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Introduction

In contrast to Babylonian and Egyptian mathematics,1 the older forerunners in the

Mediterranean area, the focus of ancient Greekmathematics was not on applied but

on theoretical mathematics. The Greeks were the first interested not only in the

verification of results, but also in deductive proofs and justifications of the methods

employed. Proof theory as a study of the structure of deductive proofs became afield

of interest in its own right.2 These features of ancient Greek mathematics already

lend themselves to philosophical investigations and bring mathematics close to the

general theoretical investigations that philosophy likewise is engaged with.

The difference in approach between Babylonian and Egyptian mathematics,

on the one hand, and Greek mathematics on the other can already be seen if we

compare mathematical problems students are given in textbooks.3 First, the

Babylonian and Egyptian traditions embed a mathematical task in a practical

context; for example, they may ask their students to ‘find the area of a silo’, while

an equivalent Greek text would ask the students to ‘find the area of a cylinder’

and thus show a much higher degree of abstraction. Furthermore, the Babylonian

and Egyptian texts usually deal with an individual example using concrete

numbers, the calculation of which is then shown.4 For example, given a square

field of 100 square cubits, a text asks the students to find the diameter of a round

field of the same size, and then walks through the calculation and may verify the

answer by calculating the area from the diameter. The student will then use the

same procedure for similar problems. By contrast, Greek mathematics will state

the objects abstractly with letter labels;5 and instead of a verification of a

particular result, there is a demonstration that everything so constructed will

have the required property, which becomes the centrally important justification.

This focus on a theoretical investigation can also be seen inwhatwere taken to be

the threemost important problems in Greek geometry and the way the Greeks dealt

with them: (I) doubling the cube,6 (II) trisecting an angle, and (III) squaring the

circle.7

1 For an overview, see Neugebauer (1969).
2 The uniqueness of proof in Greek culture is, however, debated by historians of mathematics; see,
for example, Chemla (2024) who also questions the dichotomy of proof and computation and
gives interesting examples from ancient Chinese mathematics. We find what we may call proofs
in Babylonian mathematics, but these are procedures and thus not demonstrative, and they do not
seem to have been the mathematicians’ focus.

3 I owe the following example and important points of section I4 of this introduction to HenryMendell.
4 See Neugebauer (1969). 5 See Netz (1999).
6 Geometrically, this is a generalisation of the problem of doubling the square, which we will see in
Section 2.

7 We will see the last point with Euclid’s method of exhaustion in Section 4. The first two problems
were solved in algebra in the nineteenth century, while the third is transcendent and cannot be
grasped by an algebraic equation.

1Philosophy of Mathematics from the Pythagoreans to Euclid
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In this introduction we will briefly look at the development of Greek

mathematics out of a practical context and the demarcation of mathematics

from other sciences. We will also touch upon one central theme within Greek

mathematics: the relationship between geometry and arithmetic. That this is not

simply an antiquated question can be seen from the fact that we today base our

geometry on an arithmetical foundation. Finally, we will look at what to

a modern mind may seem to be the main peculiarities of ancient Greek

mathematics in general and the understanding of numbers in particular.

After this introduction8, we will start in Section 1 of the body of the Element

with a look at the kind of entities Greek philosophers took mathematical objects

to be. Section 2 will show the role mathematical knowledge played for

Greek philosophers. Section 3 will look at the paradigmatic role mathematical

deductions have played for philosophy, the role of mathematical diagrams, and

mathematical methods of interest for philosophers. Section 4, finally, investi-

gates a couple of individual concepts that are fundamental for both philosophy

and mathematics, such as infinity.

Timewise, we will cover the period from the beginning of ancient Greek math-

ematics and philosophising about it up to Plato, Aristotle, and Euclid: Plato and

Aristotle are the first high point of philosophical thinking about mathematics, while

Euclid marks the first high point in Greek mathematics. Euclid’s Elements provide

us with a large-scale systematisation of mathematical truth that builds on an

axiomatic structure. But Euclid’s Elements are not the first. This genre of literature,

which attempts to present the current mathematical knowledge in a ‘systematic’

form for learners, seems to have been developedfirst byHippocrates of Chios in the

fifth century BCE. Euclid’s Elements was, however, the most influential of these

texts, presumably because of its large-scale architecture and its integration of the

most important material from earlier mathematicians, such as Eudoxus and

Theaetetus. As a consequence of the impact and range of Euclid’s Elements, most

of the earlier mathematical texts seem not to have been handed down any longer.

Thismeans very little is left of the earlier Greekmathematical texts, and so there are

crucial blank spaces if we try to reconstruct the history of Greek mathematics. The

oldest surviving Greek mathematical text is a long fragment of the quadratures of

lunes by Hippocrates of Chios. It was contained in theHistory of Geometrywritten

by Eudemus, a student of Aristotle, a work that itself is lost for the most part.9

As for the very beginning, there was perhaps some inkling of mathematics as

a theoretical science in or around the time of Thales, if the ascription of that

theorem to him has any basis. But Thales did not write anything, so there are no

8 The sub-sections of the introductions are labelled I1-I5, while the main sections of the body of the
Element are labeled 1-4.

9 See von Fritz (1955), pp. 15–17 and Heath (1921), pp. 170–223.

2 Philosophy of Mathematics
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genuine fragments. Thus we will start with the Pythagoreans, where we defini-

tively find some mathematical developments and have some fragments of the

(later) Pythagoreans Philolaus and Archytas.

There are important mathematical developments happening after Euclid, for

example, with Archimedes (285–212 BCE) and Apollonius of Perga (around

240–190 BCE); but we will not be able to look into these. As for later

philosophers, the only one we will consult for a better understanding of the

history of mathematics is Proclus (412–485 CE), who wrote an influential

commentary on Euclid’s Elements and seems to have drawn extensively on

Eudemus’ work (see Figure 1).

I1 The Development of Greek Mathematics:
Detachment from a Practical Context

In spite of its theoretical focus, Greek mathematics had its origin in a practical

context. Geometry derived from land-surveying and city-planning, as we can

see already from the etymology of the English word ‘geometry’, which comes

from the Greek word geometria and literally means ‘measuring the earth’ or

650 600

Thales (625–547 BCE)

Anaximander (610–546)

Pythagoras (570–500)

Parmenides (515–445)

Zeno (490–430)

Protagoras (490–420)

Philolaus (470–385)

Hippocrates of Chios (active in the second half of the 5th century)

Theodorus of Cyrene (flourished in the second half of the 5th century)

Democritus (460–370)

Archytas (435/410–360/350)

Plato (427/28–347)

Theaetetus (417–369)

Eudoxus (390–340)

Aristotle (384–322)

Eudemus (second half of the 4th century)

Proclus (412–485 CE)

Chronology of Philosophers and Mathematicians mentioned:

Euclid (active around 300 BCE)

550 500 450 400 350 300 250

Figure 1 Chronology of Philosophers andMathematicians mentioned. (Most of

the dates are subject to some uncertainty.)

3Philosophy of Mathematics from the Pythagoreans to Euclid
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‘land-surveying’. Herodotus claims in his Histories II, 109 that it is from the

equal division of the land in Egypt that the Greeks learned geometria. And

arithmetic was originally closely tied to administration and commerce – a

connection against which Plato still argues as not covering the most important

aspect of mathematics in Republic 525c–d.10

But very early on, Greek mathematics focused on mathematical characteris-

tics as such, independent of any practical context. We will see in Section 3 in the

body of this Element that it is only due to such a theoretical understanding of

mathematics that irrationals were discovered – for practical purposes, the

approximations we derive from measurements would have sufficed.

It seems that it was the abstraction of mathematical structure from the human

practical context that made these structures also applicable to the understanding

of nature and thus influenced the conceptualisation of the world – extending

arithmetic and geometry to the universe as a whole. Thus, we also find the idea

that mathematical structures are essential for the physical world early on. We will

see in Section 1 later in this Element that, for the Pythagoreans, numbers and

proportions constitute the universe, while for Plato geometrical forms as well as

proportions are employed in the setup of the universe. And for Plato and many

subsequent thinkers, the universe has to be spherical, because of the geometrical

perfection of the sphere (which includes that all points on the surface have the

same distance to the centre and that all the other Platonic solids can be inscribed

in the sphere, in the way we see it in Kepler); the motions of the heavenly bodies

accordingly have to be circular, which guarantees their intelligibility.

I2 Specific Demarcation of Mathematics in Ancient Greece

What did the Greeks in fact understand by mathematics? If we look at the Greek

word from which our term ‘mathematics’ derives, mathemata, we see that it

originally had a much broader meaning, indicating everything that is learnt,

pieces or fields of knowledge. It encompasses all those subjects where we need

to go through a certain course of steps in order to learn them and that hence may

not be known by everyone.

It is in effect three generations of philosophers whose usage of the word

eventually led to the meaning we are familiar with today: the Pythagoreans,

Plato, and Aristotle. First, the Pythagoreans distinguish among their students

between the akousmatikoi (the exoteric learners, who are only aware of the

practical rules of conduct) and themathematikoi (the esoteric learners who have

10 For the practical and social origins of mathematics and questions such as how large a role the
Greek culture of public debate and argumentation played in the development of mathematics, see
Cuomo (2001), especially chapters 1 and 2.

4 Philosophy of Mathematics
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gone through the full theory, or the advanced learners). And they also seem to

have been the first to use ‘mathematics’ as a common name for arithmetic and

geometry together. Secondly, Plato, in his depiction of the education of the

future leaders of the ideal state in Republic VII, gives a curriculum that builds

mainly on arithmetic, geometry, astronomy, and music for the advanced learn-

ers; which are thus the mathemata to be learned. Finally, Aristotle divides the

theoretical sciences – the first division we find in Western thought – into first

philosophy (metaphysics/theology), physics (natural philosophy), and mathem-

atics (see, e.g., Metaphysics 1026a18–19).

This long process of coining the meaning of the word also reflects the fact

that mathematics and philosophy are usually understood to derive from the

same origin, which was in general seen as wisdom.11 It is not clear when

mathematics separated off from this, but it was one of the first, if not the first,

science to do so. Accordingly, it seems to be its own field already in the fifth

century BCE, and could be seen as paradigmatic for other sciences, as we will

see later in Section 2 in the main body of the Element. As such, mathematics

seems to have influenced philosophy by the rigour of its argumentation, by

building a system starting from a couple of basic axioms, and by its use of

deductions. And it also became an important subject of philosophical reflec-

tions for the question of what is essential for a science.

Among the sixth-century Presocratics, we find several philosopher-

mathematicians, like the Pythagoreans and perhaps also Thales. Likewise, in

the fifth and fourth centuries BCE we find thinkers working in both fields, such

as the atomist Democritus, who wrote on conic sections, and the Pythagoreans

Philolaus and Archytas. And Plato’s Academy seems to have been a centre

where not only were philosophers trained, but also mathematical research was

performed by people like Eudoxus and Theaetetus. A sign reading ‘Let no one

ignorant of geometry enter here’ was allegedly placed over the entrance to the

Academy. Plato himself saw mathematics at times as paradigmatic, at others as

propaedeutic for philosophy. Aristotle also took mathematics as paradigmatic

for philosophy in its method in certain respects, but distinguished it from first

philosophy and physics by its objects – mathematical objects are changeless,

but have no existence independent of empirical things. The Hellenistic philoso-

pher Epicurus, however, excluded mathematics from the sciences as having no

practical relevance, and for the Stoics likewise it was not central.

Which mathematical sciences belong to mathematics in ancient Greece? For the

most part the four disciplines arithmetic, geometry, astronomy, and music are seen

11 Salmon (1980) talks about the ‘twin origin of philosophy and geometry’; see also Heath (1921),
p. 3.

5Philosophy of Mathematics from the Pythagoreans to Euclid
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as constituting the mathematical sciences, a quartet we find first in the Pythagorean

Archytas and in Plato’s Republic.12 In the Middle Ages they became the quadriv-

ium, which together with the trivium formed the basis for liberal education at

universities. Aristotle, however, groups astronomy and harmonics, together with

optics, as the more ‘physical’ branches of mathematics.13 These latter sciences

especially are close to natural philosophy for Aristotle.

An understanding of ancient mathematics faces the additional problem

that the ancient Greeks distinguished between arithmetic and what they call

logistikê – a distinction not known to modern mathematics. There are different

interpretations of this distinction, but for the most part, arithmetic is understood

as dealing with number theory and logistikê as the art of calculation.14

Finally, it is an interesting question whether the ancient Greeks thought that

there exists a general mathematical science or not – here it seems philosophers

and mathematicians come apart. The first text where we find the idea of a

general mathematics discussed comes from Aristotle, who claims that universal

mathematics applies to all mathematical kinds (Metaphysics 1026a27); scholars

have usually understood him to be referring to Eudoxus’ theory of proportion

which holds for different mathematical sciences. What is left open is the

question whether general mathematics possesses its own specific subject

(perhaps something like pure quantity) or not.15 But we do not seem to find

any such universal mathematics in Euclid. Euclid’s concern for homogeneity

indicates that he thinks of a proposition in Book Vas a unified formulation for a

number of analogous propositions concerning particular magnitudes like lines,

planes, and so on. He does not seem to think of it as a single proposition about

more abstract objects like magnitudes or quantities as such, and he treats

proportions in geometry and in the arithmetical books separately. Euclid is,

however, also not interested in discussing the metaphysical basis for the

applicability of propositions, but only in reasons to believe them.

I3 Relationship between Geometry and Arithmetic

Although geometry, arithmetic, music, and astronomy were seen as the main

mathematical sciences, we will concentrate on geometry and arithmetic in this

Element, which is also what Euclid’s Elements focuses on.While we can clearly

understand, for example, Books I–IV of Euclid’s Elements as plane geometry,

and Books VII–IX as concerning arithmetic, it is less clear how exactly

12 Where solid geometry is added as a fifth.
13 Physics 194a8; for the classification of mathematics, see also Heath (1921), pp. 10ff.
14 See Heath (1921), pp. 13–16.
15 For details, see Mendell (2004). See also Aristotle, Metaphysics M, 3; K, 7; and Posterior

Analytics I, 5.

6 Philosophy of Mathematics
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geometry and arithmetic were defined and in which relation they were seen to

each other. We may think of modern geometry as a study of spatial structures,

but ancient Greek mathematics seems to treat it as a study of magnitudes, more

precisely of figures. And while we seem to get a neat division of Greek

mathematics into the study of multitude or discrete quantity, namely arithmetic,

and the study of magnitude or continuous quantity, namely geometry, it is

unclear whether it was conceptualised like this before Aristotle’s Categories.16

In spite of hints of a universal mathematics, Aristotle usually treats geometry

and arithmetic as two different sciences that differ in their genus. Their exact

relationship was a matter of intensive dispute, which is connected with the

question of a possible superiority of one over the other. (This also concerns

questions like whether the operations of addition, subtraction, multiplication,

division, and so on are geometrical or arithmetical.)

In contrast to Babylonian and Egyptian mathematics, Greek mathematics some-

time in the fifth century BCE started to geometrise mathematics, performing

mathematical proofs from then onwards mainly in geometrical terms (presumably

since certain topics, like incommensurability, could only be dealt with geometric-

ally, and arithmetic could not handle fractions).17 Thus at least since 400 BCE

geometry was dominant vis-à-vis arithmetic in Western mathematics, a dominance

that lasted until early modern times. It is also reflected in the fact that Euclid’s

Elements shows a much more systematically developed geometry than arithmetic,

giving many results and procedures in geometrical terms that we would give in

arithmetical ones. Furthermore, Euclid represents numbers by lines, and what we

understand as arithmetic operations, such as addition and subtraction, he seems to

understand in geometrical terms (e.g.,whatwewould think of as adding number x to

number y Euclid represents as extending a line AB by the length of line CD).18

Geometrical terminology is used for arithmetic, for example, when in Book VII,

definitions 16 and 17, the result of two numbers having been multiplied is called a

plane number, and that of three numbers having been multiplied a solid number.

In philosophical reflection, however, we find different assessments of the

relationship between arithmetic and geometry. For the most part, arithmetic is

seen as superior. The PythagoreanArchytas calls it superior to geometry and other

sciences in DK47B4, because it treats its objects in a clearer way and ‘brings

16 That we cannot simply presuppose such a distinction from the very beginning is clear also from
the fact that the Pythagoreans represented numbers with the help of pebbles and, keeping the
extension of the pebbles in mind, seem to have treated numbers in part like magnitudes. See
Sattler (2020a), p. 293.

17 The arithmetic-geometric problem of doubling the square has a possible geometric solution for
the Greeks (i.e., the diagonal) but no arithmetic one.

18 See, e.g., Elements IX, 21–27; and also Mueller (1969), pp. 302–304. But see Unguru (1975) for a
different understanding. There are only a few traces of calculation procedures in Euclid’s arithmetic.

7Philosophy of Mathematics from the Pythagoreans to Euclid
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proofs to completion where geometry leaves them out’.19 And for Aristotle

arithmetic is prior, more exact, and simpler than geometry, since it is based on

fewer things.20 His example in Posterior Analytics is a point in geometry, which,

like a unit in arithmetic, is a basic being, but in addition also has a position, so that

it involves more features than the arithmetical unit. The greater simplicity and

accuracy of arithmetic brings it closer to first principles than geometry for

Aristotle and thus demonstrates the superiority of arithmetic over geometry.

The Pythagorean Philolaus, however, calls geometry the source and mother-

city of the other mathematical sciences in DK44A7a and thus seems to assume

geometry to be superior to arithmetic. This raises the question whether the

differences in assessment of their relationship derives from a different point of

view or from a development within mathematics. The latter suggestion has

sometimes been connected with the fact that within ancient Greek mathematics,

arithmetic seems to have been more prominent in the beginning before the

geometrisation of mathematics in the fifth century (for example, Szabó (2004)

understands Archytas’ claim of the superiority of logistikê as depicting an older

Pythagorean attitude dominant before the geometrical turn). Against this

developmental thesis, however, speaks the fact that Aristotle, quite some time

after any geometrical turn, claims arithmetic to be superior. And also the

Pythagoreans were not unified in this respect, since Archytas, living in the first

half of the fourth century, claims arithmetic to be superior, while Philolaus, a

generation older than him, claims this for geometry. So it is more likely that these

different assessments are due to different points of view – the mathematicians

tending to geometry since this is the more powerful discipline within ancient

Greek mathematics, and philosophers tending to arithmetic since its basis seems

to be closer to first scientific principles.21 In any case, the tension between the

status of arithmetic and geometry led to general ontological and epistemological

questions, some of which we will see in the first two main sections.

I4 Specificities of Greek Mathematics

While much more abstract than Babylonian mathematics, ancient Greek math-

ematics is much less abstract than modern mathematics, and the abstraction we

find in ancient mathematics is of a very different sort than our modern one.

19 See also Huffmann (2005), pp. 225–252. The greater clarity of arithmetic may become obvious if
we look, for example, at proposition IV, 10 in Euclid’s Elements: ‘To construct an isosceles
triangle having each of the angles at the base double of the remaining one’. Arithmetically this is
relatively simple to solve: 2x + x/2 = 180; thus x = 72; while Euclid gives a rather complicated
drawing. Given that Archytas talks in fact about logistikê in this fragment, not about arithmetic,
he may, however, only be thinking about it working technically more quickly.

20 Posterior Analytics, I, 27, 87a34–37; Metaphysics, A, 2, 982a26–28 and M, 3, 1078a9ff.
21 See Mueller (1969). It is unclear why we find the difference in assessment in the Pythagoreans.
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Thus, when we talk about the philosophy of ancient Greek mathematics, we

should be aware that with mathematics we are talking about a somewhat

different beast than when we refer to modern mathematics.22

Greek mathematics has a certain level of abstraction in that it is interested

in general mathematical features as such; it is, for the most part, non-metrical,

that is, it does not use numbers for general mathematical problems, and it is

independent of any concrete practical context. But ancient Greek geometry is

much closer to perception in its reliance on diagrammatic representations than

its modern pendant. It is pre-algebraic, pre-structural, and pre-set theoretic.23

Ancient Greek mathematics does not employ functional variables, but only

parameters (and proportions) – so while for certain operations we can freely

chose a value, once it is chosen it always has to be the same value and cannot

vary. Infinity is in part presupposed by ancient Greek mathematicians, without,

however, taking up the fundamental discussions about this concept we find in

the philosophers. And, as we can see in Euclid, Greek mathematics of classical

and early Hellenistic times gives us only the minimal meta-language to connect

arguments – it is only philosophers who deal with meta-reflections. Let us

finally have a closer look at the Greek understanding of numbers.

I5 Notion of Numbers

Number theory started in what we may consider as a systematic way in ancient

Greek mathematics. Books VII–IX of Euclid’s Elements provide us with a

definition of primes, an algorithm for computing the greatest common divisor

of two numbers (what we now call the Euclidean algorithm; VII, 2), and the first

known proof of the infinitude of primes (IX, 20).

But there are three important differences in the ancient Greek understanding

of numbers to modern accounts:

(1) First, a number is a collection of units; it is defined as ‘multitude composed

of units’ (Elements VII, 2). The number seven, for example, is a collection

of seven units.24

(2) Second, 1 is for the most part not seen as a number, but as the beginning or

principle (archê) of number, what defines the unit. 1 is not a number in the

22 For ancient philosophers, it is seen as focusing on the same world as other theoretical sciences
are – for example, for Aristotle both mathematics and physics deal with the empirical world, just
with different aspects, and for Plato both mathematics and other theoretical sciences deal with
intelligible structures.

23 The idea of structure, essential in modern mathematics, plays no role in ancient mathematics; see
Mueller (1969), p. 299.

24 Accordingly, Euclid starts his definitions in the arithmetical books with defining a unit, and only
afterwards a number (VII, definitions 1 and 2).
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way 3 and 4 are, since the 1 determineswhat we count (1 defines the unit with

which we count, for example, book, and then we count how many books

there are in my room).25 So there is a strong difference between 1 and

numbers. We see that units thus serve double-duty – they are the constituents

of each number and they determine the one that is the basis for counting.

(3) Finally, for the Greeks, numbers mean positive integers, so we are dealing

with a theory of natural numbers; other numbers are not known. Irrational

numbers, like
ffiffiffi

2
p

, are not numbers for the Greeks, but proportions between

magnitudes, since they can deal with them only geometrically, not arithmet-

ically. Number in itself implies rationality and countability for the Greeks.

While Babylonian and Egyptian mathematics used fractions, there were no

real fractions in Greek mathematics up to Archimedes in the third century BCE

(apart from ⅔ in a practical context). Greek mathematicians took the 1 as

indivisible unity, so that there could not be any fractions;26 instead, they used

proportions and submultiples. Submultiples allow us to treat fractions as mul-

tiples of a more basic unit; for example, if I have 1=7, I can understand one as a

basic unit which I have to take seven times to get to the old basic unit. The

expression “1=7” thus gives me two different units and indicates a mathematical

operation (the relation of the smaller to the bigger unit), not a number.

Numbers are not defined in terms of successor functions or by what they

allow us to do and they are not sets. Instead they are understood as a quantified

plurality of things of some sort. Numbers used in ordinary life are seen as tied to

a concrete group of things (for example, a three of cups, if I am counting my

cups). And what is sometimes called ‘mathematical number’, that is, the

numbers mathematicians deal with, is tied to a monas, namely a mathematical

unit (which is what Euclid refers to in his definition of numbers).27

The ancient Greeks also investigated which further features characterise

numbers. This can be seen especially in the discussion about oddness and

evenness of numbers and of prime numbers. The Greeks not only distinguished

between odd and even numbers, but also even-times odd numbers,28 even-times

even numbers, and so on. And they not only discuss prime numbers, but also

numbers prime to each other.29 The number 2 is an especially interesting case,

25 See Klein (1968), chapter 6.
26 See Plato Republic 525d–e; Aristotle’s Metaphysics Iota claims that the one is treated as

indivisible; see Sattler (2020a), chapter 8.
27 For the Pythagoreans, mathematical numbers are made up not of abstract units, but of units

having magnitudes.
28 That is, a number of the form 2(2m + 1); see Euclid VII, def. 9.
29 I.e. numbers ‘measured by a unit alone as a commonmeasure’. We think of prime numbers as the

most basic building blocks of our number system and thus of their effects, while the ancients
think more about how numbers themselves can be characterised.
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for it is an even number for Plato and Aristotle, and a prime number for Aristotle

and Euclid.30 It is, however, neither even nor prime for the Pythagoreans, but

constitutes, together with the 1, the first principles of all numbers; and for other

mathematicians, like Nicomachus, being a prime number is a sub-division of

odd numbers.

Early Greek mathematics represented numbers by pebbles,31 while later on

numbers were represented by lines, which is also what we find in Euclid’s

arithmetical books. Like the Egyptians, the Greeks used a decimal system

(in contrast to the Babylonians, who used also a sexagesimal system). And

the Greeks used two numerical systems with different advantages and disad-

vantages: the Herodiadic and the ordinary Ionic alphabetical numerals.32

1 Ontology: What Kind of Things Are Mathematical Objects?

This section will investigate what kind of entities Greek philosophers took math-

ematical objects to be. We will see that their debates prefigure some of the most

important ontological positions in current debates, such as Platonism,33 abstrac-

tionism, and, according to some scholars, also fictionalism. Following roughly

Aristotle’s analysis in Metaphysics M,34 we can say that the main distinction in

determining the ontological status of mathematical objects is whether or not they

are seen as having their own existence, independent of either the world or human

minds. If they have an independent existence, they could either exist separately –

here we are heading towards Platonism – or exist nevertheless in physical things –

this is a position we will find with the Pythagoreans. By contrast, Aristotle

understands mathematical entities as dependent on physical things; he holds a

version of abstractionism.

This section will start with the Pythagorean assumption that numbers exist in

perceptible objects; but rather than being dependent on these objects, numbers

constitute them. We will then move on to the position of Plato, who also

understands mathematical objects as independent of the physical world, but as

existing separately. More exactly speaking we will discuss two central onto-

logical claims concerning mathematical objects in Plato: first the claim of the

Phaedo and the Republic that mathematical objects, like numbers or equality,

30 Topics 157b and Elements VII, definition 12.
31 See Simplicius (2002), In Phys. 457 and KRS (1983), p. 337 for a depiction.
32 For details, see Heath (1921), pp. 26–64.
33 Even if Plato himself understood mathematical objects, as we will see, somewhat differently

from how they are understood in modern Platonism as we find it, for instance, in Gödel or,
arguably, in Frege.

34 Aristotle’sMetaphysics deals with the most fundamental beings, things, and principles there are;
Books M and N discuss whether there are unmoved eternal Beings and if so, whether mathemat-
ical entities belong to this group.
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are entities that exist separately as part of an intelligible realm. Secondly, the

idea in the Timaeus that geometrical bodies, which are themselves made up of

perfect triangles, underlie the four physical elements earth, water, air, and fire,

and are thus the building blocks of physical things. The position of the Timaeus

may sound somewhat Pythagorean, except that it is not numbers but geomet-

rical figures that constitute the physical things and thus also exist in them.35

However, in the Platonic picture the geometrical forms come into play once

Timaeus’s creator god applies them to the chaotic material world – accordingly,

these geometrical figures exist before, and originally also separate from, the

physical world.

A stark contrast to the Platonic and Pythagorean metaphysics of mathematics

will finally be found in Aristotle’s understanding of mathematical objects as

abstractions and, perhaps, idealisations of the physical ones. For Aristotle,

mathematical objects are thus dependent on the physical world from which

they are derived and which grounds them ontologically. With Euclid, finally,

we do not get any explicit ontological commitment. But we may wonder

what ontological implications claims like ‘let there be a square ABCD’ (‘Estô

tetragônon to ABCD’) have.36

1.1 Numbers as the Ultimate Constituents of Things
with the Pythagoreans

When we look at early Pythagoreanism, we will distinguish between those

Pythagoreans that Aristotle discusses in his Metaphysics and the earliest

Pythagoreans of whom we possess reliable fragments, namely Philolaus, a

contemporary of Socrates, and Archytas, a contemporary of Plato.37 We will

start with the Pythagoreans as reported by Aristotle and then continue on to

Philolaus.38

35 Accordingly, the main interlocutor of this dialogue, Timaeus, has often been seen as a
Pythagorean.

36 Is it purelymeant as something we should imagine in our head? Does it assume that there are squares
in the world around us? Or may those scholars be right who have toyed with the idea that Euclid was
related to the Platonic Academy and thus assumed ‘squares existing in themselves’? The first three
postulates of Book I have sometimes been read as postulating the existence of straight lines and
circles (see Heath (1921), p. 374 and Acerbi (2013), p. 681), but they do not tell us what kind of
existence they have. Mueller (1981), by contrast, understands the magnitudes dealt with in the
Elements as abstractions from objects that leave out all properties apart from quantity, and mathem-
atical units as leaving out all properties of objects apart from self-identity and numerosity.

37 It is unclear how exactly the fragments we have from the group Aristotle calls ‘the Pythagoreans’
relate to Archytas and Philolaus: they may reflect Aristotle’s interpretation of Philolaus or
Aristotle may indeed distinguish between the older Pythagoreanism and the Platonised
Pythagoreanism prevalent at his time; so there may have been genuinely different positions
among the Pythagoreans.

38 Philolaus did not use numbers, but limiters and unlimiteds as principles.
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Aristotle reports in his Metaphysics that the Pythagoreans assume mathem-

atical objects to exist in perceptible objects and that their principles and

elements are the principles and elements of the sensible world:

[T]he Pythagoreans, as they are called, devoted themselves to mathematics;
they were the first to advance this study, and having been brought up in it, they
thought its principles were the principles of all things. Since of these prin-
ciples numbers are by nature the first, and in numbers they seemed to see
many resemblances to the things that exist and come into being […] since,
again, they saw that the attributes and the ratios of the musical scales were
expressible in numbers; since, then, all other things seemed in their whole
nature to be modelled after numbers, and numbers seemed to be the first
things in the whole of nature, they supposed the elements of numbers to be the
elements of all things, and the whole heaven to be a musical scale and a
number (985b23–986a3).

But the Pythagoreans, because they saw many attributes of numbers belong-
ing to sensible bodies, supposed real things to be numbers – not separable
numbers, however, but numbers of which real things consist. But why?
Because the attributes of numbers are present in a musical scale and in the
heavens and in many other things (1090a20–25).

So for the Pythagoreans, mathematical properties (presumably properties like

being quantifiable, being of odd or even number) can be found in sensible

phenomena, in whatever we empirically observe. This seems to have led them to

infer that sensible bodies either consist of numbers or are phenomena of

numbers in some way. While Plato’s idealism and Aristotle’s abstractionism

may strike us as not true but plausible or at least intelligible, some readers may

simply be flabbergasted by this Pythagorean position. However, it seems to have

been a very early (if very specialised) position in Greek mathematics and

philosophy and features of this position have been taken up repeatedly in the

history of thought, most recently perhaps by Baron (2021), who calls his

suggestion that the important properties of mathematical entities are structural

and as such also to be found in the physical world a ‘Pythagorean proposal’. Let

us look at possible reasons for the Pythagorean position.

It may be seen as answering the puzzle how it can be that numbers follow their

own rules (independent of the physical world), but yet are applicable to the

sensible realm to the degree that mathematical statements are true of the world.39

This combination would be possible, according to a Pythagorean picture, if

39 At least this is a puzzle to which we will see different answers in Plato’s Timaeus and in Aristotle
later and it seems plausible that the Pythagoreans may have raised this question. It is unclear
whether the Pythagorean idea of numbers ‘constituting’ things is meant to suggest numbers to be
physical elements or principles of things.
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mathematical objects are in the world and constitute sensible bodies – as such

constituents, numbers can be understood independently but are yet immediately

connected with the perceptible world.

The applicability of mathematics to the physical world is shown with the

example of music and astronomy. There seems to be one phenomenon in

particular mentioned in our two quotations that led to the idea that numbers

constitute things: musical scales and harmonies. It is, after all, not the relationship

of this very string to that very string that constitutes an octave, but the relationship

between every pair of strings whose lengths are in a relation of 1:2. So it

ultimately seems to be the relationship of 1:2 (which can be realised in different

materials that can vibrate so as to produce a sound) which constitutes the octave.

But if numerical ratios underlie musical intervals, they may also underlie other

perceptible things and phenomena which display mathematical features.

The preceding passages suggest a strong interpretation of the idea that

numbers underlie the sensible world in the sense that numbers are indeed seen

as the ultimate constituents and essence of sensible things.40 Aristotle claims

that for the Pythagoreans, numbers are not only the principles of everything but

also that the whole of nature is ‘modelled after numbers’.

But there is also a weaker interpretation available for the idea that mathemat-

ical structures underlie the physical world41 – an interpretation that may be

displayed by some fragments of the Pythagorean Philolaus, who claims that ‘all

things that are known have numbers. For it is not possible for anything to be

thought of or known without this’ (DK44B4).

Philolaus here is not making a claim about the whole universe, but about all

things that can be known (which may or may not have the same extension as the

whole universe). And these things are not said to be number, but only to have

number (in contrast to the picture in Plato’s Timaeus, they themselves possess

numbers, rather than have numbers bestowed upon them). The basic idea seems

to be that we can have knowledge of things, and our reason essentially works

with numbers, so there has to be something numerical about the things known

(for example, that they are quantifiable). Here numbers are a necessary condi-

tion for knowledge and because things we know have them, mathematical

operations are presumably also applicable to these things. But it is left open

how strong the ontological commitment is that is entailed in the idea of ‘having

a number’ – it may simply mean that physical things have a quantitative aspect,

40 See also fragment DK58A10. InMetaphysics 987b8f. Aristotle also claims that the Pythagoreans
understand sensible things as imitations of numbers.

41 The strong interpretation may seem similar to modern accounts that think everything is in fact a
code; while a weaker interpretation may be shown when people talk as if a graph, or numerical
depiction, is not simply a depiction, but the thing talked about.
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or that they are a unity composed of a number of parts.42 And while the fact that

numbers are tied to the knowability of things suggests that they are not tied to

some accidental feature, it is left open whether there may also be other features

we can know about things, for example, some quality, that may be something

over and above the fundamental knowledge we have based on numbers.

Three points seem to be in the background of the Pythagorean assumption

that things either have numbers or are even constituted by numbers: first, the

wide-spread understanding in ancient Greece that numbers are multiples of a

certain unit, usually of concrete things,43 and thus closely linked to the percep-

tible world; secondly, a peculiarity of the Pythagoreans, that numbers are seen

as generated;44 and finally, the Pythagorean idea that there is a cause for the

separation and distinction of the number series – their discreteness is accounted

for or grounded by the void.45 Thinking of numbers as requiring void to separate

them suggests understanding numbers along the lines of bodily stuff. And it fits

the fact that the Pythagoreans conceived of numbers with the help of pebbles.

Accordingly, when they claim that physical things are constituted out of num-

bers, this must also be seen against the background of a more physical under-

standing of numbers. Aristotle, however, thinks that the Pythagorean position

confuses the indivisibility of numerical units with the indivisibility of physical

things and accordingly faces two problems: first, it leads to the assumption of

atoms (indivisibles) of a sort, and Aristotle attempts to show in his Physics that

atomism gets us into problems if assumed for the physical world46 and destroys

mathematics (for then a mathematician could not cut a line wherever she needs

to, but only where atoms allow); second, it remains unclear how numerical

units, which in themselves have no physical magnitude andweight, canmake up

something with a physical magnitude and weight.47

42 Or constituted out of Philolaus’most basic principles, the unlimiteds and limiters; see Huffmann
(1993).

43 So (with the exception of mathematical numbers) there is no talk of three as such, but three
apples, three stars, etc.

44 Aristotle strongly opposes this idea, which for him means not understanding the eternity of
numbers (Metaphysics 1091a12–22).

45 Aristotle, Physics 213b22–27, DK58B30. Numbers are not, as for us, simply a paradigm of
discreteness.

46 E.g., in Physics VI, 12 Aristotle shows that there cannot be atoms, since we can always divide
things further at least conceptually – otherwise, at some point we could not account for
differences in speed any longer.

47 Aristotle, Metaphysics M, 8, 1083b8–19. Aristotle seems to entertain two different interpret-
ations of the Pythagorean position: first, that they talk in fact about a heaven and bodies different
from the perceptible ones (MetaphysicsN, 3, 1090a20–35). Second, that they assume the units of
numbers to possess spatial extension (Metaphysics M, 6, 1080b16ff.), which is in conflict with
Aristotle’s assumption that the numbers the mathematicians work with are abstract numbers and
thus without any extension and weight.
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Moving on to Plato’s account of mathematics now, we will encounter two

of his central ontological claims concerning mathematical objects: (a) the

claim that mathematical objects are entities with their own independent

existence, and (b) the idea in the Timaeus that geometrical bodies, which

are themselves made up of perfect triangles, underlie the four elements and

are thus the building blocks of physical things. The first claim (a) derives

from a discussion about the question what ontological status mathematical

objects have which Plato raises explicitly in his Republic, and to some

degree also in his Phaedo. It seems to hold true of mathematical objects in

general, but the emphasis seems to be on arithmetic. And so we learn of

numbers not only that numbers as such exist independently of the physical

world, but also that the many instances of each individual number which the

mathematicians use for their calculations are intermediates between the

sensible and the intelligible objects. The second claim (b) derives from the

attempt in the Timaeus to explain the perceptible world as something that

can be known, that is intelligible. The focus here is on geometry, but

proportions are also understood to underlie the orbits of the motions of the

heavenly bodies.

1.2 Mathematical Objects as Part of the Intelligible Realm
in Plato’s Republic and Phaedo

Aristotle, Plato’s main opponent with respect to the ontology of mathematical

objects, provides us with a rationale for the assumption of separately existing

mathematical entities in hisMetaphysics 1090a35–b1: those thinkers who make

numbers exist separately, like Plato, do so because axioms do not seem to hold

of perceptible things, but yet are true in themselves.

In his example of the line, that we will discuss in the next section, Plato

assumes mathematical objects to exist separately as intelligible entities that

are not derived from the perceptible world (even though mathematicians use

sensible objects as examples). But his mathematical ontology is in fact more

complex than that. For the main claim by Plato and many Platonists about

mathematical entities, namely that they exist not only independently of

physical entities but also separately in an intelligible realm, leaves it open

how to think of this logical space. And this separate logical space is not

necessarily the same as the logical space of Platonic Forms. We get a

distinction among mathematical entities between those that behave very

much like Forms, and those that are the tools of the mathematicians that

have an intermediate status between Forms and sensible things. Let me

explain this a bit more with respect to its most prominent example, the
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distinction between what is commonly called Form numbers and mathemat-

ical numbers.48

Forms are, roughly speaking, separately existing universals (Beauty as such) that

are eternal, immutable, simple, and existing on their own.49 In the same way in

which on a Platonic account there is a Form of Justice, and a Form of Equality,

there seems to be a Form of twoness (Phaedo 101c) – the Form of two is what it

means to be two. Every pair, and every 2 I use, participates in twoness. Being a

Form also implies that there can be only one of it.50 No mathematical operation is

defined on the Form number, since this would not fit with Forms existing inde-

pendently. In addition to Form numbers, there are also the numbers the mathemat-

icians work with when they multiply, for example, two times two. Of these there

has to be a plurality and operations need to be defined on them, otherwise our

arithmetical practises would not be possible. For the Platonists, we thus need to

have one intelligible object that grounds twoness of which there can only be one,

the Form number, and another one that can be an object of mathematical operations

and of which there can be a plurality, mathematical numbers.51

These mathematical numbers are also independent of the sensible two I write

in the sand and of concrete pairs in the perceptible world; if, let us say, we were

living in a world which contained only five items, a mathematician could still

calculate what is six times six, even if no items corresponded to this operation in

the perceptible world. Accordingly, mathematical numbers seem to be treated as

so-called intermediates:52 they possess an ontological status in between the

individual intelligible single Forms and the many perceptible things, since they

are many, like the perceptible things, but yet intelligible and not sensible, like

the Forms.53 The full Platonic story in fact even seems to contain four kinds of

48 Aristotle in his Metaphysics M gives us a division of the metaphysical positons in Plato’s
Academy according to which some, like Plato himself, took there to be Form numbers and
mathematical numbers; others assumed only mathematical numbers – a position usually ascribed
to Speusippus – and finally some, like Xenocrates, tried to identify both Form numbers and
mathematical numbers.

49 This holds true of the middle Plato, while the late Plato, in his Sophist, assumes Forms to be
complex. The fact that Forms seem to self-predicate – for example, the Form of the Beautiful is
not only the reason for all sensible things to be beautiful, but is also itself the perfect paradigm of
what it is a Form of, of what it means to be beautiful – has led scholars to question whether
Platonic Forms are indeed universals in our sense.

50 Since a single Form is meant to be responsible for the same feature in different things.
51 Similarly, there seems to be only one Form of a circle, but the mathematicians deal with several, for

example, when comparing the relationship of the diameter of a circle to its area to that of another
circle.

52 See Metaphysics 1090b35–36.
53 See also Proclus (1992), who opens his commentary on Euclid with the claim that the mathem-

atical objects occupy a middle place between the indivisible Forms and the things that are
through and through divisible. Mendell (2022), p. 359 claims these intermediates to be the
ancestors of mathematical Platonism, since mathematical propositions are true of these objects.
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‘twos’: (1) the perceptible pairs in the world, (2) the mathematical numbers

which are used in mathematical operations, (3) the Form number two, and

finally (4) the indefinite two (or dyad) which Aristotle reports to function as

the principle of plurality in Plato’s unwritten doctrine.54

1.3 Mathematical Objects as Underlying the Physical
Realm in Plato’s Timaeus

We saw that with the Pythagoreans, mathematical objects constitute the

physical world. And also according to Plato’s Timaeus, mathematical objects

exist in the world – geometrical bodies underlie the physical phenomena we

perceive. In contrast to the Pythagoreans, it is not numbers but geometrical

bodies that Plato sees employed. Moreover, these mathematical objects used in

the Platonic universe originally exist separately from the physical world and are

thus independent of it; the geometrical solids are used to bestow order onto the

originally given chaos and to transform it into a regular cosmos.

The Timaeus is Plato’s cosmology and most encompassing account of the

natural world –from the microstructure of the atomistic particles underlying the

basic elements of the world all the way up to the arrangement of the heavenly

bodies. It gives an account of how our cosmos was shaped by a divine demiurge

out of an independently existing space-like receptacle which is filled with traces

of the physical elements. Our physical universe is seen as understandable55

because the demiurge builds it by imitating an intelligible model; and he does so

by using mathematical structures in order to imbue the irregular traces of the

chaotically moving elements with order and measure. It is in three areas that the

demiurge uses mathematical structures: (a) proportions are used for connecting

all the physical material there is in the world body, thus securing the unity of the

world body, and for determining the order according to which the fabric of the

world soul and thus also the orbits of the heavenly bodies are formed (Timaeus

31b–32c and 35b–36d); (b) the number series is employed for measuring the

motions of sensible objects (39b–d); and finally (c) the material atoms are built

from geometrical bodies (53a–55e);56 we will concentrate on this last point.

Before the divine demiurge starts his work, there are only traces of the four so-

called elements (53b). With these four elements, fire, air, water, and earth, Plato

takes up what in the physical investigations of his time was seen as the material

54 See Physics 203a4–16. In Metaphysics N, 3 Aristotle ascribes a threefold ontology to Plato:
perceptible numbers, mathematical numbers, and Form numbers (1090b32–36), while in Plato’s
dialogues we find only hints of such a three- or fourfold ontology. In contrast to modern
‘Platonism’, this ontology does not contain the set of all pairs.

55 At least to the degree that a probable account (an eikos mythos) is possible.
56 For a more detailed account, see Sattler (2012) and (2020a), chapter 6.

18 Philosophy of Mathematics

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009122788
Downloaded from https://www.cambridge.org/core. IP address: 18.190.207.23, on 29 Apr 2025 at 10:32:19, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009122788
https://www.cambridge.org/core


foundation of the perceptible world, while he also wants to make clear that these

are not really the most basic elements there are. For they themselves are made up

of geometrical bodies. Originally there are solely unintelligible traces of the

elements. It is only with the work of the demiurge that order and measure are

introduced into the world, so that the presumably crooked surfaces of these

elemental traces are formed into straight ones that make up the surfaces of

geometrical bodies.57 The geometrical bodies the demiurge chooses as the basis

for the physical ‘elements’ are the most regular (and thusmost ‘beautiful’) solids,

what we have come to call ‘Platonic bodies’58 – tetrahedron, cube, octahedron,

icosahedron, and dodecahedron. Here Plato seems to have employed new math-

ematical research of his time, presumably undertaken by Theaetetus, that showed

that there can only be five convex polyhedra that are fully regular in the sense that

all faces are congruent regular polygons and the same number of faces meet

at every vertex.59 This research showed the exhaustiveness of these regular

polyhedra which Plato took up as a suitable basis for material ‘elements’.

Thinking of bodies in a mathematical way, Timaeus claims that these

geometrical solids are composed of basic surfaces – of triangles. As there is

no single kind of triangle out of which all the Platonic solids can be constructed,

it is assumed that the demiurge uses two different kinds of triangles: the

isosceles right-angled triangle out of which the surfaces of the cube are formed,

and the half-equilateral triangle as a basis for the tetrahedron, the octahedron,

and the icosahedron (see Figure 2). So the real ‘elements’ (in the sense of the

basic foundation of everything there is in the sensible world) are not fire, air,

water, and earth, but two kinds of triangles; and Plato leaves it explicitly open

whether there may be some even simpler elements out of which these surfaces

of the world are originally formed, such as lines.

The different geometrical solids are ascribed to the four elements according

to the following kind of similarity: as the cube has the most stable base (given its

surface area), it is the basis of earth, which is the most immobile of the elements;

whereas the body with the fewest faces must be the most mobile and the lightest,

thus the tetrahedron underlies fire.

While a single geometrical solid underlying the physical elements is too small

to be seen, an aggregated mass of them is perceptible. And, as in the case of other

atomistic accounts, what we then perceive is not simply an aggregate of atoms,

for example, not a bunch of mathematical tetrahedra, but the phenomenon we are

used to, fire. In contrast to merely mathematical tetrahedra, the tetrahedra

57 See Sattler (2012), p. 180.
58 They are so called because Plato’s Timaeus is the first text to mention them.
59 See the proof in Euclid’s Elements XIII, proposition 18.
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constituting fire have a tendency to move to other pieces of fire and are connected

to the Form of fire in that they are an image of that Form (51b–52a).

Like mathematical solids, these building blocks of the elements can also be

transformed into each other. The transformation rules follow their mathematical

base: thus a particle of air can dissolve into two particles of fire, since an

octahedron provides the surfaces required to build two tetrahedra out of it.

While the Plato of the Republic is concerned about the intelligible status of

mathematical objects, in the Timaeus we find Plato focused on the usage of

geometrical figures for the explanation of the universe. He does not discuss the

ontological status of the geometrical solids, but we have also no reason to

assume he has given up on his earlier idea of ‘the square itself’ (Republic

510d–e), only because he is dealing with many squares in the physical world.

For him, the many geometrical solids are used to make the world understand-

able – and literally so, since they (and not just an approximation to them) are the

Figure 2 Platonic solids made out of basic triangles.60

60 Adapted from Restrepo and Villaveces (2012).
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constituents of the physical elements. They can keep their non-perceptible

status due to the fact that they are too small for perception and the many

geometrical solids that together form a phenomenon appear not as geometrical

solids, but as physical elements.

This ‘geometrical atomism’61 allows Plato to tie the plurality and changeability

of the phenomenal world to intelligible mathematical structures. He traces phys-

ical and perceptual features, like the piercing experience of the heat offire, back to

mathematical ones, like the acuteness of the angles of the tetrahedra constituting

fire (Timaeus 61d–62a). This mathematisation of the universe, however, also

shows that the physical realm cannot be assimilated to the mathematical realm

without further ado. Plato’s attempt to do so leads to at least three problems: first,

for reasons of regularity and exhaustiveness, Plato assumes the Platonic solids to

be the basis of the elements – but there are five Platonic solids, and only four

physical elements in ancient physics; so the mathematical basis does not fit

exactly the physical requirements. Plato is aware of this problem and accordingly

gives an account of what happens to the fifth geometrical element eventually: the

dodecahedron is assumed to be the form of the world as a whole (55c), as it seems

to be close enough to a sphere, which was assumed as a form for the world body

before because of its regularity and completeness (33b). Second, while Timaeus

himself suggests that on the phenomenal level, it appears as if all four elements

can be transformed into each other (49b–c), the mathematical basis in fact

excludes earth from such transformations since cubes are made of a different

kind of triangles than tetrahedra, octahedra, and icosahedra (54b–d).

In these two cases we see that the underlying geometrical structure leads to

assumptions that are in tension with phenomenal observations or physical needs.

By contrast, the third problem is a consequence from the mathematical realm that

is in need of further explanation in the Timaeus: while the elemental changes

between fire, air, and water are accounted for in terms of the number of faces (so

that, for example, two tetrahedra which turn into one octahedron do indeed share

the same number of faces), what is problematic are the changes of the volumes

resulting from such an elemental change; for the volume of the two tetrahedra is

only half the volume of the octahedron. Given that Plato excludes any void

between the elements (58a, 59a), and elemental change is a constant feature of the

universe, an explanation would be needed why these continuous elemental

transformations do not lead to incessant changes of volumes of the universe.62

61 Atomism here implies that there is a distinction between what truly is, the geometrical bodies in
this case, and what appears – here, fire, air, etc.

62 Moreover, Aristotle in Metaphysics M, 2, 1076b objects that the Platonist position will lead to
ontological inflation: if there are separate mathematical solids, there will be separate mathemat-
ical planes, lines, points, etc.
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Furthermore, the transfer of mathematical features to the physical realm

raises the question whether the consequences these mathematical features

bring with them should be dealt with as they are in mathematics or not – for

example, should we assume that three-dimensional bodies can be made up of

planes, as they are in mathematics? Aristotle answers with a clear no, Plato with

a clear yes. Plato makes the physical realm fit the mathematical and assumes

mathematical rules to be valid for the physical world, a view which Aristotle

contests.

1.4 Mathematical Objects as Abstractions in Aristotle

Aristotle develops a third position concerning the ontology of mathematical

objects.While he does not give us a treatise laying out in detail his own position,

we can reconstruct it from his refutation of positions that assume independently

existing mathematical entities in Metaphysics M.

In contrast to Plato’s assumption that mathematics deals with independently

and separately existing objects, for Aristotle mathematics deals with perceptible

things, since they are the only things that exist for him. However, mathemat-

icians do not deal with these sensible objects insofar as they are perceptible, for

example, insofar as they have colours and are made from a certain material, but

insofar as they have mathematically relevant properties, for example, exten-

sions such as length. While the fact that a certain building, like the Palazzo

Vecchio, has a square façade is accidental to its being a government building (it

would also work as a government building if the façade was a rectangle), it is

what the mathematician will take as object of investigation. And since it is the

best way to investigate what really interests her, the mathematician will treat

this feature accidental to the building as if it were separate (from its material,

etc.). She thus posits what is accidental as independently existing and makes her

object of investigation independent of the changes the physical thing may

undergo (or its generation and corruption).63

Aristotle’s position has three aspects – abstraction, being separate in thought,

and what is called a ‘qua-operator’. Let us briefly look at each of these.

Qua-operator: this operator is a tool commonly used by Aristotle but

especially important for his account of mathematics. It makes it clear that we

are looking at some x insofar as it is y, that is, qua y.64 And insofar as x is y, only

certain properties are relevant (usually a sub-set of the properties of x). For

example, an arithmetician looks at a turtle qua one indivisible unit (insofar as

63 For we need mathematical objects to be eternal and unchanging.
64 Lear (1982) understands it as a filter that filters out what is inessential to the discussion and thus

isolates the relevant logical space. See also Annas (1987) and Mendell (2004).
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turtles can be considered as such units, they can be counted) and a geometer can

look at the same turtle qua a solid (insofar as the turtle is, for example, shaped like

a spherical segment, it will have the properties suitable for such spherical

segments). Two understandings of the qua-locution have been suggested within

Aristotelian scholarship: as looking at one specific aspect or property or as

indicating a specific approach to the subject.

Being separated in thought: with the help of the qua-operator, the mathemat-

icians can posit the mathematical object as separate in their thinking.65 This

means that the mathematical object can be defined without referring to that from

which it was abstracted (for example, the features of a sphere can be investi-

gated without any reference to the physical ball from which the sphere was

abstracted). For Aristotle, only substances can exist independently, but not

quantities (which is what he regards mathematical objects to be) nor any of

the features he considers as belonging to the other categories (such as qualities).

Nevertheless, for all mathematical purposes, mathematical objects can be

treated as if they were separate – separate from the substances they were

abstracted from as well as from the motions and changes of these substances.

Metaphysically, however, the basic things there are, are still substances, which

are the only things that can in fact exist separately on their own for Aristotle.

Treating mathematical objects as if they were separate when they really are not,

has been seen as a mere façon de parler; or even as a form of fictionalism on

Aristotle’s part.66

Abstraction: The starting point for Aristotle is the perceptible thing, from which

we then abstract certain features. This abstraction is, however, not any old lack of

attention to certain features that the mathematicians perform, but an intended

inattentiveness67 – anything that is not of mathematical interest is disregarded;

we only attend to certain features and intentionally leave out others.68

This still leaves it open, however, what exactly we take the things to be that

we abstract from and what we take the result of the abstraction to be. Are we

disregarding the matter of a physical thing or are we disregarding certain

features, such as possessing colour or being moved? And is the result a certain

object, for example, a square, or is it certain properties, such as extension or

roundness? What about those mathematical features that do not seem to be

65 ‘Positing’ here does not mean stipulating something that is not there, but rather seeing something
as its own object of investigation which we encounter in the sensible world as part of a compound.

66 So Mendell (2004). On the other hand, Aristotle claims that mathematical things really exist, for
things either exist, as he says, ‘in actuality or as matter (i.e. potentially)’, and he seems to think of
mathematical things to exist potentially, in the way a statue exists in a block of marble.

67 See Annas (1987).
68 Lang (2021) calls his position that mathematics deals with abstract mathematical properties, and not

with abstract objects which are possessed by physical systems, that of an ‘Aristotelian realist’.
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instantiated (for example, a particular angle)? And how can abstraction work in

the case of counting – can we really abstract away everything from a thing apart

from the fact that it is one thing in order to gain a unit? Or is all we need in this

case an appropriate sortal?

These points lead to two bigger questions – (a) is abstraction for Aristotle one

unified process and (b) does it require some form of idealisation? (a) Do we in all

cases abstract from the same kind of things in the same kind of process or does

abstraction mean different things in different instances? The understanding of

abstraction seems to differ with different cases, for example, if I count the turtles

in the zoo, I seem to undertake a different kind of abstraction than if I abstract

from the physical features of my turtle so as to derive a spherical segment. But if

it is not always the same kind of process, how then do we know what is the right

thing to abstract from in each case? Is it enough if this is decided by the person

counting or abstracting? (b) Idealisation may be seen as required at two possible

points in Aristotle’s account: on the one hand wemay think that in order to derive

a tangent that does indeed touch the circle at only one point or a triangle whose

angles do indeed equal 180 degrees, it is not enough to abstract from matter and

other properties of physical circles and triangles, but wemay also have to idealise

the slightly crooked lines to derive straight lines or perfectly curved ones and the

mathematical properties mathematicians do indeed study.69 Furthermore, there

may be cases where in fact no instantiation does indeed exist even though we can

construct them mathematically.70 In both cases it would seem mathematicians

may also have to add something to the physical world (a section of the straight

line, for example, or the angle not instantiated in the world). But if the mathem-

atician and thus her mind ‘adds’ something, is the thus gained triangle not mind-

dependent? Accordingly, with respect to the ontological status of mathematical

things, Aristotle’s account of mathematical objects has sometimes been under-

stood as a version of psychologism, and mathematics as subjective (which would

make the applicability ofmathematical theorems to the natural world problematic

and may call into question the position of mathematics as a model science).

Recent scholarship on Aristotle, however, as well as Neoplatonists, have

pointed out that Aristotle nowhere claims mathematical objects to be mind-

dependent.71 And the Greek origin of our word ‘abstraction’, aphairesis, which

Aristotle for the first time uses in a technical sense, literally means ‘taking

away’.72 Accordingly, several scholars have suggested that with Aristotle we

69 Mendell (2004) calls this the ‘precision problem’. He does not think Aristotle ever explains his
solution to this problem.

70 Similarly, Hussey (1993) has pointed out that according to Aristotle there are not infinitely many
actual straight lines in the world but infinitely many in mathematics.

71 See Mendell (2004) and Proclus (1992), 12.10–16. 72 See Cleary (1985).
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should talk about subtraction rather than abstraction – for him everything is

there already with the sensible things, certain features just have to be subtracted;

there is no addition that an idealisation seems to suggest. For Aristotle, what

mathematicians do is not to create something, but rather to actualize what exists

already potentially (the line has the potential to be lengthened and its crooked-

ness to be disregarded).73

Summing up, we can say that mathematical objects are not independently

existing objects for Aristotle, rather they depend on the sensible objects we

perceive; they are features of these objects that we separate in thought, but they

do not depend on our mind for their existence. It may seem ironic then that

Aristotle, for whom the objects of mathematics are much closer to sensible

objects than for Plato, is very cautious to make it clear that the construction

principles of mathematics, such as that from lines and surfaces we can construct

solids, do not hold for physical bodies which Plato in his Timaeus seems to

assume.

2 Epistemology: Mathematical Knowledge versus
Philosophical Knowledge

In this chapter we will look at different accounts of the relationship between

mathematical and philosophical knowledge and at the epistemological status of

basic propositions and deductive procedures. In the last chapter, with Philolaus,

we saw the idea that mathematical structures may be seen as a necessary

condition for knowledge, though it remained underdetermined what kind of

knowledge he had in mind. In Plato’s Meno and in Aristotle’s Posterior

Analytics mathematical knowledge seems to be used as a model for scientific

knowledge – the claim to completeness and perfect veracity and its method of

demonstration make especially geometry a paradigmatic example of a science

for philosophers. The mathematical sciences were one of the few already

established sciences outside of philosophy and probably the most prominent

and exact among them, so using them as models for scientific knowledge may

have seemed rather natural. In Plato’s Republic, however, mathematical know-

ledge, while important and central for the education of the future leaders of the

state, is clearly distinguished from the highest form of philosophical know-

ledge, namely dialectic, which is meant to work with non-hypothetical starting

points. Finally, we will also consider the role of explanations in ancient math-

ematics according to Aristotle.

73 What we may miss in order to account for mathematical objects not instantiated in the physical
realm, is an explicit claim that some abstractions can be combined to form different mathemat-
ical objects (an idea that we are used to from similar discussions in early modern times).
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2.1 Mathematical Knowledge as a Model

Plato frequently uses the mathematical sciences as examples for secure knowledge

or exact sciences.74 In hisMenomathematical knowledge seems to be employed as

a model of real knowledge that we do not derive from the world but bring already

with us.75 We find two passages there that use geometry as a paradigm for

knowledge and inquiry, respectively. The first one (82b–86b) is better known and

shows a young Greek slave coming to find a solution to the problem of how to

double the area of a given square without any prior geometrical knowledge. Plato

introduces it as a reaction to the so-called Meno Paradox (also called Paradox of

Inquiry), the problem raised by Meno that inquiry seems to be impossible or

useless: if we do not know beforehand what we inquire, inquiry seems to be

impossible as (a) we will not know what to look for when starting our inquiry

and (b) we will not recognise it once we have stumbled upon it. And if we do

already know what we are looking for, inquiry seems unnecessary.

As a response to this seeming paradox, Plato wants to show that we do

indeed already possess knowledge of what we learn beforehand, but we have

forgotten and need to be reminded of it. Accordingly, his so-called theory of

recollection claims that our inquiries do in fact not produce new knowledge

but rather reawaken what we already know in some way; we become aware of

knowledge we already possess. The kind of knowledge Plato seems to have in

mind (or at least for which his theory seems most plausible) is what we would

call a priori knowledge.76 And the example he gives for such rekindled

knowledge is an instance of the geometrical doubling of the area of a square:

a young boy who has not been taught any geometry is given a square with an

area of four square feet, thus the length of each side being two feet. He is asked

to find the length of the side of a square that is double this area, so eight feet.

Not having any experience in mathematics, he first tries a square with double

the length of the sides and then using sides of three feet length. Eventually,

Socrates brings out the right answer from him with the help of a diagram: a

square with an area of eight feet has a side with the length of the diagonal of

the two feet square (see figure 3). This mathematical example is meant to show

how somebody without experience or training can derive new knowledge

simply by deduction.

74 For example, in Gorgias 451a–c or Protagoras 356d–357a.
75 At least this is what the back reference to theMeno in Plato’s Phaedo suggests when it is claimed

that the ability to remember correctly if questioned in the right way (which for Plato is the way to
acquire knowledge) ‘is shown most clearly if you lead them to diagrams’, i.e. to geometrical
reasoning (73b).

76 For Plato, it is a certain content of knowledge, rather than an ability or capability of reasoning
that we already possess.

26 Philosophy of Mathematics

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009122788
Downloaded from https://www.cambridge.org/core. IP address: 18.190.207.23, on 29 Apr 2025 at 10:32:19, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009122788
https://www.cambridge.org/core


In this geometrical example, we can look at the diagram of the square ABCD

and its diagonals and from this ‘see’ how to proceed. We acquire geometrical

knowledge via seeing the figure of the original square that is divided by the

diagonals so that we then can ‘count the triangles’ constituting the squares without,

however, depending on this particular drawing (we could as well simply imagine

one in our head). There seem to be a couple of problems, however, with this

example: for instance, we are explicitly told at the end that the young boy ends up

with true opinion, not yet knowledge (85c); we seem to begin with an arithmetical

question (how long is the side of a square with double the area of the two-feet

square), but end up with the boy simply pointing to the line of the diagonal; and

Socrates’ leading questions have been seen as in fact doing muchmore than simply

help the boy discover the knowledge already within himself.77 All these objections,

however, do not undermine the fact that Plato uses a mathematical example as a

paradigm for knowledge that can be derived a priori. Socrates’ questions may be

leading questions that prompt certain answers, but his careful layout of steps

leading to the solution of the problem ends up showing the boy’s ability to follow

a deduction or a kind of proof.78 And while the boy ends up pointing to a line, this

move from what seems to be an arithmetical question to a geometrical answer (the

A B

C
D

Figure 3 Doubling the area of a square in the Meno.

77 E.g., are the two diagonals, which Socrates introduces, not a necessary pointer for the slave boy?
For their lines cut up the original small square into equal parts and thus the slave boy can count
the parts inside and is pushed in the direction of dividing up the original square.

78 See Scott (2006), chapter 9. Knorr (1975) even suggests that what we find in theMeno is what a
Pythagorean proof for the incommensurability may have looked like.
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length of the diagonal of the original square) simplymirrors the fact that the answer

to this question has to be geometrical within the context of Greek mathematics. For

the problem of doubling the square has a geometrical solution (i.e. the diagonal) in

ancient mathematics, but no arithmetical one, since we cannot arrive at the side of

the square in question numerically within the realm of positive integers.79 But the

task of finding a square of double the area is nevertheless achieved: Socrates is

satisfied when they have reached the new square (without any indication of irony

here), andMeno and Socrates do not have to discuss first whether this is an instance

of knowledge. That the boy is seen as ending up with true opinion rather than

knowledge is explicitly claimed to rest on the fact that the insight gained is not yet

tied down in his mind (85c), but frequent questioning will tie it down and thus turn

it from true opinion to knowledge.80

While we are not given a general view of Plato’s account of mathematics

here, it is remarkable that he uses this geometrical piece of reasoning as the

prominent example of recollection in theMeno and the Phaedo and lets it serve

as a paradigm for something that is indisputably knowledge (it is knowledge

which Meno and Socrates themselves possess, so they can clearly see when the

boy goes wrong and when he has reached the right answer). The geometrical

construction allows him to show the process of inquiry and it provides the

security that we are doubtlessly dealing with a piece of knowledge,81 since the

mathematicians agree on the fact that we gain a square with double the area

from building it on the diagonal of the original square; an agreement that may be

much harder to reach on philosophical questions.

In the second geometrical passage, 86c–87b, we are presented with a math-

ematical method that is used as a model for philosophical investigation, the

hypothetical method.82 The idea is that with problems we cannot solve straight-

away, we may nevertheless make progress by spelling out possible conse-

quences for the different possible solutions. So while we may not be able to

give an answer to a particular problem, we may nevertheless say that if it is x,

then y follows and if it is w then z follows. For the issue at hand in theMeno, this

79 Socrates seems to hint at the problem of incommensurability between the diagonal and the side
of the square when he tells the boy ‘to show’ the side of the double square ‘if he cannot calculate
it’ (84a); see Knorr (1975), p. 26 and chapter 3.

80 We seem to deal with a different account of knowledge here than in the Republic, where
knowledge is set over a different realm than opinion is (the former over the intelligible, the
latter over the perceptible), while here in the Meno we can have both opinion as well as
knowledge about mathematical things and the way to Larissa. This difference in the account
of knowledge may also be part of the reason for the different view of the relationship between
mathematical and philosophical knowledge Plato seems to present in theMeno and the Republic.

81 A security presumably needed by Plato as a basis to introduce his new concept of recollection.
82 The Platonic text explicitly links this examination ‘from hypothesis’ to what geometers do. For

understanding it as the mathematical method of analysis, see Menn (2002), p. 212.
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means that whereas it does not seem possible to answer the question directly

whether virtue is teachable, it is possible to say that if it is knowledge, then it is

indeed teachable, but if it is not knowledge it may not be. While this method

does not as such lead to answer the question whether virtue is teachable in the

Meno – for this Meno and Socrates would first have to inquire into what virtue is

and attempt to find a definition83 – it presents a way forward and a method of

discovery.

Both geometrical passages are used for the overall interest of Plato’s dialogue

in ethical knowledge, the question what virtue is and whether it is teachable.

Geometrical knowledge is introduced in order to show how acquiring know-

ledge in general is possible and how to deal with questions that do not seem to be

answerable directly. And these passages may be seen as suggesting that geom-

etry and philosophy are similarly deductive.84 Thus these passages have been

read by some as the first inkling of the idea that philosophy can work ‘in a

geometrical manner’, more geometrico; the most literal and extensive under-

standing of this we probably find in Spinoza’s Ethics Demonstrated in

Geometrical Order.85

Let us now move on to Aristotle’s Posterior Analytics, his theory of demon-

stration and account of how to organize and present the results of research as a

systematic science.86 For this, Aristotle uses the mathematical sciences to

provide him with crucial and often the most prominent examples; and it is

evident that the mathematical sciences are not only a very clear case of scientific

knowledge, but in many respects a model for him.87 While it has been argued

that the model of a science Aristotle works with is in fact not mathematics, but

biology,88 the two seem to be models in very different senses: biology is a model

science for Aristotle in the sense that he wants to establish such a science in his

ownwork, but it is not yet such a science when Aristotle enters the philosophical

scene; rather, it becomes such a science only with him.89 By contrast, the

mathematical sciences are already existing sciences that his audience would

83 Without clarifying first what virtue is, the two are led to what seem to be opposing conclusions
about the possibility of teaching virtue; this is, however, not due to the method as such, but rather
to the fact that without this clarification Socrates and Meno seem to find support for understand-
ing virtue as knowledge as well as not as knowledge.

84 See Broadie (2021), p. 191.
85 In early modern times, this style was seen as taking up the methodical way we find in Euclid’s

Elements.
86 See also Section 3. 87 See also Cleary (1985), p. 18.
88 See, for example, Lenox (2021), who points out that Aristotle’s History of Animals 491a7–14

suggests that his biological project is organized in accordance with the theory of the Posterior
Analytics. And in general, Aristotle’s own biology has been seen as fitting the model of
demonstrative knowledge of the Posterior Analytics very closely.

89 Which also Lennox (2021) seems to admit when he speaks about biology being a science only
from Aristotle onwards.
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be familiar with.90 And we should not forget that the mathematical sciences were

one of the few already established sciences outside of philosophy and probably

the most rigorous among them. Aristotle can draw from the mathematical sci-

ences in order to show to his audience, for example, the role principles play, the

classification of principles, and, more generally, the way a deductive science

works; they are a model he can refer to for how a science should be organized and

set out.91 This does not necessarily meanmathematics is a science that philosophy

should emulate in its form (given that geometry works with constructions, this

does not even seem possible), but in its systematicity and rigor.

At the very beginning of his Posterior Analytics, Aristotle takes up the idea

from the Meno that learning requires prior knowledge: ‘All teaching and all

learning of an intellectual kind proceed from pre-existent knowledge’ (71a1f.).

Talking about ‘intellectual learning’ here, Aristotle makes room for knowledge

by perception, while Plato talks about knowledge full stop.92 For Aristotle, there

are two ways in which we must already have knowledge at the beginning of an

inquiry: of some things we must already believe that they are, of others we must

graspwhat the things spoken about are. The examples he gives for these kinds of

prior knowledge are, as with Plato, mathematical, but also logical:

For example, of the fact that everything is either asserted or denied truly, we
must believe that it is the case; of the triangle, that it means this; and of the
unit both (both what it means and that it is) (71a13–16).

We see that Aristotle first gives a logical example – of the principle of the

excluded middle we must know that it holds, in such a way that everything is

either asserted or denied. And then he switches to two mathematical examples:

of a triangle we must knowwhat it means (but not that it exists, since it is not the

most basic element of geometry and its existence can be proven by construc-

tion). And of the unit we must both know what it means and that it is since it is

the most basic item in arithmetic, namely the element of numbers. For Aristotle,

too, there must be some form of knowledge prior to any teaching and learning.

Mathematical knowledge and logical principles, such as those referred to in the

passage just quoted, demonstrate this. For Aristotle, we know certain things

universally before we learn, but we do not know them simpliciter. As an

90 Furthermore, it has often been claimed that at least a good part of Aristotle’s Analytics was
already written while he was still a member of the Academy (see Barnes (1993), p. xiv), while he
seems to have started his mature biological work only after he had left Athens and had moved to
Lesbos (see Balme (1987), p. 13, though he claims this especially for the History of Animals).

91 See Mendell (2004), §2: Aristotle’s discussions on the best format for a deductive science in the
Posterior Analytics reflect the practice of contemporary mathematics as taught and practiced in
Plato’s Academy; see also McKirahan (1992), p. 133.

92 In the Republic ‘perceptual knowledge’ would not count as knowledge for Plato, but as opinion.
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example for knowing something universally but not simpliciter he gives us a

mathematical example concerning triangles: ‘you already knew that every

triangle has angles equal to two right-angles; but you got to know that this

figure in the semicircle is a triangle at the same time as you were being led to the

conclusion’ (71a19–21).

Both Plato and Aristotle use mathematics for showing that we do not get into

Meno’s paradox. In Metaphysics 1025b4–7, Aristotle uses mathematics and

medicine as examples with the help of which he generalizes his inferences for

all sciences. And inDe caelo 306a23 ff. he attacks certain atomistic accounts by

claiming they assert that not all bodies are divisible and thus come into conflict

with ‘our most accurate sciences, namely the mathematical’.

2.2 The Distinction between Mathematical Knowledge
and the Highest Form of Philosophical Knowledge in Plato

While at least in some texts Plato and Aristotle understand mathematics as

potentially an ideal science, this does not mean, however, that the two do not

also sometimes criticise mathematics as it is practised at their time for falling

short of such a science.93 And in his Republic Plato makes it clear that mathem-

atics is not the highest form of knowledge. The mathematical sciences are very

important to turn the soul towards the intelligibles there, but the philosophical

discipline of dialectic, which deals with the first principles of what there is, is seen

as a more fundamental science.

This is probably made most explicit in Plato’s so-called example of the line,

which is part of a series of three well-known examples in the Republic to

explain what is and can be known – the example of the sun, of the line, and of

the cave. The line example shows a fourfold division of the realm of what is, as

well as of the cognitive states with which we can access these different things;

thus it closely links ontology and epistemology.94 And it places mathematics

clearly below dialectics – the lower ontological status of mathematical objects

goes hand in hand with a lower epistemological status of mathematical

knowledge.

This example asks us to think of a line divided first into two sections – one

standing for the visible realm, the other for the intelligible realm (509d8), the

first is what is opinable, the second what is knowable. Each of the two sections is

then divided again into two sections, so that we end up with four sections in total

(see Figure 4).95 Of the visible realm, we are given objects first: to the first

93 See also Section 3. 94 At least on many interpretations of the line.
95 They are explicitly said to be four unequal sections – how exactly to understand these differences in

length of the individual sections is a matter of dispute in the literature; see Broadie (2021). I have
used one interpretation for the drawing here – letting the length of the line segment correspond
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subsection belong all kinds of images, such as shadows and reflections in water;

while to the second subsection belong all the originals of these images, that is,

perceptible living things as well as artificial ones. Of the intelligible realm, the

first section uses the originals of the visible world as images (in the way we use a

diagram in geometry or a bronzen sphere as a visualisation of a sphere as such)

and proceeds from hypothesis to conclusions; while in the second and last sub-

section we proceed from hypothesis to first principles without using images; this

is the realm of first principles and Forms. These two sections of the intelligible

realm are not characterised by different objects so much as by different

methods. In the following, we are told that the people using the method

described in the first sub-section of the intelligible realm are those dealing

with geometry and arithmetic (510c2–3), and that they use as images the lines

they draw. Their claims are, however, not about those lines drawn, but rather

about ‘the square itself’ and ‘the diagonal itself’ (510d7–8). Of the second-

subsection, which goes to unhypothetical first principles, we are told that its
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Figure 4 The divided line in Plato’s Republic.

directly to the amount of clarity. But the only thing relevant for us is that the ratio of the different
sections is in some way done according to the relative amount of clarity and opacity of each section
(509d). The four sections display a ratio not only of A:B=C:D, but also of A:C=B:D.
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objects – first principles and Forms – are grasped by dialectic. We access the

mathematical things by thought (dianoia), but the Forms by understanding

(noêsis); while belief (pistis) is of perceptible things and imagination (eikasia)

of images (511c5–e4). Understanding and thought together form the realm of

knowledge, belief and imagination the realm of opinion.

While the example of the line does not discuss mathematics in any detail, we

can derive at least four important points, epistemological as well as ontological

ones, from it for our project:

1) The true objects of mathematics are things like ‘the square itself’ and the

‘diagonal itself’ – the objects the mathematicians are concerned with do

really exist, but only in the intelligible realm, not in the perceptible one.

They are what it means to be a square, not this or that particular square.

2) The mathematicians use what is perceptible only as images for the intelli-

gible objects they are really talking about.

3) The way mathematicians proceed is from hypothesis to conclusions without

deriving first principles.

4) Since the mathematicians do not turn to first principles, but start from given

axioms, their activity is not concerned with the most fundamental things in

the way dialectic is.

In the Republic, dialectic is understood to be more fundamental than mathem-

atics, since it deals with the first principles of what there is. Mathematics is

situated below dialectics because it cannot justify its principles96 in the way

dialectics allegedly can – and perhaps also because geometry relies on the

perceptible world for its operations, as when diagrams are used for proofs.97

This also suggests that dialectic and mathematics do not provide knowledge of

the very same type98 and probably that knowledge of the principles and

knowledge of what is derived from principles differ not only in status but also

in kind; but Plato says very little here that would allow us to flesh out these

epistemological differences in any detail.

While mathematical knowledge is not the highest form of knowledge, it is

nevertheless crucial according to the Republic in order to turn the soul around,

from the perceptible realm to the intelligible one (521d). This turning requires a

very long education in mathematics for the future rulers of the state, the so-

called philosopher queens and kings of the kallipolis (521c–535a): as small

children, they are taught music, poetry, and are engaged in physical exercises;

after which a ten-year period of training in different mathematical sciences

96 Resting on axioms that simply have to be assumed. 97 See Section 3.
98 Even though mathematics is ‘dreaming’ of the objects of dialectic, as we will see later.
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ensues. In each case the real interest is for the pure version of this branch of

mathematics. But in order to show that acquiring these different kinds of

mathematical knowledge does not make students useless for practical tasks,

the fact that there are applied branches of mathematics is also employed. First,

arithmetic is taught; explicitly not for the purpose of commerce (525c–d), but as

the basis for order and for all sciences. It is seen to be required for warfare; but

most of all in order to lead the philosophical mind to the one and numbers as

such and thus to intelligible things. Then geometry is introduced, not just so that

the students will be prepared for practical purposes, like setting up a camp or

dealing with different formations of an army, but most of all so that its students

turn towards what truly is. Within the systematic layout of the sciences, solid

geometry – stereometry – would be next, but according to the Socrates of the

Republic this is a subject that has not really been explored so far. Given that we

do find it in Euclid’s Elements, scholars have suggested that this claim in Plato’s

middle period represents a time before Theaetetus had done his work on the

Platonic solids that turn up in Plato’s later work, in the Timaeus.

With the last two subjects, astronomy and harmonics, Socrates turns to math-

ematical subjects that are per se practical and thus closer to the perceptible realm.

But in the education of the future philosophers, they should be taken up in as pure

a form as possible, so that astronomy ‘leaves the things in the sky alone’ (530b–c).

True astronomy should not be done as it is ‘currently’ practised – that is, as

concerned with the visible movements of the heavenly bodies – but as concerned

with the intelligible model of what we see in the sky, that is, in the way geometry

is.99 It is a kind of ideal kinematics that is only imperfectly expressed in the visible

heavens in time and space (as the irregularities of the motions of the heavenly

bodies show, such as the changing ratio of day and night). Similarly, harmonics

should not be concerned with the audible tones so much as with the pure

mathematics belonging to it (531a–c).

A systematic connection between these mathematical sciences – arithmetic,

geometry, astronomy, and harmonics – is already claimed by the Pythagoreans,

who call them sister-sciences. But in contrast to the Pythagoreans, Plato’s

Republic is concerned with a pure form of these sciences that deals with the

perceptible realm as little as possible and should thus guide the students from

the perceptible to the intelligible realm. According to Plato, this path from the

perceptible to the intelligible is very difficult for us, and mathematics has the

power to lead us along this path. Learning to focus on intelligible things from

mathematics is crucial for the ascent to philosophy for the middle Plato.

99 Which should take the visible simply as illustration.
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But these mathematical sciences are not the highest sciences in the Republic.

The coping stone is dialectic. The Republic points out that we cannot expect a full

account of dialectic here (532e–533a); nor will we get one in the other dialogues

of Plato. But the Republic makes it clear that dialectic is the journey out of the

cave, that is, the process through which we get to understand what each thing is in

itself and what the Good itself is, the highest Form of Being. This is done solely

by means of argument (dialegesthai). The difference between dialectic and

mathematics, at least in its pure form that should be used in the education of

the guardians, is not so much that the later uses perception, as the example of the

line may seem to suggest. But rather their respective treatment of the first

principles, which according to Plato is such that dialectic is the only

inquiry that systematically attempts to grasp with respect to each thing itself
what the being of it is, for all the other crafts are concerned with human
opinions and desires, with growing or construction, or with the care of
growing or constructed things. And as for the rest, I mean geometry and the
subjects that follow it, we described them as to some extent grasping what is,
for we saw that, while they do dream about what is, they are unable to
command a waking view of it as long as they make use of hypotheses that
they leave untouched and that they cannot give any account of. What mech-
anism could possibly turn any agreement into knowledge when it begins with
something unknown and puts together the conclusion and the steps in
between from what is unknown? (533b–c).

Dialectic is the only systematic knowledge inquiring the being of each thing,

while almost all of the other so-called crafts deal with becoming (growing,

construction). Mathematics has a special status in that it is at least ‘dreaming’ of

what truly is; but the problem is that the mathematicians start from a hypothesis

of which they cannot give an account. Thus they base their discipline on

something ‘unknown’; while dialectic allegedly gives an account of these first

principles. Plato here even goes so far as to claim that this means that the

mathematical sciences are not sciences in the strict sense (533c–d); rather, they

are something ‘clearer than opinion, but darker than knowledge’.

Also other authors have seen mathematics as a kind of essential propaedeutic.

Plato’s contemporary, the rhetorician Isocrates, for example, recommends

mathematics to make children quicker for learning other subjects and in order

to get used to the fact that the process of acquiring knowledge demands hard

thought and precision.100 But for Plato, mathematics achieves much more than

this by training our mind to deal with the intelligible, instead of the perceptible.

And some interpreters, like Burnyeat, have even claimed that mathematical

100 Isocrates 15 (Antidosis), 265; cf. also Heath (1921), p. 21.

35Philosophy of Mathematics from the Pythagoreans to Euclid

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009122788
Downloaded from https://www.cambridge.org/core. IP address: 18.190.207.23, on 29 Apr 2025 at 10:32:19, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009122788
https://www.cambridge.org/core


structures for Plato are ‘a constitutive part of ethical understanding’,101 which

includes at least two ideas: first, central concepts of the mathematical sciences,

such as unity, proportion, and concord, are also central for the political realm so

that the structures studied in mathematics ‘are the very structures that the

philosopher-rulers will seek to establish in the social order of the ideal city

and in the souls of its citizens’. And second, since mathematical theorems are

unqualifiedly true in every context, which is what Plato wants to show for the

realm of ethical value, it articulates objective values.

Let us finally look at the kind of explanation mathematics provides according

to ancient philosophers.

2.3 The Possibility of Explanation in the Mathematical Sciences

In contemporary philosophy of mathematics, one central epistemological ques-

tion concerns the possibility of explanations in mathematics. More exactly

speaking, it is debated whether we find within mathematics (a) real explanations

(and not just non-explanatory demonstrations) and (b) explanations for the

sciences.102We seem to get into similar worries if we look at Aristotle’s account

of scientific understanding that closely ties knowledge to causes, as we can see

from the following passage:

We think we know a thing simpliciter (and not in the sophistic fashion
accidentally) when we think we understand both that the cause (aitia), because
of which the object is, is its cause, and that it is not possible for this to be
otherwise. (Post. An. I, 1, 71b9–12)

We see that knowledge is defined as understanding the cause of a thing to be this

cause and to be necessarily this cause. So there are two conditions for under-

standing something simpliciter, (a) knowing the cause and (b) this being tied to

some form of necessity.103 Given that knowledge and understanding is tied to

causes here,104 wemay be worried that such an account does not fit mathematics

at all, as causes seem to belong to the area of the natural sciences only. How can

mathematics explain anything if knowledge and understanding is of causes for

Aristotle?105

101 Burnyeat (2000). By contrast, according to Broadie (2021) the future rulers need these ten years
of mathematical training because it is so hard to turn away from the perceptible to the
intelligible realm for us.

102 See Mancosu et al. (2023) for a discussion.
103 The necessity can either be taken to indicate that ‘a understands X only if X cannot be otherwise’

or as ‘a understands X only if a knows that X cannot be otherwise’.
104 E.g., we understand a lunar eclipse for Aristotle if we know the cause of its coming about (we

know that the interposition of the earth leads to a deprivation of light from the moon; 90a).
105 Compare already Proclus (1992), 158–159. Proclus as well as Simplicius claim that for Aristotle

mathematics is not an explanatory science; see also Harari (2008).
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First we need to point out that the Greek word usually translated as ‘causes’,

aitia, is much broader than our usual understanding of a cause. For Aristotle,

aitia are not only efficient causes, but explicitly include formal, material, and

teleological causes, as he makes clear in Physics II, 3; they are better understood

as reasons or ‘becauses’. Accordingly, Barnes (1993) translates them as

‘explanations’ rather than ‘causes’. Aristotle’s main point here is that know-

ledge includes having a grasp of why something is the case.106

Aristotle claims that arithmetic, geometry, and optics carry out their demon-

strations through what he calls the first figure in his syllogistic, which he takes to

be especially scientific, and belong to the sciences that inquire into the reasonwhy

(Posterior Analytics I, 14, 79a17–24). Accordingly, he assumes that there is some

explanation within mathematics itself.107 But does mathematics also provide

explanations for the sciences? Here we need to remember that at the time in

question, physics and the natural sciences were not mathematicised in the way

they are today. However, Aristotle himself introduces mathematical concepts into

the realm of physics in order to develop central concepts further.108 And that

mathematics can provide knowledge of ‘becauses’ in the sciences for Aristotle, he

makes clear with examples like the wound in his Posterior Analytics (79a14–16):

‘it is for the doctors to know the facts that curved wounds heal more slowly, and

for the geometers to know the reason why’.109

While the doctor will know that a round wound will take longer to heal, a

mathematician can explain the reason behind this, presumably, because a round-

shaped wound has the biggest surface in relation to its circumference.

So mathematicians can know the reasons why and thus provide explanations

also for more empirical sciences. But what makes mathematics a model of a

science is its employment of deductions. While deductive structures are first

found paradigmatically in mathematics, it is philosophers who then raise ques-

tions about the workings of deductions and develop the notion of deductions. As

we will see in the next section, it is especially completeness and universality

where philosophers started to question the exact workings of the deductive

106 Harari (2008) argues that the explicit question whether we find explanations in mathematics
rests on a conceptual shift in later antiquity leading to a restriction of the understanding of
causes to what actively brings about an effect. Since according to Aristotle, mathematical
objects are not substances in the strict sense and thus cannot actively bring about effects, it
seemed to the later ancient tradition that mathematics is not an explanatory science.

107 We leave it to the side here whether he and we would make the distinction between explanatory
and non-explanatory demonstrations in the same way.

108 Most prominently continuity; see Section 4.2
109 As for applied sciences, we are told that ‘it is for the empirical scientist to know the fact and for the

mathematician to know the reason why; for the latter have the demonstrations of the explanations’,
Post. An. I, 13, 79a2–4. So here the applied science establishes the fact but it is pure mathematics
which with its demonstration establishes the cause or the reasonwhy; see also Harari (2008), p. 147.
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systems they gained from mathematicians. But they also asked more general

questions, for example, what can be used as starting points for our deductions;

what guarantees that truth is indeed preserved in such a deduction; what does their

validity rest on; or whether the principle of non-contradiction is the only essential

law for such deductions.110 The mathematicians, by contrast, seem to take these

features of deductions for granted; we do not find any meta-reflections on

deductions in Euclid or earlier texts.

Philosophers also ask for reasons why deductibility works at all. For Aristotle,

deductibility rests on the form of the system. For him, a deduction allows that from

some premises a conclusion containing new information can be derived by neces-

sity and nothing external has to be relied upon for the necessity to hold.111 The

validity of the conclusion simply rests on the very form of the deduction. If we have

two premises of the form ‘all As are Bs’ and ‘all Bs are Cs’, the inference that ‘all

As are Cs’ is valid, no matter what the content.112 It is this independence from any

concrete empirical content that makes deductive structures so central not only for

mathematics, but also for logic. And it is in Aristotle’s logic that the basic working

of deductions as we find it in mathematics is first explicitly investigated. So, it is to

the role of deductions that we will now turn in the next section.

3 Methodology

This section is interested in mathematical methods that were of interest for

philosophers. This encompasses methods for making new discoveries,113 as

well as for structuring already acquired bodies of knowledge. Most prominently,

mathematical deductions were seen as paradigmatic for philosophical proofs.

After having looked at deductions in general, this section will look at one method

in particular, namely the development of reductio ad absurdum proofs as an

example which was equally fruitful in mathematics and philosophy. For a fuller

picture, we would have to look also at methodological innovations in dialectics

and the sophistic movement, but we will not have space to do so here.114

3.1 Mathematical Deductions as Paradigmatic
for Philosophical Proofs

Ancient philosophers took mathematics as a paradigm for a strict demonstrative

science, as may best be seen from Aristotle’s Posterior Analytics, which is the

first attempt inWestern thought to give an account of the way in which scientific

110 See Knorr (1975), p. 4. 111 See Section 3.
112 The truth of the conclusion is simply a function of the system.
113 The second geometrical passage in the Meno already gave us a taste of this.
114 See Szabo (2004) and Mueller (1969).
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results should be structured, organized into an intelligible whole, and presented.

According to the Posterior Analytics, sciences should be properly expounded in

deductive systems.115 That is, the body of truth of each science should be

exhibited as a sequence of theorems derived from a few postulates or axioms.

The axiomatisation is to be formalised in the sense that it is formulated in a well-

defined language, and its arguments should proceed according to a set of logical

rules.116 Today it is sometimes discussed whether mathematics is a science – in

case the natural sciences are taken as paradigm and the lack of dealing with

empirical evidence is held against mathematics being a science in this sense.

But if we think of science as a systematic body of knowledge, mathematics can

not only be seen as a paradigm for this, but also was the first developed science

in Western thought. Accordingly, when Aristotle discusses how to structure and

systematize knowledge as a science in his Posterior Analytics, he uses math-

ematical sciences as crucial examples.117 Aristotle, who lived presumably

roughly fifty years before Euclid, also provides us with a glimpse of the extent

to which the idea of an axiomatized science had already been sketched by

mathematicians before Euclid.118

Two points are especially important for an axiomatised science: the prin-

ciples or axioms which serve as starting points for proofs and the rules of

deduction. We will deal with the starting points in Section 4, and with the rules

of deduction here.

3.1.1 Rules of Deductions

Mathematics could be seen as paradigmatically displaying a deductive structure –

both within a single proof and in the way in which the genre of mathematical

Elements sets out the whole of mathematical knowledge in such a way that each

proposition only builds on the basic principles and the preceding propositions

(but not on succeeding ones). We can see the deductive structure in mathematics

in several propositions in Euclid already from the surface grammar which give a

general conditional along the following lines: ‘if x (and y), then z has to hold’.119

So from a given starting point it is shown that something else follows

115 Something we do not find in Babylon and Egypt; see von Fritz (1955), pp. 13–14.
116 In Posterior Analytics I, 12 Aristotle points out that paralogisms are rare in mathematics, since they

depend on ambiguity in the middle terms, and ambiguities are easily detectable in mathematics.
Mathematics uses what in informal talk we can understand as a well-formulated language.

117 Aristotle also uses other sciences, such as medicine and biology; but the mathematical sciences
are the most important examples for already existing sciences displaying the deductive systems
he is interested in.

118 See Heath (1921), pp. 338–341 for mathematical proofs in Aristotle that we do not find in Euclid.
119 See, e.g., I, 4, 6, or 8. For a detailed contrast with modern standards of deduction, see Mueller

(1969), p. 297.
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necessarily. For example, in Elements I, 32 we find the following: ‘In any

triangle, if one of the sides is produced, then the exterior angle equals the sum

of the two interior and opposite angles, and the sum of the three interior angles of

the triangle equals two right angles.’120 So here the premises we start out with is

that we have a triangle ABC, one side of which gets extended (the side BC is

produced to D; see Figure 5). And from this it is then shown that something else

follows by necessity, namely that the angle ACD equals the sum of the two

interior and opposite angles CAB and ABC and that the sum of the three interior

angles ABC, BCA, and CAB equals two right angles. Nothing external comes in

here. Solely fromwhat is given and done,121 prior propositions (I, 13, I, 29, and I,

31), and some basic principles (such as the definition of a triangle), we necessar-

ily derive at what was meant to be shown.

Scholars also talk about ‘deductions’with respect toParmenides’poem, fragment

8, where Parmenides lists the characteristics (sêmata) of what truly is, before he

‘deduces’ them. They are probably the oldest ‘deductions’ we find in philosophy,

and we may think that Aristotle could have looked at Parmenides as a model for

deductions.122 What seems to have made mathematical deductions more attractive

than the Parmenidean one for Aristotle are two facts. First, Parmenides’ deductions

work negatively: by showing that not-F does not fit with what has been established

before, they aremeant to demonstrate that F has to be true. For example, it is shown

that none of the conditions hold that could make what-fundamentally-is inhomo-

geneous; thus what-fundamentally-is has to be homogeneous.123Wewill talk about

a specific formof such indirect proofs later. But for deductions as such, Parmenides’

fragments are not a straightforward example. Second, mathematical deductions are

A

B D
C

E

Figure 5 Euclid, Elements I, 32.

120 Here we do also have the surface grammar being a conditional (ean). Often, however, the
surface grammar in Greek is not a conditional; and the so-called problems in Euclid’s text also
have a different structure, such as ‘for all x, there can be constructed a c such that… ’. Most of
the times we can, however, translate Euclid’s theorems into such conditionals.

121 What is done in a construction, when some a is applied to some b, is also important.
122 We may also find deductions in the context of rhetoric, sophistry, oratory, and other places, but

this is later and less scientific.
123 For a more detailed account, see Sattler (2019).
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used in a systematic way to build awhole science, as wefind it in Euclid’sElements

(and presumably to some extent also in the Elements writings available before

Euclid). Parmenides’s deductions, by contrast, do not so much build a systematic

science as give arguments for the different characteristics ofwhat-fundamentally-is.

Accordingly, it is no surprise that Aristotle in his Posterior Analytics refers to

mathematics but not to Parmenides’ poem as a model for a deductive method.124

Hence, we may claim that our philosophical understanding and realisation of

deduction was originally shaped by mathematics.

But it is a philosopher, again Aristotle in laying out his logical project, who

is the first thinker attempting to define what a deduction is, when in his Topics

I, 1, 100a25–27 he claims that ‘a deduction is an argument in which, certain

things being laid down, something other than these necessarily comes about

through them.’125 The word Aristotle uses here for what is translated as

‘deduction’ is syllogismos – and we are dealing with valid and informative

deductions in Aristotle. The Greek term syllogismos was originally used for

reasoning, and in its general form this Aristotelian definition also holds for

mathematical inferences. Indeed, it seems that such deductions were first

perfected by the mathematicians. Euclid does not talk about syllogismoi in

his Elements, nor does he use the common verb syllogizesthai. But in the

course of presenting a proof, he commonly uses inferential language –

particles expressing consequence,126 and verbs for inferring or deducing127 –

vocabulary used in ways that indicate what we can characterise as deductions

according to Aristotle’s definition.

Aristotle’s general characterisation of syllogismos and his understanding of

proofs as demonstrative arguments fits well with the mathematics of his time and

Euclid. His narrower understanding of syllogisms, however, is subject to clearly

defined restrictions,128 as his Analytics makes clear, that do not hold

124 Even if today we may think from a logical point of view that a mathematical proof is a
‘(rigorous) informal proof’, see Horsten (2022).

125 Aristotle gives almost verbatim the same definition in Prior Analytics I.2, 24b18–20. For
possible differences between Aristotle’s syllogismoi and modern deductions, see Barnes
(1993), p. 83.

126 Such as gar and ara.
127 Such as deiknumi or epilogizomai, for example, in X, proposition 62, or ago and sunago in V, 25

or XIII, 11. Also nouns can express an inferential sense, for example, in X, 4 the Greek word
‘porisma’, which is usually translated as ‘corollary’, makes it clear that what follows is a
deduction from a previous demonstration.

128 Aristotelian syllogisms are inferences with two premises that are categorical propositions,
which lead to a categorical proposition as a conclusion. The premises have only one term in
common, the so-called middle term, which is either subject or predicate of each premise.
The positions of the middle term in each premise lead to different arrangements which
Aristotle calls ‘figures’. The premise in which the predicate of the conclusion is introduced
is called the major premise, the one in which the subject is introduced is called the minor
premise.
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for mathematics. We also do not find full-blown attempts to reconstruct mathem-

atical proofs syllogistically.129 This does not mean, however, that mathematics is

not a model science for Aristotle. After all, also Aristotle’s own natural sciences,

his physical and biological works in the way they have come down to us, are not

as such presented in syllogistic form. And Aristotle’s Physics Book Z has been

seen as structured according to a mathematical treatise.130

Deductive structures as developed in mathematics were seen as a model by

philosophers.131 And we may be tempted to call early Greek geometry and

arithmetic not only deductive systems but full-blown axiomatized systems. We

should, however, keep in mind that axiomatised systems today are deductively

closed and rigorous, like the Peano system. Ancient geometry and arithmetic in

the formwe know them from Euclid are not complete132 and not universal to the

degree we usually assume: also Euclid’s Elements, which is a systematic

compilation of the mathematical knowledge of his time, displays deductive

gaps even at the very basic level133 and is thus not complete – many things are

simply presupposed but not stated, such as the fact that two lines do not enclose

an area;134 and operations such as addition, subtraction, multiplication, and

division of magnitudes are used without them, or the laws they follow, ever

being characterised, let alone defined.135 And they do not display full univer-

sality, which can be seen, for example, in the fact that we find parallel proofs of

cases which seem easily universalisable.136

Keeping this restriction in mind, we may even think that ancient mathematics

of the fifth and fourth centuries BCE is a far cry from contemporary axiomatised

systems. It is, nevertheless, a central predecessor to such systems,137 and it was

the one ‘exact’ science that philosophers like Aristotle could look to for laying

129 We may understand Posterior Analytics 94a28–34 as an attempt to reconstruct a tiny part of a
mathematical proof syllogistically.

130 See Jope (1972).
131 For biology as model science for Aristotle in the sense of fitting the model of demonstrative

knowledge of the Posterior Analytics very closely, but yet a project fully established only with
Aristotle, see Section 2.1.

132 By completeness I understand that every item possesses its place in the system, none is missing,
and all parts are clearly connected.

133 See, for example, the different understandings of equality and congruence we find in Elements I,
4; see de Risi (2021), p. 315.

134 See Heath (1956), vol. I, p. 232 and Proclus (1992), 196, 21.
135 But there have been attempts to do a full axiomatization of Euclid I–IV in the twentieth century

by Tarski and Mumia.
136 See Mueller (1974), who on p. 43 names as examples VIII, 11 and 12; VI, 9 and 15; III, 5 and 6.
137 According to Netz (1999), a small and well-formulated language makes inspection of the entire

universe of mathematics possible, and in this way ancient mathematics may be closer to the
closed set of rules modern proof theory employs than is usually given credit to anything going
on before Frege.
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down rules for exact sciences.138 Given that mathematical propositions rely only

on definitions, postulates, and common notions and the theorems established

beforehand, ancient mathematics displays a degree of internal connectedness139

that is much harder to achieve in philosophy. While the discussion of mathematics

in philosophical texts shows that mathematics is frequently taken as a paradigmatic

science, it is the points of universality and completeness that philosophers ultim-

ately either raise as concerns or attempt to improve on in their philosophy.

As for completeness, we find that Plato in his Republic suggests that, in contrast

to dialectics, mathematics cannot give a foundation to its axioms and thus is

incomplete in this sense (see Section 2.2). And for Aristotle it is his own logical

system that is complete in the sense of accounting for all valid inferences and forms

a closed system (seePrior Analytics I, 23); he seems to have used mathematics as a

model for deductive systems so far, but attempted to improve it in this respect.

While the importance of universality is stressed for deductions by Aristotle

with the help of a geometrical example, as we can see in Prior Analytics I, 24,

41b13–22, it seems to be put in doubt by the role of geometrical constructions,

and that means necessarily imperfect drawings and diagrams, for mathematical

proofs. The fact that ancient mathematical deductions work with the help of

constructions is essential for mathematical proofs at the time we are investigat-

ing in Greece. They cannot immediately be used by other axiomatised sciences

and philosophy.140 For example, Elements I, 4 starts the deduction with ‘Let

there be two triangles, ABC, DEF, having the two sides, AB, AC, equal to the

two sides, DE, DF, respectively … .’ and either proceeds with a drawing or

expects us to do a drawing in order to follow the proof.141 Accordingly, the

question presents itself what role these constructions play exactly.

3.1.2 The Role of Diagrams, Drawings, and Constructions

In proposition I, 32, usually a diagram of a triangle of the kind shown above is

used for the proof. And constructions are in general used in Euclid’s

propositions.142 This has given rise to two questions for philosophers: first, do

138 And Euclid was seen as a paradigm for rigorous mathematical reasoning until the nineteenth
century; see Mueller (1969), p. 289.

139 In the sense that there is an immediate and clear connection between all parts, which is one
aspect of completeness.

140 Other sciences that also use drawings in an essential way, such as anatomy, are later disciplines,
not yet around at the time we are focusing on (even if dissections were presumably made earlier
in ancient Greece; see Aristotle Posterior Analytics 98a2).

141 There are not many diagrams transmitted to us in manuscripts but a couple; see Netz (1999).
142 This holds true of all the ‘geometrical’ books; in Book V, in which Euclid deals in general with

proportions, and in his arithmetic Books, VII–IX, numbers and proportions are depicted with
the help of lines.
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the proofs in fact rely on these constructions and what would the consequences

of such a dependence be; and second, do these constructions also give us

existence proofs? Let us start with the first question.

Among modern historians of mathematics there is no consensus whether

ancient mathematical proofs depended for their intelligibility on diagrams. For

Netz, text and diagram cannot be taken apart as theymake no sense without each

other.143 By contrast, Acerbi has argued that the diagram can always be recon-

structed from the proposition. And Mendell has pointed out that while Acerbi’s

claim is logically true if the theorem is true and it is a good proof, we also find

false diagrams in manuscripts and people failing to reconstruct an appropriate

diagram.144

The first ancient thinker to raise a potential problem with the mathematical

practise of drawing diagrams for their proofs seems to have been Protagoras.

According to a passage in Aristotle’s Metaphysics B, 997b35–998a4,

Protagoras objected to the geometers that the circle touches the ruler not in a

point, as the geometer assumes. Aristotle’s report does not extend any further,

but presumably, Protagoras’ claim was that a circle drawn in the sand or on a

wax tablet or on papyrus will touch a line in more than one point. In any case,

Protagoras seems to have tried to refute the geometers by pointing out that their

geometrical propositions do not hold of the drawings they in fact draw and that

they are thus speaking falsely.

In addition to the problem that the drawings possess features that differ from

those required for the proof in an essential way and thus are ‘false’ features, there

are two further problems that the reliance of Greek mathematics on constructions

for their proofs can raise for philosophers interested in deductions: First, while

deductions are meant to be purely logical, independent of the perceptible world,

mathematical proofs seem to rely in fact on something perceptible, the drawings.

Secondly, while deductions are meant to give general conclusions, the usage of

constructions seems to make them rely on individuals – this triangle drawn here –

rather than on universals.145 How do ancient mathematicians derive a merely

logical structure producing universal results, if they start from individual

examples? How can truth be preserved if we prove via individual instances that

are full of imperfectness and seemingly depend on something we construct?

All three potential problems – drawings possess false features, are sensible, and

are individual – are part of the background of Plato’s discussion of the language of

mathematics in his Republic. There Plato seems to criticise mathematicians for

143 See especially Netz (1999), pp. 12 and 26.
144 Acerbi (2020); Mendell in oral communication.
145 Netz (1999) suggests that generality was achieved through extendability and repeatability of the

proof.
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using language that makes mathematics sound like a practical art; they use a

language full of action words and give the impression as if geometrical objects

came into being through the process of geometrical construction. In order to deal

with these problems, Plato distinguishes what the language of the mathematicians

expresses from what mathematics is really about.146 And for Plato what mathem-

atics is really concernedwith is knowledge, which is immutable and stable and thus

cannot depend on constructions. While the geometers talk as if the objects of their

investigations were the visible drawings, this is only a façon de parler; their real

objects are things like ‘the square itself’ or ‘the diagonal itself’ (510d–e); the

constructions are just used as images. Accordingly, it seems that while Platomay be

critical about the language used by the mathematicians in practise, he is not worried

by Protagoras’ claim that drawings possess false properties, and the perceptible and

individual nature of constructions is unimportant given that, if correctly under-

stood, they are simply tools the mathematicians use in order to grasp their real

objects. Diagrams in geometry are only illustrations and do not belong to the

essence of geometry.147

Similarly, Aristotle’s answer to the problem raised is that geometers do not in fact

rely on individuals: in Posterior Analytics 76b41–77a2 he reports the opinion that

‘the geometer speaks falselywhenhe says that a linewhich is not a foot long is a foot

long or a drawn line which is not straight is straight.’Against this opinion, Aristotle

points out that ‘the geometer does not conclude anything from the fact that the line

which he himself has described is thus and so; rather, he relies on what this line

shows.’ So Aristotle clarifies that while geometers use individual and perceptible

lines in their proofs, they do not conclude anything on the basis that this line is (or is

indeed not) a foot long. Thus, it does notmatterwhether the line used is indeed a foot

long.148Themathematicians just use it as an example to showwhatever theywant to

demonstrate.149 Defending geometers against Protagoras, Aristotle tries to make it

clear that when geometers say something like ‘let AB be a foot long’, they are not

referring to the concrete line that they draw in the sand.

We saw that the ancient philosophers who discuss the role of diagrams in

ancient geometry take it for granted that geometers use constructions as a

146 Republic Books VI and VII; especially 527a–b; see also Burnyeat (2000), pp. 39–41.
147 Though construction as instruction which, e.g. determines the auxiliary figures involved in a

proof, does belong to its essence.
148 Accordingly, we may think of the geometers’ practice as a predecessor for heuristic methods in

philosophy.
149 Thus, we may wonder whether the role of diagrams in ancient mathematics is analogous to the

role of examples in philosophy. With Manders (2008) we could say that geometers rely only on
‘co-exact properties’ of geometric diagrams (i.e., on ‘those conditions which are unaffected by
some range of every continuous variation of a specified diagram’) for their proofs, but not on
‘exact conditions’ (i.e. those which change once the diagram is subject to the smallest vari-
ation), as we see it in Euclid.

45Philosophy of Mathematics from the Pythagoreans to Euclid

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009122788
Downloaded from https://www.cambridge.org/core. IP address: 18.190.207.23, on 29 Apr 2025 at 10:32:19, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009122788
https://www.cambridge.org/core


central part of their investigation, they are not debating whether diagrams play

an integral role for mathematical proofs. The consequences they draw from this

fact differ, however: while Protagoras assumes this to lead into serious prob-

lems for geometers, both Plato and Aristotle with their widely differing ontol-

ogy try to show that in spite of the usage of perceptible, individual diagrams

whose features do not match those of the things proven in important respects,

mathematical proofs do not rely on something perceptible and individual. What

they prove is ultimately not dependent on the object drawn. The diagrams are

only representations of the real object of proof and so Plato and Aristotle are not

worried that these representations do have features different from what is

represented.

We should note that we do not seem to find a distinction in Plato’s and

Aristotle’s discussion of mathematics between drawings that may be mere

illustrations and constructions, on which Greek geometrical proofs arguably

depend and which play a deductive role in proofs. One reason for this lack may

be that understanding mathematics in principle as an ideal science in the way

Plato and Aristotle do (of which mathematics in practise may fall short) does not

allow for such a place for constructions.

Let us now move on to the second question mentioned earlier, whether these

drawings also work as existence proofs. There is certainly mathematical lan-

guage that suggests as much: Many propositions in Euclid contain a part that

sounds like an existence claim: ‘let there be’ or ‘let X be Y’ (estô). For example,

in proposition I, 4 we have ‘Let ABC and DEF be two triangles … ’. Some

scholars, prominently Zeuthen (1896), took the postulates to be existence

assertions. Now the estô we get in Euclid is only an existence assumption (or,

perhaps, an existence injunction, since it is an imperative); but not in itself a

proof. But the construction that usually follows may be read as proving that

some postulated mathematical object does indeed exist (for example, a triangle

that possesses certain features).

Against such a reading, it has been objected150 that we sometimes find several

solutions to the same problem; for example, to the doubling of a cube or to the

trisecting of an angle. This objection is not decisive, however, since nothing

excludes the possibility that we can find different ways to prove one and the

same existence. However, we do indeed not find any discussion of existence in

Euclid’s Elements, let alone something that is explicitly put forward as an

existence proof. Euclid’s justifications often do not show so much that an

assertion is true, but that a performed operation is licensed. And Harari

(2003) has claimed that understanding geometrical constructions as justifying

150 E.g. by Knorr (1975).
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the validity of a concept by presenting a particular instance that accords with it

is a projection of the modern distinction in mathematics between definitions and

existence that arose as a response to the discovery of paradoxical sets.

Nevertheless, the assertions of postulates in connection with the diagrams

seems to have made philosophers think about existence proofs, at least in the

context of criteria for the presentation of scientific reasoning and results.

Accordingly, Aristotle is reading some of the mathematical problems we

know from Euclid as existence proofs. For Aristotle, existence proofs are an

important part of scientific inquiry – a science has to show for its basic kinds that

they exist and what they are.151 For Aristotle, these proofs do, however, not

concern individuals, but universals;152 and Aristotle is also clear that there can

be no existence proofs for the basic principles. By contrast, Plato in his

description of the mathematicians in the Republic criticises the mathematicians

for taking their starting points as given without any further proof or justification,

as we saw in Section 2.2.

3.2 Reductio ad Absurdum Proofs and Philosophical Paradoxes

Of the different mathematical methods of interest for philosophers, we will look

at only one in a bit more detail, namely the method of reductio ad absurdum. The

Latin term ‘reductio ad absurdum’ is a translation of the Greek expression hê eis

to adunaton apagôgê (reductio to the impossible), which we find first in

Aristotle’s Prior Analytics 29b9. But Aristotle does not suggest that he is

introducing this terminology for the first time.

In the kind of reductio proofs we will look at, the necessity of some p is

proven by showing non-p to be impossible; accordingly, they require tertium

non datur to hold.153 These kinds of reductio proofs are of special interest, since

they are a powerful method that we find both in mathematics and in philosophy

for cases where we cannot find a direct proof.154 They are central for the

philosophical genre of paradoxes; most of Zeno’s paradoxes work with such a

reductio structure, for example. And there are lots of reductio proofs in

Euclid.155 Within a mathematical context, it seems likely that reductios were

first developed for the proof of the development of the incommensurability of

the side and the diagonal of the square – at least, this is a rather old Pythagorean

151 See Section 4.1. 152 See Harari (2003). 153 Which Intuitionists doubt.
154 Aristotle seems to assume in 62b38–40 that whatever can be proved indirectly can also be

proved directly; but his own proof (in a wide sense) for the fundamentality of the principle of
non-contradiction in his Metaphysics and the fact that he never mentions a direct proof for the
incommensurability of the diagonal suggests that this may not hold of all indirect proofs.

155 See, for example, Elements I, 6, 19, or 26; for an overview of the structure of Zeno’s paradoxes,
see Sattler (2021).
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proof, and if Aristotle wants to give an example for a reductio, he usually refers

to the incommensurability of the diagonal and the side of the square.156 We will

look at it as one relevant and important example that also raises interesting

questions about the interaction between philosophers and mathematicians.

The incommensurability of the side and the diagonal was a special discovery in

the development of Greek mathematics – a fact that is better understandable if we

remind ourselves of its Pythagorean background. We saw in Section 1.1 that on a

Pythagorean view, the world is set up as mathematically structured, according to

(natural) numbers and relations that constitute them. Everything can be brought

into a numerical relation to everything else. The discovery of the incommensur-

ability shakes such a world view, for it shows that there are entities that cannot

possibly be captured in terms of numerical ratios – the side and the diagonal of a

square can never be brought into such a numerical relationship. So there are some

things that seem to have no ratio, no logos; they are ‘irrational’. And this seems to

put the very idea of a rational cosmos into doubt.157 Plato expresses the puzzlement

about this finding in his Laws, 819c–820d, in a passage claiming that the Greeks

assume we can measure all lengths and breadths against each other; thus most

people are not aware that this is not possible for certain lengths and breadths.

Its effect on the mathematical community has seen different assessments by

modern scholarship: Tannery (1887) thinks it led to a foundational crisis of

mathematics not unlike the foundational crisis in mathematics at the end of the

nineteenth century. By contrast, Knorr (1975), pp. 308 ff., takes it to be the

background to the geometric style of number theory in Euclid’s Elements, Book

VII and the development of greater rigor in proportion theory; but he does not see it

as a crisis in Greek mathematics. However, also Knorr thinks that the problem of

the incommensurability engaged the effort of the most notable mathematicians of

the fourth century, Theodorus, Theatetus, Archytas, and Eudoxus. It was a crucial

force motivating Eudoxus’s theory of proportion which is the foundation of

Euclid’s proportion theory in Elements, Book V. And it seems to have been one

important factor for the increasing dominance of geometrical proofs – it shows that

there are some things in mathematics, like the relation of the diagonal of a square to

its sides, that cannot be dealt with arithmetically, but only geometrically.158

156 See, for example, 41a26–27 or 430a31; and see also Knorr (1975). In Prior Analytics II, 11
Aristotle shows how reductio ad absurdum works in general. Szabó (2004), however, claims
Elements IX, 30 (an odd number, if it measures an even number, must also measure its half) to
be the oldest indirect proof.

157 This strong effect on the Pythagorean world view explains why we are told that the person
discovering the incommensurability was allegedly drowned by his Pythagorean community –
whether or not this story is in fact true.

158 See also Plato’s depiction of a math lesson in his Theaetetus where we hear from young
Theaetetus that his teacher Theodorus was ‘demonstrating with the aid of diagrams’ – the
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Given that the notion of the incommensurability of the side and diagonal

would in fact never come up when measuring an empirical square in that such a

measurement will always produce some result,159 this proof shows that by the

time it was discovered, Greek mathematics had clearly developed as a theoret-

ical science independent of its practical applicability. The claim that such

quantities are irrational is introduced through the very question posed and

based solely on logical deduction.160 The fact that incommensurability cannot

be detected by the senses, may also have made it a discovery of special interest

for Plato, who, as we have seen in Section 2, is very concerned about ways in

which to lead students in their inquiries from the perceptible to the merely

intelligible. Thus, it may not be a big surprise that Plato’s texts are the first ones

where we find the discovery of the incommensurable talked about.

Incommensurability is first mentioned in Plato’s Theaetetus, but the imagined

conversation between the young mathematician Theaetetus and Socrates does

not refer to the square root of the number two, but to that of three and so forth up

to seventeen (147dff.); hence, we are dealing with an already advanced stage of

this discovery (the imagined date of the conversation is 399 BCE, the year of

Socrates’ trial and death). The discovery of the incommensurable has been

suggested to be no later than the last quarter of the fifth century,161 but this still

leaves a lot of flexibility about the discovery in the fifth century. Given these

problems of dating it is also hard to say whether the method of reductio was first

developed by mathematicians and then taken up by philosophers or the route of

influence was the other way round. Accordingly, there has been some debate in

the scholarship about the relationship between the incommensurability proof

and Eleatic method. Szabo has claimed that the mathematicians in fact could

take up the logic of the method from the Eleatics.162 Knorr, on the other hand,

assumes that this is an old proof of the Pythagoreans,163 which would allow for

Zeno’s paradoxical method to have been influenced through exposure to some

version of the incommensurability proof. There is, of course, also the possibility

that both the Pythagoreans and Zeno arrived at a similar method independently

of each other at around the same time. Given that the Pythagoreans were

involved in both what we would call mathematical and philosophical investiga-

tions simultaneously, and we have seen so far in several places the keen interest

Greek word graphô can mean either to draw or to prove, presumably coming from geometry
proving by drawings.

159 See Mueller (1980), p. 115. 160 See Knorr (1975), pp. 2–4. 161 See von Fritz (1970).
162 Szabo (2004), pp. 148–149.
163 A clear sign for the antiquity of the proof, according to Knorr (1975), is the usage of the

dichotomy of odd and even and Aristotle’s reference to it, as well as a step showing that one
term is not a unit – an unnecessary step if the unit is considered to be an odd number, but
necessary if, with Philolaus and Archytas, we assume the unit to be both odd and even.
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philosophers took in questions and problems raised by mathematicians, it

seems, however, much more likely that there was indeed some intellectual

exchange between mathematicians and philosophers.

We may think that the method is prepared in the indirect proofs we find in

Parmenides’ poem, fragment 8 and that his indirect proofs were an inspiration

for the form in which the incommensurability proofs were put. But

Parmenides’s proofs only show that F does not fit with what has been estab-

lished before by Parmenides; they do not show as such that not-F has to hold

independently of previous assumptions. This is something we only find with

Zeno’s paradoxes and the mathematical reductio ad absurdum proofs. Let us

have a brief look at these.

Our best evidence for the incommensurability proof is preserved as an

appendix to Euclid, Book X, Heiberg proposition 117. This version is an

insertion into Euclid’s text and shows some later reworking. But the core of

the proof is a good deal older, going back to the Pythagoreans, sometime in the

fifth century BCE. One version is mentioned by Aristotle, and according to

Knorr there were half a dozen versions of the incommensurability proofs

around.

The basic idea of this proof is the following: if we assume of a square ABCD

the side AB and its diagonal AC to be commensurable, then we have to assume

that the same number is both odd and even. This is a contradiction; thus they are

incommensurable.

The main steps are as follows: we assume that AC and AB are commensurable

with each other, hence they have a ratio equalling two numbers to each other;

called EF and g (see Figure 6).164 The version in Euclid also claims that ‘these

numbers be the least numbers in this ratio’, but all that is in fact required is that

they are not both even. It is then concluded that EF cannot be ‘a unit’, that is,

1, but has to be a number. ‘For if EF is a unit, and has the ratio to g that AC has to

AB, and AC is greater than AB, then EF is greater than the number g,165 which is

impossible.’166

164 Using two letters for the first number and one for the second number is taken over from the
original Greek text. Presumably two letters are used in the first case since in the course of
the proof it is then assumed that the magnitude which this number represents is divided in
half.

165 Number being everything which is greater than 1.
166 For the Pythagoreans, one as a unit is not a number and is both odd and even. Accordingly,

showing that EF is not 1 is meant to exclude the possibility that we are dealing with something
that for the Pythagoreans is odd and even, namely the 1. However, since EF is bigger than g,
what would have been needed is a proof that g cannot be a unit; thus, this is one of the places
where, according to Knorr, the reworked proof takes up an old Pythagorean proof without fully
understanding it.
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In a second step it is shown that EF has to be even, since it has the same ratio

to g as AC has to AB, and the square of AC is double that of AB; if it is double

something, it has to be even:

EF:g = AC:AB,

(AC)2 = 2 × (AB)2

=> EF is even.

In a third step, it is demonstrated that g has to be odd, for otherwise EF and g

would both be even and could not be relatively prime. In a fourth and final step,

it is assumed that EF is divided in half by H, which shows that g has to be even.

For the square of EF has to be four times the square of EH (EF being double

EH), but also double of that of g, which in turn means that the square of g is

double that of EH. Accordingly, ‘the square of g is even, and thus g is even’ (if it

were odd, its square would be odd).

EF = 2 × EH;

(EF)2 = 4 × (EH)2;

(EF)2 = 2 × g2

=> g2 = 2 × (EH)2

=> g is even.

But in the third step it was shown that g is odd, so g has to be both odd and even,

which is impossible. Thus the assumption of AC and AB being commensurable

leads to a contradiction.

We find the main idea of the way in which this proof works also in many

paradoxes of Zeno: in order to show that motion, plurality, or topos (place/

space) are problematic, it is first assumed that there is a plurality, motion, or

topos before it is shown that this very assumption leads to inconsistencies.

Figure 6 Proof for the incommensurability of the diagonal and the side

of a square.
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Like in the incommensurability proof, so also in Zeno’s paradoxes, what is

used as a starting point is the opposite of what is shown to be the result in

the end. In the incommensurability proof we start with the assumption that

AB and AC are commensurable, while Zeno uses as a starting point one that

is not his own, but widely held, the position of a pluralist. And from this

starting point it is then shown that plurality, motion, and topoi are problem-

atic in themselves.

Both Zeno and mathematical reductio proofs start from a position they do not

share and then show that this position leads to contradictions – that the same

number has to be odd and even, that the same distance has to be finite and

infinite, and so on. And this contradiction shows that the position implying it is

false absolutely. In comparison to Parmenides’s indirect proofs, such reductios

can be seen to be much stronger because

(a) they make sure we do not introduce our own assumptions which the

opponent may not share; and

(b) the opponent is refuting herself – in the very act of thinking she is

undermining herself.

For the realm of mathematics, it is a good and strong proof, as it is for Zeno who

is the founder of the genre of paradoxes.167 The reason these proofs work very well

here is that they work within a framework in which it is clear that I have only two

alternatives – either AB and AC are commensurable or they are incommensurable,

either we can consistently think of a plurality of things or we cannot.

For later philosophers starting with Aristotle, however, this method of proof

ultimately needed further refinement, since in many philosophical contexts

showing that F cannot hold does not in itself demonstrate that not-F holds.

Accordingly, it is not necessarily seen as a strong proof and can only be used in

certain contexts.

For the mathematicians, the particular usage of this method to prove the

incommensurability of the side and the diagonal of the square seems to have

been one reason that led to a sharper distinction between arithmetic and

geometry, to a geometric style of number theory, and to shifting the burden of

proofs to geometry.

4 Central Concepts of Philosophy and Mathematics

This section will investigate important concepts that were originally devel-

oped either within a mathematical setting and then became central for

167 See Sattler (2021).
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philosophy, or in a discussion to which philosophers and mathematicians

both seem to have contributed. It starts with a discussion of the notion of a

principle or starting point of an argument or proposition in Aristotle and

Euclid. We will then consider one central concept in natural philosophy that

developed under the influence of mathematics, namely continuity, by looking

at the oldest philosophical explanation of continuity in Parmenides’s poem,

at the reflection of mathematical treatments of continuity we find in the

Pseudo-Aristotelian treatise On Indivisible Lines, and at passages of

Euclid’s Elements. This will show that the most important account of con-

tinuity in ancient Greek thought, the one developed by Aristotle in his

Physics, rests on the mathematical treatment of geometrical objects as

being always further divisible while also taking up Eleatic terminology.

Closely linked to the understanding of continuity is the notion of limits and

of infinity. For the latter, we will leave out the philosophical strand of the

discussion in Anaximander, Anaxagoras, and Democritus and concentrate on

the mathematically inspired strand of this debate that shows up in some of

Zeno’s paradoxes and may be assumed in the method of exhaustion in Book

XII of Euclid’s Elements. It is this mathematical understanding that Aristotle

takes up, trying to show that it requires only a potential, not an actual infinity.

There are in principle several other important concepts – like the notion of

necessity or of proportion – that developed in some form of interplay

between philosophy and mathematics but that we will not be able to look at

here for reasons of space.

4.1 Principles and Starting Points

4.1.1 Principles in Euclid

Deducing from first principles (archai)168 is specific for Greek mathematics and

not to be found in Egyptian and Babylonian mathematics. We saw in the

previous section that for an axiomatised science, according to Aristotle, two

points are central: the rules of deduction, and the principles or axioms which

serve as starting points for proofs. While we discussed rules of deduction in the

previous section, we will deal with starting points here.

Such starting points themselves cannot be proven, but have to be taken as

given.What exactly these principles are, has changed over time, as we can see in

mathematics from the fact that the number of starting points in Euclid does not

match the number in Hilbert, who assumes twenty axioms. If we look at the

168 The Greek word archê carries with it connotations of truth, beginning, origin, and fundamen-
tality, which I try to convey by the title of this section, ‘principles and starting points’.

53Philosophy of Mathematics from the Pythagoreans to Euclid

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009122788
Downloaded from https://www.cambridge.org/core. IP address: 18.190.207.23, on 29 Apr 2025 at 10:32:19, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009122788
https://www.cambridge.org/core


beginning of Euclid’s Elements, we see that he bases mathematics on three

kinds of first principles – definitions, postulates, and common notions:

1. Definitions of the basic concepts used
Many books of the Elements start with a set of definitions that are relevant for

the respective book. Book I, for example, on plane rectilinear geometry, starts

with the definitions of point, line, surface, and different plane angles; while the

arithmetical Book VII starts with the definitions of unit and number.

In addition to definitions, we find in Book I (and only there) two other kinds

of principles:

2. Postulates
Euclid presents five different postulates that seem to be instructions for con-

struction processes in geometry (such as to draw a straight line from any point to

any point). At least this characterization holds true of the first three postulates.

By contrast, the fourth postulate, claiming that ‘all right-angles are equal to each

other’ does not refer to something to be done and has been interpreted as either

equivalent to or presupposing a principle of invariability of figures or the

homogeneity of space.169 And the fifth postulate, the parallel-postulate, has

come under heavy attack since antiquity – later mathematicians either attempted

to prove it as a theorem or to replace it by some other definition of parallels. Like

the first three postulates, it seems to ensure the existence of a geometrical object,

in this case the meeting point of two lines (if they are not parallels). But it also

implicitly presupposes that we are dealing with the geometry of flat, not curved,

spaces, and accordingly does not hold for what since the nineteenth century has

been developed as non-Euclidean geometry.

3. Common notions
While the postulates in Euclid are specific for geometry, the common notions

are, as their name suggests, common to more than one science; in the context of

Euclid’s Elements, they apply to geometry and arithmetic equally. Modern

editions usually print five common notions (for example, the first common

notion reads ‘Things equal to the same thing are also equal to one another’);

but additional ones have been added later on, and there is also a dispute whether

these five were originally in Euclid.170 Since the third one (‘if equals are

169 See Heath (1956), p. 200.
170 Tannery (1884), p. 221 claims that they were not originally in Euclid, but added later on, since

they are oddly positioned – we have postulates peculiar for geometry before the notions
common to different mathematical sciences. By contrast, Heath (1956) thinks that the position
of the common notions is rather natural. It would have been even more awkward to separate
the postulates from the definitions by putting the postulates after the common notions, since
the postulates prove the existence of some of what is defined. And since Aristotle speaks about
common notions in the plural, Heath thinks it is likely that at least the first three common
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subtracted from equals, the remainders are equal’) is frequently given by

Aristotle as an example of a common notion, it has the clearest claim to being

an old common notion. But the fact that it is unclear howmany common notions

there were indeed in Euclid, how we should understand the genre of postulates,

and the fact that we do not find any reflection in the Elements about how

definitions, postulates, and common notions are connected show that the

question what kinds of principles are necessary for the science of mathematics

was not sufficiently clarified.

Especially the relationship between postulates and common notions has been

a matter of debate. It has been proposed to understand postulates as domain

specific, since they belong specifically to the domain of geometry, while

common notions are universal as they pertain equally to geometry and

arithmetic. As a distinction between the two, it has also been suggested that

postulates can be confirmed by demonstration, while common notions are

incapable of proof. Finally, the difference has also been framed as one between

practical and theoretical: postulates seem to be practical, as they refer to

something done or to be done, while common notions seem to be theoretical

since they refer to something known. Understanding the difference like this

seems to correspond to the distinction between problems and theorems that we

find in Euclid’s propositions.171

Theorems are what in modern terms would be called propositions, asserting

that all figures of a certain class possess some characteristic (for example, ‘In

any triangle, the greater side subtends the greater angle’, I, 18; ‘quod erat

demonstrandum’; using an all-quantifier), while problems call for constructing

a figure with certain characteristics (for example, to construct a pentagon, IV,

11; ‘quod facit demonstrandum’; using an existential-quantifier). The difference

between theorems and propositions can also be captured as one between

knowing that and knowing how.172

Especially the closeness of the last distinction between postulate and com-

mon notions to the one between propositions and theoremmakes the lack of any

explicit reflection on the status of and the relation between the different kinds of

notions of Euclid were taken over from earlier mathematicians. These are the ones that a lot of
theorems in Euclid rely upon and that most modern interpreters take to be authentic. For a
recent survey of the evidence for their authenticity, see de Risi (2021).

171 See also Harari (2003), p. 2 who frames it as a ‘correspondence between the two types of first
principles and the two types of derived propositions’.

172 The older geometers regarded a theorem as directed at proving what is proposed, a problem as
directed at constructing what is proposed. See also Proclus 77, 7–81, 22. Harari (2003)
understands the distinction between problems and theorems as ‘a distinction between two
types of proofs: proofs that establish the correctness of certain constructions and proofs that
establish the truth of certain assertions’.
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starting points in Euclid (and presumably also in specimens of the Elements

genre written before Euclid) strongly felt. Accordingly, in order to understand

the different types of starting points of the ancient mathematicians better, it is

helpful to have a look at the most important discussion of different starting

points for sciences before Euclid, namely at this discussion in Aristotle’s

Posterior Analytics.

4.1.2 Principles in Aristotle

It is in Aristotle’s Posterior Analytics that we find the first systematic reflection

on the question what a principle of a science amounts to and which different

kinds of principles there are.While Aristotle makes it clear that he takes over the

term ‘axiom’ from the mathematicians (Metaphysics 1005a20), it is in his

Analytics that a first systematic account of different kinds of principles is

developed173 and that we find a first explicit discussion of how axioms have

to be characterised in order to work as first principles of a science.174 He

characterises principles as follows:

I call principles in each kind those things which it is not possible to prove that
they are.What the first principles and what follows from these mean, is assumed.
That they are is necessary to assume for the principles and demonstrated for the
others. For example, what a unit is or what straight or a triangle are; that units and
magnitudes are, this is assumed, but everything else is proven. (76a31–36)

Aristotle gives a systematic account of different kinds of principles for sciences in

general, while the examples he uses derive from mathematics. For him, the

examples used – unit, straight, and triangle – have three different statuses in the

science of principles: a unit is a first principle where we have to assume what and

that it is; ‘straight’ is a feature (pathê) of lines;175 and ‘triangle’ is one of the things

that follow from thefirst principles in geometrywithout itself being afirst principle.

In the latter two cases, what they are is assumed, while that they are has to be

demonstrated.

Aristotle makes it clear that principles are that from which a proof starts,

while they are in turn unprovable (otherwise we would either get into an infinite

regress or a circular proof). He distinguishes axioms as general principles from

theses which are specific to an individual science.176 The axioms themselves

173 This also includes coining an important part of the language for further discussion.
174 See von Fritz (1955), pp. 33–35. 175 See 76b15.
176 In Posterior Analytics I, 2, however, he seems to distinguish between axiom and thesis by

pointing out that axioms must be grasped by anyone wanting to learn anything, while theses
need not be grasped by anyone. But these two characterisations fit together, since people not
interested in science A but only science B need not be concerned with the theses of science
A, while a grasp of axioms as common principles seems to be necessary for people interested in
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divide into two groups: first, propositions that are true of everything, as, for

example, the law of non-contradiction; they have to be known by everybody

who wants to have any kind of scientific knowledge. The sciences do not reason

from them, but rather in accordance with them. Second, there are propositions

common to several sciences, for example, ‘if equals are taken from equals,

equals remain’, which is relevant only for sciences dealing with quantities. This

last example is one of the common notions we find in Euclid; while it is an

example Aristotle takes over from the mathematicians, it is Aristotle who gives

this kind of principle a systematic place.

Theses are divided into definitions, which say what something is, and hypoth-

eses, which say that something is or is not. There is a debate whether the latter

refers to existential propositions, that is, x exists, or to predicative statements,

that is, x is y.177 For the time being I follow the first interpretation, which

suggests that while definitions are concerned with the essence of the scientific

objects,178 hypotheses are concerned with their existence.179 The existence of

the most basic objects of a science, like the point in geometry, usually has to be

assumed, while the existence of more complex objects has to be proven, in

geometry usually by construction.

What can be used as such premises, as starting points for our conclusions?

Do these principles have to be necessary or can they be contingent? Do they

even have to be true? We do not find any answers to these questions in

Euclid. But we find outlines of a first philosophical discussion of such

principles in Plato’s example of the line in his Republic. Aristotle character-

ises such first principles or premises as follows in his Posterior Analytics:

‘If, then, understanding is as we posited, it is necessary for demonstrative
understanding in particular to depend on things which are true and primitive
and immediate and more familiar than and prior to and explanatory of the
conclusion’ (71b20–25).

different sciences. We should also bear in mind that the terminology is not always fully stable in
Aristotle and seems to have been in flux also in mathematics.

177 For the first reading, see, for example, Barnes (1993), pp. 100–101, for the second, Harari
(2003). For the second reading, we find support in passages like Posterior Analytics 92b4–8
which seems to suggest, according to Harari, that ‘the possibility of answering the question
“what it is” serves as a criterion for distinguishing existent objects from non-existent objects’.
The first interpretation can rely on passages such as 92b19–25, which seems to make it explicit
that a definition does not yet settle if what it accounts for is indeed possible.

178 Without making any statements about existence, so a definition could concern Leibniz’s regular
polyhedron with ten faces, which cannot exist, but can be defined. (For a different view,
claiming that for Aristotle ‘the existence of an entity is determined by means of definitions’,
see Harari (2003)).

179 In Aristotle’s Physics we see that he usually expects a scientific treatise to deal with both, for
example, the question what time is and whether it exists.
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Thus we must proceed from starting points that are given six characterisations,180

three of them absolute, and three relative. Given that we are dealing with premises

for demonstrative sciences, our starting points have to be true, they have to be

primitive in the sense that they are not derived from others, and immediate in the

sense that they cannot be gained froma syllogismwith amiddle-term – these are the

absolute characterisations. The relative ones tell us that these principles are more

familiar than other things, in the sense that they are better known to us; they are prior

to others in the sense that theyhave to be assumed in order to understandwhat builds

on them, and finally they also have to be explanatory of the conclusions.

Given that these principles have nothing prior to them, they themselves

cannot be proven, at least not in the same way as what is based on them can,181

or not in the same science as for which they are principles.182 Instead, they have

to be what we would call self-evident; what Aristotle characterises as

what must be and what must be thought because of itself. For there is no
external proof (logos) for it nor demonstration (apodeixis), but only one in the
soul; since there is no syllogism. For one can always block an external
argument, but not always an internal one. (76b23–27)

So these basic principles (a) exist through themselves; and (b) we believe them

through themselves; that is, they are not known through an inference, but rather

through a kind of internal understanding that does not rely on anything else.

4.1.3 Comparison between Aristotle and Euclid

If we now compare Aristotle’s and Euclid’s understanding of principles, we see

that they share important commonalities. For both, at least some principles are

definitions, and definitions of the basic items are fundamental (we may even

suggest that they share a common understanding of what definitions should do).

These basic items cannot be proven while the existence of what builds on these

has to be proven – Aristotle’s claim that it has to be shown ‘that they are’ fits, at

least to some degree, Euclid’s postulates where existence may be understood to

be proven by constructions. For both thinkers, definitions make it clear what so-

and-so is, but assert nothing about the existence of the thing defined, as can be

seen in Euclid, for example, when he defines a square in definition I, 22 but does

180 The exact understanding of these six characterisations has seen different interpretations; see von
Fritz (1955), pp. 21–24 and McKirahan (1992), pp. 24ff.

181 Some may allow for indirect proofs of the kind Aristotle suggests for the principle of non-
contradiction in his Metaphysics Γ, showing that everybody who denies this principle has
already to embrace it in order to be able to formulate any denial.

182 Plato’s Republic may be read as suggesting that dialectic can also prove principles for other
disciplines.
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not assume its existence until after I, 46, when it has been constructed,183 and is

explicated by Aristotle in his Posterior Analytics II.184

Furthermore, both Aristotle and Euclid work with common notions, even if

the language they use for labelling these principles that are common to several

sciences is not exactly the same.185 Aristotle claims that the mathematicians

restrict such common notions as ‘equals taken from equals leave equals’ to their

respective field, while in principle it holds for all quantitative things and is as

such investigated in the area of what he calls first philosophy, that is, metaphys-

ics (Metaphysics XI, 4, 1061b17–27).

Aristotle and Euclid differ, however, in some of the concrete definitions they

give; for example, the point is defined by Euclid as ‘that which has no parts’,

while for Aristotle this is not enough; we also need to add that it has a position,

in order to distinguish it from the unit. Here we may follow Proclus’ assumption

that a point is the only partless thing that is a subject matter of geometry, so that

the further qualification we find in Aristotle’s account can be left out in Euclid,

given the context. But a definition like Euclid’s of a straight line as ‘that which

lies evenly with the points on itself’ would, according to Heath, be an unscien-

tific definition for Aristotle, since ‘lies evenly’ can only be understood with the

help of the notion of a straight line, which is what is meant to be defined.186 And,

in contrast to Euclid, Aristotle has a fully fledged theory of definitions.

Investigating what the role of a definition is and what can count as an

appropriate definition starts in philosophy with Socrates and is developed by

Plato in important ways. Aristotle makes it clear that a definition of X must be

essentially predicated of X and only of X (while the individual attributes in a

definition taken separately will apply more widely). And a definition that is not of

first principles must be expressed in terms of things prior to what is to be defined.

(This criterion is what Euclid’s definition of a line also seems to violate.)

We find three different kinds of definition in Aristotle: first, indemonstrable

definitions of primary terms; second, real or causal definitions in which the

content of a syllogism is packed into a single proposition; and third, nominal

definitions. Aristotle discusses causal and nominal definitions when examining

the question whether definitions can be proven (Posterior Analytics II, 7–10),

showing that they appear in a demonstration either as a premise or are in a way

identical to the whole demonstration.

183 But see Harari (2003) for a different understanding.
184 Existence questions in arithmetic could be questions like whether a certain number (e.g., a

prime between 20 and 30) does indeed exist.
185 See Heath (1956), p. 120. The label ‘common notions’may in fact not be by Euclid; see de Risi

(2021), p. 302.
186 Plato, Parmenides 137e claims ‘straight’ to be whatever has its middle in front of both its ends,

which is also quoted by Aristotle.
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Furthermore, Aristotle also deals with principles that are important for all

scientific knowledge, such as the principle of non-contradiction, while we do

not find any axioms of that kind of generality in Euclid. On the other hand, the

practical aspect of some of Euclid’s postulates that lies in the constructions

required would not fit Aristotle’s theory of science.

Overall, however, we seem to find a principal alignment between the two:

Aristotle’s common axioms correspond to Euclid’s common notions, his definitions

(horismoi)more or less toEuclid’s definitions (horoi); and his hypotheses are akin to

Euclid’s postulates (insofar as they can be understood as assertions of existence).187

Euclid’s specific distinction between definitions, postulates, and common

notions does not suggest he has read Aristotle very much. But it has been

suggested that both may draw from a common source.188

The genre of ‘Elements’, to which Euclid’s work belongs, does in itself declare

that it is dealing with basic mathematical principles or starting points – it is not

attempting to present new research, but rather to put the current mathematical

knowledge in a ‘systematic’ form. According to Eudemus, there were at least

three earlier Elements around before Euclid: the first by Hippocrates of Chios,

one by Leon, and one by Theudius of Magnesia; the last one was written in the

surrounding of Plato’s Academy.189 Accordingly, at least some Elements came

into being in the vicinity of flourishing philosophical debates.190 This may

explain why Philodemus called Plato the architect of mathematics. Aristotle in

his Analytics probably refers to the third generation of Elements, to Theudius.191

Let us now move on to other notions of importance for both mathematicians

and philosophers.

4.2 Mathematical and Philosophical Notions of Continuity

The most important conception of continuity192 in ancient times is Aristotle’s

account.193 It is developed as an account for physical magnitudes, but yet it

187 Though three of Euclid’s postulates license construction and we find nothing equivalent to this
in Aristotle.

188 And Harari (2003) claims that ‘Euclid’s introduction of the distinction between definitions and
postulates seems to correspond to Aristotle’s distinction between definitions and existence
claims. That is to say, the introduction of three types of first principles seems to stem from
the attempt to accommodate the structure of the Elements with Aristotle’s requirement, accord-
ing to which the existence of the defined terms should be established.’

189 See Proclus (1992) 66.4–67.12.
190 We do not know whether these early Elements contained only propositions or also definitions,

common notions, and postulates. It may be that the philosophical discussions about starting
points in Plato’s Academy (which, of course, included the young Aristotle) led to them being
eventually included in the genre of Elements.

191 See Heath (1921), p. 321.
192 For more details concerning this section, see Sattler (2020b).
193 For a modern take on Aristotle’s understanding of continuity, see Hellman and Shapiro (2018).
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explicitly takes up mathematical insights. By understanding continua as what is

always further divisible into divisibles without ever getting to zero extension or

indivisible atoms, Aristotle’s account of continuity is the philosophical alterna-

tive to atomism.

The first philosophical account of continuity in the history of thought can

already be found in Parmenides in the fifth century BCE. For him, something is

continuous if it is homogenous in every respect, which means displaying no

differences of kind, quality, or quantity.194 As a result of this uninterrupted

homogeneity, continua are indivisible according to Parmenides: divisions are

only possible where there are differences; since there are no internal differences

in a continuum, it is completely indivisible.

Drawing the inference from complete homogeneity to indivisibility is supported

by some paradoxes of Zeno, Parmenides’ student, which demonstrate the problems

we get into if we assume continua like magnitudes and motion to be divisible. For

example, in one of his motion paradoxes, called the ‘dichotomy’ or ‘runner

paradox’ (fragment DK29A25), Zeno raises the problem of how to conceptualize

a finite motion, like that of a runner covering a finite race course AB in a finite time

FG. To do so, she first has to cover half of the course AC, and then again the first

half of the remaining half CD, then DE, ad infinitum (see Figure 7).

Thus it seems a runner has to cover an infinite number of spatial parts in order

to cover a finite distance in a finite time. For a spatial distance seems to contain

infinitely many parts, all of which have to be covered. Given that we cannot pass

infinitely many spatial parts in a finite time, the paradox seems to suggest that

motion cannot be conceptualized.195

In one of his plurality paradoxes,196 Zeno shows that if we take some physical

magnitude to be divisible at one point (without this point being legitimised by

any internal differences), then the magnitude is divisible everywhere; but if

divisible everywhere, it can also be divided everywhere,197 and we never reach

consistent parts in this way. For either these parts have no extension, so that we

A   C   D   E      B space (s)

–––––––––– 1–––––2––3–––

F    G time (t)

––––––––––––––––––––––––

Figure 7 Zeno’s runner paradox.

194 See Sattler (2019).
195 For a detailed discussion of the motion paradoxes, see Sattler (2020a), chapter 3.
196 Simplicius (2011), In Phys. 139.19-140.6, Lee (1967), fragments 1 and 2.
197 This step from being divisible to being divided and thus from possibility to actuality is objected

to by Aristotle.
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face the problem of how some extended physical whole can be composed of

extensionless parts. Or these parts have some extension, in which case either

this shows we are not yet done with our division and our parts are indeterminate;

or the parts seem to be infinitely many,198 in which case they seem to lead to an

infinite extension. Zeno raises these and similar paradoxes for physical con-

tinua. Mathematical replies to them have often been suggested, based on

modern mathematical developments such as the possibility of calculating the

sum of an infinite convergent series, mathematical functions since Cauchy, and

the limit of a function. But it remains a question whether a solely mathematical

reply is sufficient for the problems they raise for the physical realm.199

Mathematical atomism of the kind we find in the pseudo-Aristotelian treatise

On Indivisible Lines200 seems to have responded to these paradoxes, as we can

see from the fact that the need to avoid Zeno’s paradoxes is mentioned as one of

the points in favour of the assumption of indivisible lines. The basic idea of

atomism here is that we can only divide magnitudes up to a certain point, before

we hit indivisibles. The parts derived by division thus will never be infinite.

Also Aristotle’s account of continuity is meant to show, among other things,

how a physical theory of continuity can reply to these Zenonian paradoxes.

Aristotle gives us two different characterisations of continuity:

(1) Continuous are those things whose limit, at which they touch, is one

(Physics V, 3).

(2) Continuous is that which is divisible into what is always further

(or infinitely) divisible (Physics VI, 2).

The first account of continuity is two-place, ‘A is continuous with B’, while the

second is one-place, ‘A is continuous’. Aristotle does not explain why he gives

us two different accounts, but he moves freely between the two, which thus

seem to be closely related.

Understanding extended magnitudes as being divisible without end is one of

the crucial notions Aristotle employs from amathematical context in order to set

up a science of locomotion in his Physics. At first glance, the suggestion that

Aristotle takes up a mathematical understanding may not seem very plausible.

198 Zeno does not explain in this paradox why they are infinitely many. They may seem to be
infinitely many since from a certain point onwards such divisions will be beyond what is
perceptible, or, because between any two parts there has to be a further one in between to
guarantee that they are indeed different parts, as he claims in DK29B3.

199 For details, see Sattler (2020a), chapter 3.
200 Geometrical atomism of the kind reflected in this treatise was defended by Xenocrates in Plato’s

Academy. In Plato’s Timaeus we saw a form of atomism that assumes smallest triangles as
atomistic building blocks, and in Aristotle’s Physics, Book VI we find arguments against point
atomism.
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For we do not find a discussion or explicit definition of ‘suneches’, the Greek

term translated as ‘continuous’, in the mathematical texts handed down to us

from the time up to Aristotle. And most of the occurrences of the term suneches

in Euclid refer to a continued proportion.201

We have, however, clear indications that the mathematicians understood

lines, surfaces, and solids as continua in the Aristotelian sense: there are a few

passages in the Elements in which Euclid uses the term suneches as being

successive in the way continuous lines are – so as continuous in a two-place

sense (AB is continuous with BC).202 And On Indivisible Lines makes it clear

that a one-place understanding of continuity is presupposed by geometers, since

they treat their geometrical objects as being always further divisible for their

mathematical activities (969b20ff.). When they assume crossing lines and

similar constructions, there is no reflection of atomistic worries, such as that a

line crossing another would need to go between two atoms; rather, infinite

divisibility is simply assumed.203 And Aristotle himself in Physics III claims

the mathematicians to understand magnitudes in this sense (203b17–18).

Aristotle’s own work is central for establishing an account of continuity

within natural philosophy and for contrasting it to what is discrete. His

Categories (4b20) is the first text demonstrating that quantities can be divided

into discrete and continuous ones. It gives an argument for understanding

numbers as discrete and lines as continuous. The fact that Aristotle does not

simply take it for granted in his Categories that numbers are discrete, but thinks

he has to argue for there being no contact between the parts of numbers, shows

that he is not taking over ready-made terminology. But Aristotle’s primary

examples for demonstrating what being discrete and being continuous mean

are from the realm of mathematics – numbers and lines. So Aristotle seems to

take up a distinction that is implicitly there in mathematical thinking. By

employing and expanding Eleatic terminology – the term suneches plays a

crucial role with the Eleatics but the notion of discretenessis is not to be

found –Aristotle introduces the distinction between continuity and discreteness

explicitly into the philosophical realm.

From the mathematicians Aristotle can take up a one-place as well as a two-

place understanding of continuous quantities, on which his two different

accounts of continuity are based. For him continua are homogenous, but in

contrast to Parmenides, they only need to be homogenous in the genus in

question and can allow for differences in other respects. And in contrast to the

Eleatic inference that what is continuous has to be indivisible, Aristotle agrees

201 See, e.g., VIII, 8. 202 See Book XI, 1; Book I, postulate 2; and Book IV, 16.
203 See also Proclus (1992), 277, 25.
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with the mathematicians that continua are divisible wherever we want, ad

infinitum.

But Aristotle is not simply transferring the mathematical understanding of

magnitudes to physics. Rather he adopts it for the physical realm, as becomes

clear when he discusses the difference between continuity and contiguity.While

for mathematicians, two lines in the same plane that touch are continuous and

one,204 in physical contexts, two things that are continuous do not become one

thing simply by touching. Accordingly, for Aristotle continuous things (a)

possess touching limits (which suffices for continuity in mathematics) and (b)

these limits have to be one, so that these objects move as one whole and are not

only neighbouring things (an additional requirement for the physical realm)

(Physics V, 3).

Aristotle’s understanding of continuity is closely linked to his account of

limits and of infinity: we will briefly look at these two in the following sections

4.3 and 4.4.

4.3 Limits – the Distinction between Inner and Outer Limits

What delimits one thing from another? This question has been raised as a

problem for natural philosophy by Zeno, but Aristotle’s answer is important

also for the philosophy of ancient mathematics. Zeno claims in fragment

DK29B3 that any plurality of things seems to be the very number it is; let us

say there are two things, A and B. At the same time this plurality has to be

infinitely many because between every two things there has to be another thing.

For in order to ensure that A and B are indeed two separate things, there must be

some other thing C in between. But then we also need a thing between A and C,

and C and B to separate them from each other, ad infinitum.205 Natural philo-

sophers reacted to this paradox by pointing out that what separates one thing

from another need not be another thing. For example, with the atomists it is the

void that guarantees the separateness of two things, between two atoms as well

as between two phenomenal things.

Also Aristotle does not assume that we need a further thing to separate two

things, but only what he calls a limit: each physical magnitude possesses limits

that are not themselves things nor extended parts. Limits possess one dimension

less than what they limit; for example, the limits of a one-dimensional line are

points and thus without extension. Limits that delimit a magnitude from its

surrounding are external limits. For Aristotle, continua also have what we can

call ‘inner limits’, i.e. division points that mark off possible parts within a

continuum. Usually these division points are not given, but they can be

204 As long as they do not simply intersect or form an angle. 205 See Sattler (2020b).
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constructed wherever we like. For example, if we measure a long plank with a

small ruler, we mark off parts of the plank with the help of such marks. Outer

limits separate one whole from another; they guarantee the unity of a continuum

vis-à-vis other continua. Inner limits, by contrast, guarantee the internal unity of

a continuum by showing that we can divide it wherever we please without ever

finding a gap.

This distinction between inner and outer limits of continua is the first prede-

cessor of the modern distinction between points lying anywhere within an

interval and the end points of such an interval. Furthermore, the modern distinc-

tion between closed and open intervals, that is, between intervals which contain

their end points and those that do not, can be seen as prefigured in Aristotle’s

analysis of the outer limits that are of most concern to him in his Physics, namely

those between motion and rest. Aristotle makes it clear that if a moving thing

slows down and comes to a standstill, there is no last point of motion nor a first

point of rest; for every point within a motion wemay choose, there will always be

another one closer to the limit between motion and rest. Thus, he is the first to

clarify that there is no first or last point within a continuous interval. The limit

betweenmotion and rest can be seen in analogy to the waywe think of the limit of

a continuous open interval nowadays: it is the point of an interval that in contrast

to all other possible points does not have an ε-neighbourhood.206

We will not be able to discuss the notion of a limit further here. Instead, we

will now move on to infinity.

4.4 Philosophical and Mathematical Notions of Infinity

With the notion of infinity (apeiron) we are dealing with a notion that from early

on was important for mathematics as well as for physics – being about quantities

in general, it is relevant for mathematics, but it also plays a role in discussions

about the world as a whole and thus for physics. The mathematicians also deal

with one-dimensional infinite extensions, of which we can have a plurality, such

as the infinite lines we find in Euclid. By contrast, the natural philosophers

discuss infinite extension with respect to bodies and thus as something three-

dimensional, so that there could at most be one of these. For if more than one of

these infinite bodies were to exist, these infinite bodies would limit each other

and thus not be infinite any longer, as, for example, Gorgias argues.207

206 Intuitively speaking, an ε-neighbourhood of a point is a set of points surrounding this point
within a certain distance, called ε, such that one can move to and fro without leaving the set.
Somewhat more formally, for a given point a on the real number line and some positive number
ε, ε > 0, we call the ε-neighbourhood of a the set of all numbers x such that the distance between
x and a is less than ε.

207 See MXG 979b20–27 in Aristotle (1995) and Sextus, Adv. Mathem. VII, 69–70.
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The philosophers seem to be aware of the mathematical usage there is of that

notion and attempt to preserve it in their conception of infinity. But while the

intensive philosophical discussion about infinity, which started at least with

Zeno and finds a full reply in Aristotle, may make us expect to find a reflection

of it with the mathematicians, there is none to be found in Euclid.

In philosophy, being apeiron is a central notion almost from the very begin-

ning, starting with Anaximander. The Greek word apeiron is formed with the

help of the alpha privative that is usually understood as added to the Greek word

for limit or end, peras; so apeiron is that which is without limit or end; it is not

quantifiable. There is no systematic distinction between what is infinite and

what is unbounded with the ancient Greeks; and our modern distinction between

countable (ℕ, ℚ) and uncountable (ℝ) infinities is not known to ancient

philosophers.

The first philosophers view infinity either as a characteristic or as a bearer of

characterisations. The latter usage is prominent in Anaximander, who under-

stands apeiron as the basic substance out of which everything comes into being

and into which it dissolves again. By contrast, for Aristotle apeiron is an attribute

of number and magnitude and hence incapable of independent existence.

Zeno attempts to show in several of his paradoxes that conceptualising

multitudes as well as magnitudes of finite things entangles us in the assumption

that they are also infinite and thus characterised simultaneously by opposing

features. As we saw earlier, Zeno shows in DK29B3 that things that we take to

be of finite number are also of an infinite number. And things we take to be of a

finite size, such as a certain physical body, also have to be assumed to be of

infinite size (DK29B1), for we can always go on to divide it into further parts

and each of these parts will have some ‘magnitude and thickness’. We saw

earlier that in the runner paradox, Zeno shows that a finite extension to be

covered also has to be conceived as being infinitely divisible,208 and thus seems

to leave the runner to cover infinitely many spatial parts. In all these cases, Zeno

thinks we face the problem that something finite is also infinite, which is seen as

paradoxical.

Aristotle reacts to Zeno’s motion paradoxes by trying to show that the

seemingly dubious alliance finite things have with infinity is unproblematic if

conceived in the right way. He first distinguishes explicitly different kinds of

infinity – most importantly infinity of division from infinity of addition.209

According to Aristotle, Zeno did not sufficiently distinguish between the two

so that from an always continuing division of a continuous stretch Zeno wrongly

208 Scholarship in the first half of the twentieth century assumed that Zeno’s paradoxes about
infinite divisibility attempt to challenge also the mathematicians.

209 He is also aware of convergent infinite series; see Physics 206b3–9.
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infers an infinite extension.210 Aristotle attempts to show that assuming an

infinite extension, and especially an infinite body, is inconsistent (he argues

for the universe to be finite).211 Infinite divisibility, by contrast, which he

explicitly claims to come from the mathematicians (203b15–30), is the main

reason we cannot exclude the idea of infinity tout court. Continuous magnitudes

are indeed always further divisible, Aristotle assumes. But this does not mean

that they can have been divided wherever they are divisible (among other

things, several of the possible parts derived from division will overlap, so we

cannot derive all these overlapping parts at any given time). And more gener-

ally, for Aristotle the process of division can always go on but will never lead to

an end. For him the infinity of division is only a potential infinity, not one that

can be fully actualized.212

Fitting with his assessment of mathematics as a secure science, Aristotle is

eager to show that his finitist conception of the universe can preserve the infinity

the mathematicians in fact need for their practise (207b27ff.). According to

Aristotle, the mathematicians do not really need an actual infinity; all they need

is that any given line can be further extended or further divided, and there can

always be a greater number than any assigned number (for any integer n there

can be an integer n + 1)213 – all of which for him belong to the potential infinite.

A final look at Euclid’s usage of the infinite in the Elements shows that the

fundamental philosophical discussions about infinity are interestingly absent

from mathematical thinking of the time. On the one hand, infinite divisibility,

which Aristotle claims to be important for themathematicians and which Zeno’s

paradoxes put into question, is not explicitly formulated (though implicitly

assumed in ancient mathematics, as shown by On Indivisible Lines).214 The

place where we may assume infinite divisibility to be explicitly in play (and to

find some affinity to philosophical discussions) is the method of exhaustion. It is

used in several propositions in Elements, Book XII, and shows that a figure can

210 Zeno seems to assume that infinite division may lead to infinitely many non-converging
extended parts which, added back together, would lead to an infinitely extended whole –
Aristotle analyses this inference as a lack of distinguishing strictly between infinity of addition
and division (233a21 ff.).

211 For Aristotle, there cannot be an infinite body, since body is defined as what is limited by a
surface; and there cannot be an infinite number since number is what can be counted.

212 It is potential in a very specific way, see Sattler (2020b). For Aristotle, not every part that can
potentially be conceived can thus be actually there, but any part can be actualized.
Consequently, the whole continuum cannot be thought of as the sum of its parts, if by this we
mean that all parts are given prior to the sum.

213 There ‘can be’, not there ‘exists’ an integer n + 1, otherwise, infinitely many integers would
exist, which goes against Aristotle’s finitist conception that does not allow for an actually
existing infinite magnitude or multitude.

214 Infinite divisibility is also discussed by later authors, like Geminus and Proclus, in the context of
commenting on Euclid I, 10.
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be approximated by a sequence of other, smaller figures inscribed inside it. For

example, we ‘square’ a circle by continuously inscribing a sequence of regular

polygons inside it, starting with a square, seemingly going on ad infinitum.

However, Euclid stops after a small number of steps here, just enough to show

that the difference between the original figure and the inscribed figure decreases

by at least half at each step of the sequence. Accordingly, there is no talk about

infinity here; Euclid does not tell us to continue always further.

On the other hand, Euclid assumes infinity in multitude and magnitude in the

Elements in a way that does not suggest any conceptual difficulties with it; for

example, for Euclid there exist infinitely many commensurable and incommen-

surable straight lines (ElementsX, def. 3). And he even assumes infinity in cases

where strictly speaking it is not needed, such as in I, 12, where it is ‘required to

draw a straight line perpendicular to the given infinite straight line AB from the

given point C, which is not on AB’ – here the given line is infinite, but in fact we

can use a line of whatever size we choose; we do not need an infinite line.

There is one place in the Elements, however, where the employment of

infinity is indeed necessary. In Book I, definition 23, parallels are defined with

the help of infinity: ‘Parallel lines are straight lines which, being in the same

plane, and being produced to infinity in each direction, meet with one another in

neither (of these directions).’ And the fifth postulate in Book I claims that ‘if a

straight line falling on two straight lines makes the interior angles on the same

side less than two right angles, the two straight lines, if produced to infinity,

meet on that side on which are the angles less than the two right angles’ (we are

dealing with geometries only of flat spaces here); see also I, 29.

This is the only context where Aristotle’s suggestion does not seem to work,

that mathematicians do not really need lines of infinite length but only of

arbitrarily long length. For if we assume that the lines are not extended to

infinity but only as long as we please, too many pairs of lines will count as

parallel and thus falsify postulate 5. Hussey has suggested a modal reworking

for Aristotelian finitists.215 But in Euclid, we do not find any such reworking,

nor any sign of the fundamental philosophical debate about infinity. While

philosophers of the classical time take mathematics as the main example to

discuss what makes for a secure science, mathematicians at least in part ignore

their philosophical considerations.

215 Hussey (1993) suggests to rework definition 23 as follows: ‘Parallel straight lines are those,
which being in the same plane, are such that it is not possible that there should be a length L such
that, if the lines are produced in either direction to a length L, they meet’; so we would need to
work with a modal operator such as ‘it is not possible that’.
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