ug), where N(u)(-) =
f(-,u(-)) forall u € W. Hence 1y € C(T) and solves (1.1) (see [8]). Also, from
H(f)(iv) we have (a(t, u'(t)))" < Cug(t)P~! a.a. on T, hence uy € intC, (see Mon-
tenegro [11]). Similarly, working with ¢* , we obtain another constant sign solution
vy € — intar. |

4 Critical Groups at Infinity
In this section we compute the critical groups at infinity for ¢ and ¢7..
Proposition 4.1 If hypotheses H() and H(f) hold, then Cy(p, 0c0) = 0 forallk > 0.

Proof Hypotheses H(f)(i) and (ii) imply that given any £ > 0, we can find a, €
LY(T), such that

(4.1) F(t,x) > §|x|f’ —Q,(t) foraa.te T, allx € R.

Letu € 9By ={u € W : ||ju|| = 1} and s > 0. Then

csP e b
(4.2) o(su) < -1 [|u Hp_/o F(t, su)dt

P
= %(ﬁ - 5““”5) +[|aalli  (see (4.1)).

Choosing & > —L—— from (4.2) we see that
(p=Dlull}

p b
(4.3) o(su) < ——— ||lu ’||p / F(t,su)dt — —oo ass— +oo.
(P 1) 0

https://doi.org/10.4153/CMB-2011-154-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-154-5

Multiple Solutions for Nonlinear Periodic Problems 373

Using (3.5), for every u € W we have

b b
(4.4) / [pE(t,su) — fit,wu] dt < —B, / "t + @)l
0 0

Choose 7 < —(||@,]|1 + 1) < 0. From (4.3) we see that for s > 0 large and u € JB;,
we have

P b
(4.5)  po(su) < % —/ pE(t,su)dt <n < 0=p(0) (sinceul=1).
- 0
Clearly then, we can find s* > 0 such that ¢(s*u) = 1. We have

b b
d o(su) = (@' (su),u) = / ot, su')u'dt —/ f(t, su)udt
ds 0 0

(%]

p—1

b
< - [sp — / pE(t, su)udt + ||&2H1} (see (4.4))
0

IN

1
B [77+ \|a2||1} < 0 (see(4.5)and recall that n < —(||az|; +1)).

It follows that the above s* > 0 is unique, and we denote it by y(#) > 0. We have
@(v(u)u) = 1, u € 0By, and moreover, the implicit function theorem implies that

v € C(OBy). We set 4(u) = HITHV(ﬁ) forallu € W\ {0}. Theny € C(W \ {0})
and p(7(w)u) = nforallu € W\ {0}. Also, ¢(u) = n implies 7(u) = 1. Hence, if

for u # 0 we set
. 1 ifue g,
u) =
’YO( ) {,/y\(u) lfM ¢ s07/7

then 7y € C(W \ {0}). Consider the homotopy h(r,u) = (1 — 7)u + 79 (w)u.
We have h(0,u) = u, h(1,u) € ¢" and h(7, - )|, = id|, for all 7 € [0,1], hence
" is a strong deformation retract of W\ {0}. Also, by considering the homotopy
h(r,u) = (1=7)u+7 i, we see that OB is a strong deformation retract of W \{0}.

Thus ¢" and 0B, are homotopy equivalent and 0B is contractible in itself. Therefore
choosing n < inf(K,), we conclude that

Ci(p,00) = Hy (W, ") = Hi(W,0B;) =0 forallk >0
(see Granas—Dugundji [9]). [ |

In a similar way, we show the triviality of the critical groups at infinity of ¢?)..

Proposition 4.2 If hypotheses H(«) and H(f) hold, then Ck(gog\t, 00) = 0 for all
k>o0.
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Proof We prove this for 7, the proof for ¢* being similar. Again, from H( f)(i) and
(ii) we see that for any £ > 0, we can find a3 € L'(T), such that

(4.6) F(t,x™) > %(er)P —o3(t) foraa.te T, allx € R.

Let 9By = {u € 9B, : u* # 0}. Then for u € 9B, and s > 0 we have

[

(4.7) gpjr\(su)gsp[ 11+/\||u_||§—§|\u+||ﬂ+Ha3||1—>—oo as s — +00

(see (4.6) and recall that £ > 0 is arbitrary).
From H(f)(i) and (ii), we can find 3, € (0, 3y) and & € L'(T), such that

(4.8) ft,x")x" — pF(t,x") > B1(x")* —ay(t) aa.teT, allxeR.
For u € W, we have
b b
(4.9) / [pF(t, ut) — f(t, mw} dt < 751/ (u)rde + Q] (see (4.8)).
0 0

Choose 7 < —(]|@4l|1 + 1) < 0. From (4.6) and (4.7), we see that for s > 0 large

b
(4.10) sl’[pc‘ - Mlu=|5 —/ pF(t,sm)dt} <n < 0=}0).
0

Hence we can find 5> 0 such that ¢? (si1) = 7. Moreover, since

d
T = (D) (sw), u)

11 ¢sf

b
[ sl —/ PF(su)de + @] (see (4.9))
p—1 0

IN

N

1
;[n + ||&4||1] < 0 (see (4.10) and recall that < —(||@4|; + 1)),

IN

the above 5> 0 is unique and we denote it by v*(#) > 0. Then gajr\ (’y*(u)u) =7
for all u € JB,, and by the implicit function theorem, v* € C(9B,). Let E, = {u €

W :u* # 0} and set 7" (u) = mfy*(ﬁ) for all u € E,. Then 4" € C(E;) and

ij}('/y\*(u)u) = g for all u € E,. In addition, @i(u) = g implies 4" (1) = 1. So, if
for u € E, we set

S () — 1 ifu € ()",
W50 ifu g (),

then 47 € C(E,). Let h(t,u) = (1 — t)u + t77 (u)u. We have

(4.11) (go;\)" is a strong deformation retract of E..
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Also, using ht,u) = %, we see that
(4.12) E, is contractible in itself.

From (4.11) and (4.12), it follows that Hk(W, (cpjr\)”) = Hy(W,E;) = 0 for all
k > 0 (see Granas and Dugundji [9]), hence choosing 7 < infgo;\(KM), we infer
Ck(cpjr\, 00) = 0 for all k > 0. Similarly we show that Ci(p) ,00) = 0 forall k > 0,
this time using 0B_ = {u € 9By : u~ # 0}. [ |

5 Three Solutions Theorem

In this section, we prove the full multiplicity theorem for problem (1.1), producing
three nontrivial solutions.

Theorem 5.1 If hypotheses H(c) and H(f) hold, then problem (1.1) has at least three
nontrivial solutions: uy € intCy, vy € —intCy, and y, € C'(T).

Proof From Proposition 3.3, we already have two constant sign solutions u, € int C,
and vy € —intC,. Suppose that {0, ug, v } are the only critical points of . Then we
can easily see that {0, 1y} are the only critical points of ¢?, and {0, v} are the only
critical points of ¢ .

Claim 1: Cr(¢?, up) = Cr(0) ,vy) = Ok,1Z for all k > 0.

Let7) < 0 = ©}(0) < n < @} up) (see (3.12)). We have (¢})7 C ()" C W. We
consider the long exact sequence of homological groups corresponding to this triple
of sets:

(5.0) - = He(W, (@2)7) 55 H(W. (0)") B Hioa ()7, (@)7) = -
Here i is the embedding of (¢})7 into (})", and O is the boundary map. We have

(5.2) Hk(W, (goi)?’) = Ck(goi7 00) =0 forall k > 0 (see Proposition 4.2),

(5.3) Hk(W, (cpﬁ)”) = Ck(wi, 0) = dxoZ forall k > 0 (see Proposition 3.2).

From (5.2) and (5.3), we see that in (5.1) only the tail k = 1 is nontrivial. More-
over, from the exactness of (5.1) and the rank theorem, we see that rank C; (¢}, ug)=
rank H; (W, (goi)" ) < 1. On the other hand recall that uy is a critical point of moun-
tain pass type for ) (see the proof of Proposition 3.4). So, rank C,(¢?, up) > 1.
Therefore, we conclude that Ck(gpjr\, uy) = O/ for all k > 0. Similarly we show that
Crel(e? ,w) = Ok,1Z for all k > 0. This proves Claim 1.

Claim 2: Ci(¢, up) = Ci(?, up) and Cy(¢, vo) = Cr(¢? , 1) for all k > 0.

Let hy(s,u) = (1 — s)p(u) + sgp;\(u), (s,u) € [0,1] x W. We will show that there
exists 0 € (0,1) small such that ug is the only critical point in B,(uy) = {u €
W s lu— uo|| < o} of hy(s, -) for all s € [0,1]. Indeed, if this is not the case,
then we can find ¢, — ¢t € [0,1], u, — up in W and (hy),(s,, u,) = 0 for all
n > 1. From Papageorgiou and Papalini [ 15, proof of Proposition 5], we know that
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{tn}tn>1 C C (T) is relatively compact. So, we have u, — 1 in C (T) and since
Uy € int6+, we will have u,, € inté\+ for all n > ny. Because 90|6+ = cpjr\|5+,
it follows that {u,},>,, are all distinct critical points of ¢, a contradiction to our
assumption. Also, reasoning as in the proof of Proposition 3.1, we show that for
all s € [0,1], hy(s, -) satisfies the C-condition. Then by virtue of the homotopy

invariance property of the critical groups (see Chang [3]), we have
Ck(@) u()) = Ck(h+(07 - )7 MO) = Ck(h+(17 . )7 MO) = Ck(¢i7 MO)

for all k > 0. Similarly for the triple {¢, ©* , v }. This proves Claim 2.
From Propositions 3.2 and 4.1, we have

(5.4) Ci(p,0) = ;o2 and Ci(p,00) = 0forallk > 0.

From Claims 1, 2, (5.4), and the Morse relation (see (2.1)), with t = —1, we have
2(—1)'+(—1)° = 0, a contradiction. So, © has a critical point yo & {0, ug, vo }. Then

yo € CY(T) solves problem (1.1). ]
Acknowledgment The authors wish to thank the referee for his corrections and re-
marks.
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