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Abstract. In this paper we give explicit e%uations for determinantal rational surface singularities and
prove dimension formulas for tHE* andT* for those singularities.
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1. Introduction

Let (X, z) be a germ of a normal surface singularity of embedding dimension
Then the local ringDx of X can be given a®x = P/I, whereP is a power
series ring ine indeterminates. One says th&tis determinantalif the ideal I
can be generated by thex ¢ minors of anr x s matrix with entries inP, with
the condition that the codimensien— 2 is equal to the ‘expected’ codimension
(r—t+1)(s—t+1).

We considerational surface singularities-or those we know that the multi-
plicity m is equal tce — 1 [1]. Wahl proved [13] that aational surface singularity
of embedding dimensioa can be given byn(m — 1)/2 equations witHinear
independent quadratic termsing this, it is not hard to show

PROPOSITION [13] (3.2)Let X be a rational determinantal surface singularity
of multiplicity m > 3. Then equations fokK can be given by th2 x 2 minors of a
2 x m matrix.

Wahl also remarked that few rational surface singularities are determinantal.

THEOREM [13] (3.4) Let (X, z) be a determinantal rational surface of multiplic-
ity m > 3,and (X, E) — (X, z) be the minimal resolution. Thef consists of
one(—m) curve and (possibly) sonfe-2) curves.

The (—m) curve we call theentral curvefrom now on. The proof Wahl gives is
not difficult. Let (X, z) be a determinantal rational surface singularity, given by
the 2x 2 minors of a matrix

(b .
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One has a rational mdp;: f;): X — P (This is independent af) One can define
a modification( X, Eg) — (X, z) (called theTjurina modificationby Van Straten
[11]) by taking X the closure of the graph of this rational map. TRisis then
given by the following equations{{: t) are homogeneous coordinates)

sfi=tg1,...,8fm = tgm.

There is an exception@ in X, given by the ideal generated by tlfes and
the g’s. Wahl shows thaf can only have rational double point singularities, and
that the central curve has coefficient one in the fundamental cycle, from which he
is able to deduce the Theorem.

Wahl also expected that the converse of this Theorem is true, and wrote down
determinantal equations for some determinantal rational surface singularities with
reduced fundamental cycle. (The proof of [13] 3.6 is incomplete, however.) Also
Van Straten [11] wrote down equations for some so-caﬂ@@ingularities, which
are almost the same as ours. The converse of Wahl's Theorem was showhiby R
[10], as a special case of a much more general Theorefararats The purpose
of this paper is to give eplicit equations for determinantal rational surface singu-
larities, thereby also showing the converse of Wahl's Theorem. Wahl's Theorem
restricts very much the shape of the resolution graph of a determinantal rational
surface singularity: One has oftem) curve, with rational double point configu-
rations (RDP-configurations) attached to it. Applying a rationality criterium (using
a computation sequence for the fundamental cycle) one gets a list of how which
RDP-configurations can be attached to the central curve. This is all well-known
(and easy) and the list is written down in the first section.

Given a resolution graph of a rational determinantal singul&ritye can try to
write down (determinantal) equations, which define a singularity with resolution
graphl. If one has those equations, it is relatively easy to check that the resolution
graph is indeed’, using the Tjurina modification (remember the easy equations
above for the Tjurina modification). This is done in section two.

The problem is that surface singularities in generalraredetermined by the
analytic type of the resolution graph. (Laufer [8] wrote down all for which they
do determine the singularity.) So, we do not know whethlerational surface
singularities of multiplicitym and with ong—m) curve in the minimal resolution
have equations as given in section two (although this turns out to be the case).
In section three we will resolve this problem. We will construct divisors on the
minimal resolution of our singularity. Then we invoke Artin’'s Theorem, saying
that if one has a divisor on the minimal resolution of a rational surface singularity,
which intersects every exceptional curve trivial, then this divisor is principal, so
of the form (f). (Given a divisor, the choice of is determined up to a unit.)

By constructing enough divisors, we get plenty of functionsXonUsing then
additiverelations between the divisors, one geisltiplicativerelations between

the corresponding functions by choosing the functions, given their divisors, smart
enough. So, then one has still to check whether there are additive relations between
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the functions. We will show that the relations between those functions generate the
equations for the singularities. This will all be done in the third section.

Certainly our result is not the best possible, in the sense that some terms in the
equations can be disposed of after coordinate transformations. To have this sorted
out however, seems to require much more work.

Using the equations of determinantal rational surface singularities we are able
to get dimension formulae for the* and7? of a rational surface singularity, which
are similar to the formulae for these modules for rational surface singularities with
reduced fundamental cycle [6].

This will be done in the fourth section. The formula f6f says

dim(7%) = (m — 1)(m — 3) + Y dim(T% ),
peX 7

whereX — X is the blow-up ofX in its singular point. There is a similar formula

for 7. So, the dimensions of those vector spaces are more or less calculable from
the resolution. Hopefully this result will be a beginning of an understanding of the
deformation theory of determinantal rational surface singularities.

It is possible to write down equations for the more general class of so-called
guasi-determinantatational surface singularities. These singularities were also
characterized (in terms of their resolutions graph) ihRWe will report on that
in a future paper. At the moment we are not able to get a similar result far'the
andT? of a quasi-determinantal rational surface singularity. This problem seems
to be much harder than the corresponding question for the determinantal ones.

1. Rational double point configurations

Let (X,z) be a normal surface singularity with minimal resolutioki, £) —
(X,z). Let E = UE; be the irreducible decomposition &. The fundamental
cycle Z by definition is theminimal positive cycle with support o subject to the
condition thatZ - E; < 0 for all exceptional divisor€Z;. The fundamental cycle
can be computed by means of a computation sequence [7] 4.1, as follows.

Let Zp := E. GivenZ,, if there is an exceptional curééwith Z;, - FF > 0 then
defineZy1 := Zi + F. If on the other hand, - F < O for all exceptional divisors
F then putZ = Zj,.

This process stops. Computation sequences are useful not only for computing
Z, but also because of the following

RATIONALITY CRITERIUM (1.1). (X, z) is rational if and only if the following
two conditions hold

e Every exceptional curve isl.
e If Z;, appears in a computation sequence frand if Z, - F > 0 then
Zp-F =1
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For a rational surface singularity the fundamental cycle also gives information
about the multiplicity» and embedding dimensienone has-Z2 = m = e — 1,
see [1].

From now on we will assume thdtX, z) is rational of multiplicity m and
that there is one exceptional curve, 98y, on the minimal resolution which has
self-intersectior{—m). For convenience, we call such a singularity determinantal
rational (although we have not proved yet that such a singularity is determinantal).
The curveEy we call thecentral curve. Although the following proposition is
well-known, we include a proof.

PROPOSITION (1.2)Let (X, z) be a rational surface singularity of multiplicity
m with one(—m,) curve Ep on the minimal resolution. Then

¢ All other exceptional curves have self-intersectia®
¢ The coefficient of the fundamental cy&lat the central curvey is one.

Proof.Let K be the canonical divisor on the minimal resolution. Then one has
the adjunction formulas

e E;-K = —2— E?foralli. Note that this number is always nonnegative, because
we work on the minimal resolution. In particular we havg- K = m — 2.
o7 -K=-2-27°=m—2,

Now write Z = 3 a; E; with ¢; > 0 and compute

(m—2)=ZK = aoEoK + > a; B K = ao(m —2) + > _ a;(—2— E7).
i#0 i#0
Because; > O for all it follows thatag = 1 andE? = —2 for all i # 0. O
As any sub-configuration of the minimal resolution of a rational surface singu-
larity contracts itself to a rational surface singularity, the structure of the resolution
graph of a determinantal rational surface singularity is quite simple: one has a
central(—m) curve and rational double point configurations (RDP-configurations)

intersecting this central curve in different points. The list of rational double points
of course is very well known, the famous D, E list

Ak O—0— ¢ o0 —0—@ Dk o—I——.-.
Eg ’—‘—I—‘—' E, o—o-o—I—o-o
E8 o—o—o—o-I—o—o
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Of course, a dot denoteq a2) curve.

Because of the rationality condition however, the central curve cannot inter-
sect an arbitrary curve of a RDP-configuration. Below we list the possibilities of
intersections of the central curves with the different RDP-configurations.

PROPOSITION/DEFINITION (1.3)Rational double point configurations can
intersect the central curve only as in one of the following cases

2 1

q 1 q q 2 1 I 1 2 2
Ak ._r_"'—.—‘ D .—.—.—-ooo
a1 k I
1
2
1

2k-2 1 k 21 2 1

I 1 k 2 1 I
D soo m@—Q ¢ ¢ ¢ mnluul)
2k D2k+1
k-1 k
1 2 3 4 3 2 1 3 4 5 6 4 2
B "“‘T“‘ E, l—o—o—o—I-o—o
2 3

The box denotes the central curve. All other curvegat® curves. The number
of them isk + ¢ — 1 in caseA], otherwise it is the suffix. The number written at
each vertex is the coefficient of the corresponding curve in the fundamental cycle.
For each rational double point configuratiBp we define thenultiplicity m(a) as
the coefficient of the fundamental cycle at the unique curve of the rational double
point configuration intersecting the central curve. So, we assumed implicitly that
the self-intersection of the central curve is at most minus the coefficient of the
fundamental cycle of the curve adjacent to it. In casely < 0 we will say that
there are-Z - Eg Acl, rational double point configurations. The multiplicity of such
anAé configuration we define to lmne This done formally, the number of rational
double point configurations is exactly the number of irreducible components of a
generic hyperplane section of the surface singularity. In fact, sometimes we will
identify anAcl, with a smooth non-compact curve, which intersects the central curve
transversally on the minimal resolution.

Sketch of proofWe try to attach the central curve to one of the rational double
point configurations. From the rationality criterium it follows that there cannot be
two vertices of valence three in the resolution graph. So except for thed¢asee
has to attach the central curve to an endpoint offthé& configuration. Using the
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rationality criterium it is tedious to check that one is left with the possibilities as
written down in the list. O

2. Equations for determinantal rational surface singularities

We consider arbitrary rational double point configurations which we denote by
R,,0 < a < t. (Recall our convention oA} rational double point configurations.)
The multiplicity of R, we denote byn(a).

We will write down equations for all determinantal rational surface singularities
with these given rational double point configurations. This will be done in the
following two definitions.

DEFINITION (2.1).Letz be an independent variable, and for each rational double
point configuration consider variableg,,0 < i < m(a) — 1.

For each rational double point configuratioR, consider matricesV/, (For
simplicity we will not write the suffix in the variablesy;,)

° Aé:
M, = (3260)

e A} : Define numbers andp by
k=qr—p,0<p<q—1,
(yo cee Ypel W Yprl --- Ygo2 yq1>

yr ... Yp Yp+1  Yp+2 - Yg-1 LYo

M, =

w =y, + 2" + Rest;

Reste (xyOa <o TYp—1,Yp+1, - - ayq—l)'

Yo Y1
M, = ( ) |
Y1 w

w =z +yk=t + Azyd for some function

° Di:

andq is the integral part of & + 1) /2.

° D%Z
Yo Yr .- Yk-2 w
Ma = ( > )

n Y2 s Yk—-1 x

w = yj,_1+ y§ + Rest;
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Reste (yoy]_, e s YOYk—2, TYO, - - - ,ijk_z).

7.
® Dyjyqt

Yo Y1 Yk—2 w
Ma - ( 2> 3
yr Y2 ... Yk-1 Yo

w = yp_1 + z° + Rest;

ReStE (20, - - - s ZYk—2, Y3, - - - » YoUk—2)-

Yo Y1
Yyr  w
w = yd + 2% + Azyo  for some function.
Yo Y1 Y2
Yy Y2 w

w = yg—i—mz + Rest;

e Fg:
o F7.

Reste (zy1, y5, 28, Ygy1, TY2)-
DEFINITION (2.2).Fix a double point configuration, say. For all other rational
double point configuratio®,, 1 < a < ¢ consider unitu, andv, in C{x, yi, }-

Suppose that fog # b the constants,, (0) andu,(0) are not equal. Consider the
matrix

1 0
N, = M,.
Uq Va

So to getV, from M, we multiply the second row a@ff, by the unitv,, and then
we addu,, times the first row to the second row. Moreover we Nyt= M. We
then put

N = (NoNy...Ny)

THEOREM (2.3) Fix rational double point configuration®y . . . R;, and letN be
a matrix defined as above. For every choicedqt u, andwv, (with the restrictions

comp4040.tex; 15/07/1998; 10:15; v.7; p.7

https://doi.org/10.1023/A:1000402614933 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000402614933

74 THEO DE JONG

as above¢ the 2 x 2 minors of the matrixV define a rational surface singularity
X of multiplicity m = Y% _,m(a), having rational double point configurations
Ry, ..., R;. Moreover on the minimal resolution &f there is a(—m) curve.

Conversely any rational surface singularitywith a(—m) curve on the minimal
resolution, and rational double point configuratio® ... R; can be defined by
the2 x 2 of a matrixV as defined above, for suitable choicesf u, andv,.

Proof. Here we only prove the first statement. The proof of the converse will
take the whole of the next section. We write

N (fl fm>
g1 e dm
and we consider the Tjurina modification
p: (YaEO) - (X,ZE)

defined by the equations

sfi=1tg1;...;5fm = tgm.

This map is well-defined, precisely becauseas defined by the % 2 minors of
N. The(s: t) are homogeneous coordinatesi) which is aP*. The curveE is
mapped by to the singular point ofX. Let ¢, be the constant term af, for all
rational double point configurations. Then

CLAIM. In the equations given above of the Tjurina modificatirone can, away
from the point(c,: 1), eliminate the variableg;,; b # a. (i.e. locally they occur
with independent linear terms.)

We will look away from the pointl: 0). The investigation locally at the point
(1: 0) is left to the reader. In the first row df/,, there is always a linear part of
type

(yOa s ym(a)a)'

We denote the second row &1, by

(hoa e hm(a)a)'

Then one notes (case by case check) thatdoes not contain the termg, for
j < i, and also not linear terms of typg, for b # . Also the termz never occurs
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in the second row. We have the following equationin the chart = 1
SYia — (Uayia + Uah'ia) =0.
Because, is a unit andh;, does not contain the linear terms mentioned above, we

can successively eliminai®, . . . ¥,,,(a). away froms = u,(0) = c,. This proves
the claim, and more. It also shows that away from the points

(0:1),(c1:1),...,(e; 1 1)
on Ejy the Tjurina modification is smooth. In fact, away from those points one can

eliminate ally;,, leaving us with the variables z. The Tjurina modification is
given bym equations, and we have + 2 variables locally. We conclude th&tis

smooth with parameters = away from the point$0: 1), (c1: 1),...,(c;: 1) on
Ey. Moreover it follows that the (lift of the) functiom vanishes with order one on
the curveEy.

We now investigate the singularities at the poffats: 1) for all rational double
point configurationsk,. As mentioned above, all othet, for b # a can be
eliminated. So we are left then with the equations for the Tjurina modification
coming from the parlv,,. But by doing the coordinate transformation= s + u,,
and after that, multiplying by the unitv,, we just might consider the matrix,,.
Therefore, we have to investigate the Tjurina modification for every mafgat
the point(0: 1) € Ey. We claim that for each, we have the rational double point
configurationR,. This is routine case by case check which we will do in two cases.
The other cases are left to the reader. We omit the swifixdoing this check.

1) DI: We writeyo = y andy; = z. The equations for the Tjurina modification
k
aresy = z; sz = w. We eliminatez and get
sy = 2% + ¢t Ayl

This indeed is aD;, singularity. To see where the central curksg, which
is given byz = y = 0, intersects thé), configuration, we blow-up. We
look at thes-chart. So replacér, y, s) by (sz, sy, s). The strict transform has
equation

sy + 22 + F 3y p AT gyt

and the exceptional locus is given by= 22 = 0. So the strict transform has
anA; singularity at 0, 0, 0), and the strict transform dfy, which still is given
by z = y = 0 goes through it. Now it is well known, and easy to check that
the utmost left curve in th®;, configuration

e
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is obtained by resolving thd, singularity of the strict transform, and indeed
the central curve intersects it.

(2) E7: In the Tjurina modification we eliminate the variablgsandy,. After
writing yo = v the singularity on the Tjurina modification has the equation

5% = y° + 2% + Rest; Resk (szy, s%%, sy°).

This indeed is att’7 singularity. The central curve is given by=y = 0. We
blow up and look in the-chart. The strict transform is given by:

sy = sy® + 2% + Rest; Reste (szy, s%y2, sy°)

and the exceptional locus is thégiven bys = 22 = 0. In theE- configuration

it is the utmost right curve. The strict transform has a singularity of p@
(0,0, 0) and the strict transform dfp goes through it. Now the proof goes on
as in theD{ case, and we conclude that the cuBegoes through the utmost
left curve of theDg configuration, which together with the curvé = 0 gives
the E7 configuration.

Let us recapitulate what we proved by now. On the minimal resolution of our
singularity we have the central cur¥® and rational double point configurations
Ro, ..., R;. All exceptional curves are!’s, and only the central curve might not be
a(—2) curve. What we are left to show is that the central curve has self-intersection
—m = — Y m(a). This can be done directly, by calculating the vanishing order
of the functionz on every exceptional curve. But we can also argue as follows.
The vanishing order of along the exceptional curve &f, intersecting the central
curve must be at least(a). This is because the maximal ideal cycle is at least the
fundamental cycle’. As the vanishing order af along the central curve is one, we
deduce thaEg < —m. Using the rationality criterium, one sees tiiais rational
of multiplicity —E3. But our singularity is given byn(m — 1)/2 equations with
linear independent quadratic part (a tedious check). Therefore, by Wahl’s structure
Theorem for equations of rational surface singularities, we deduee—Eg. O

3. Divisors on the minimal resolution

We consider a rational surface singularity, =) of multiplicity ., with a (—m)

curve on the minimal resolutio@f(, E). Rather we consider good representatives
for those. We will embed in complex space. For this, we need functionsXgn
which generate the maximal ideal of the local riig. To obtain equations, one

has to determine the relations between these functions. The fundamental tool in
constructing functions on rational surface singularities is given in the following
Theorem of Artin.
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THEOREM (3.1) [1] (proof of Theorem 4)Let 7: (X,E) — (X,z) be the
(minimal) resolution of a rational surface singularit¥ . LetY be a Weil-divisor
on X with the condition thal” - E; = 0 for all irreducible component; of E.
ThenY is aprincipaldivisor, i.e.Y = (y) for somey € Ox.

Of course, a functiony as in the Theorem is determined up to a unifig by
the divisorY'.

Moreover we will need the following Theorem of Artin, which he did not
formulate either. A proof is contained in loc. cit.

THEOREM (3.2) [1] (proof of Theorem 4).et X be a rational surface singularity,
7. (X, E) — (X,z) be the minimal resolution. Write the fundamental cy€las

7Z = Y. r;E;. Let H be a divisor onX with d; := H - E; < 0 for all i. Let
O(—H) = {f € Ox:(fr) > H}. Then the number of generators of the ideal
O(—H)isequaltol + Y, d;r;.

Our first job in this section is to write down divisors on the minimal resolution
of a determinantal surface singularity. Such a divisasn X can be decomposed
asY = C + N. HereC is a compact divisor, and therefore has support on the
exceptional divisoF, andN is a non-compact divisor, i.e. a divisor whose support
has a finite humber of intersection points with the exceptional divisothis
paper we only consider divisors a¥, for which each irreducible component of
the support of the non-compact pavt intersects exactly one exceptional divisor
transversally.So such a divisor therefore does not pass through an intersection
point of two exceptional divisors.

Forthe compact pa€ét of Y we use the dual graph notation; writiah= >" a; F;
we put the numbeu; at the vertex in the dual graph which corresponds to the
exceptional curvely;. For the non-compact paft, write N = 3 b;N;. Then
for all ; we draw an arrow through the unique vertex on the dual graph, which
corresponds to the curve ti¢; intersects. Moreover we will write the numbgr
near this arrow. In the example

Y

the non-compact part consist of a smooth branchXomvith multiplicity one.

(Of course, its image oX is not smooth.) This divisor satisfies the condition of
Artin’s Theorem, i.e. intersects every exceptional divisor trivially. As it is usually
a very easy exercise to check that the conditions of Artin’s Theorem are satis-
fied, we immediately will writeY” = (y), indicating that the divisor is principal.

comp4040.tex; 15/07/1998; 10:15; v.7; p.11

https://doi.org/10.1023/A:1000402614933 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000402614933

78 THEO DE JONG

We begin with writing down the divisofz) of a functionz. We write down
the restrictions to each RDP-configuration and the central curve. The dfzisor
contains allA} singularities (which by our convention are non-compact branch-
es intersecting the central cur&®) with multiplicity one. For the other RDP-
configurations we define

q
° 1
*
1 1
i 2 I 1 2 3 2 q
IZH 00
2gq+1
q
1 k 2k-1 2 1
* ¢ ¢ mmiluul)
k

So Artin’s Theorem gives us a functian This functionz is fixedonce and for all.
Remark that: is in the maximal ideal, but not in the square of the maximal ideal,
because the divisdrz) is strictly less than Z. For every rational double point
configurationR, we will now define certain divisor§y;,) and(w,) of functions

on the minimal resolution. We will only write down threstrictionto the rational
double point configuratioi®,, and the coefficient at the central curiig. Those
restrictions are extended to divisors on the whole minimal resolution by putting
on thecomplemenbf R,: (yia) = ¢4 - () Wherec, is the coefficient of y;,) at

the central curvdsy. The non-compact divisor which is drawn through the central
curve we callP (P for pole divisor). The divisoP is supposed not to intersect any
RD P-configuration. For the moment we will suppress the suiffiar the divisors
(via) @nd(w, ). For completeness we rewrite the divigoy. A remark in advance:

If the number ofy’s is small, we will usually writeyo = y andy; = z.

CaseA}. LetC be the non-compact branch of tig configuration. Then we define
(y) =(z)+P-C.

comp4040.tex; 15/07/1998; 10:15; v.7; p.12

https://doi.org/10.1023/A:1000402614933 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000402614933

DETERMINANTAL RATIONAL SURFACE SINGULARITIES 79

CaseA].

1 1
oo
1

(x) -—ro—l —o -25.‘*\ (@)
gl 4

L4
.
L
2 1
1 1
1
P 0
r k k-l 2\1 r gr grl 2+p\1+p
(yo) QQQ—A\ (yp) XY}
k-r+1 0 qr-r+1 p
L d
L d
L

L 4
*
.

k-(g-2)(r-1)= -p+q+2(r-1) q+2(r-1)
-p+q+r-1 q+r-1
PHq q

We moreover define divisofg;) for 1 <i < p — 1 by (y;) = (yo) + i - ().

q p+l1
+1 qr qr-1 2+p\l+p r+1k+q-1k+g-2 LN |
(W ) X ( y . ) TYS
q_
p g-1
[ ] L
[ 4 *
. *
2r 2r+q-p-1
r r+q-p-1
0 q-p-1

We define the divisor&y;) forp + 1 <i < ¢—1by(y;) = (w) +i- (a).
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2
2 2 2 2 1
(y) eoe —r
1
0 2
2 4 6 4q-2 2g-1
(W) e
2qg-1

2
2 2 2 2 1
(y) —I-
1
0
2 4 6 4q-1 2q
(W) (XY}
2q
2
k 0
2 k 2k-2 2 1
LE 2]
(5,) —e—s
k-1
1
2 2k-1 4k-4 4 2
(W) ¢ o o il
2k-1
2

We moreover define diviso(g;) by setting(y;) = (yo) +i(a) for0 < i < k — 1.
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17
CaseDy; ;-

k-1 )
(x) 1 k 2kl 2 1 2 k+l 2k 3 2
X * oo el Xy
,) —e—s
k k
1
-1 1 0 )
2 2 2 2k 4k-2 2k+1 2
. LX)
S,
2%k-1
k-1

4 2k+14k-2 4 2
( W) ¢ o o mnilunl)

We moreover define divisofg;) by setting(y;) = (yo) +i(«) for0 <7 < k — 2.
CaseFs.

(x)

(y)

CaseE;.

10 14 18 13
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PROPOSITION (3.3)The functionst and y;, where R, run over all rational
double configurations generate the maximal ideaDgf.

Proof. The number ofj;, is exactly the multiplicityr of the singularity. Suppose
that

cr + Z CiaYia € m?\f

for somec,c;, € C. We will show that the coefficients, c;, are zero. As by
Artin one knows that the number of generators of the maximal idead is 1,
this suffices to prove the Proposition. Of course it suffices to prove thatlaee
zero, as assuming this = 0 follows immediately from the fact thatis not in the
square of the maximal ideal. We first consider the ideat (v, y;4: R, iSnotan Aj
configuration). The strict transform of the zero set/obn the minimal resolution
consist exactly of the non-compact pd&rtof () passing through the central
curve. The number of irreducible components of those is exactly the numBgr of
singularities. For everg,, which is anA} singularity, the functionyo, vanishes
identically on all but one of the irreducible componentghfand is a parameter
on the irreducible component belongingf. Now it follows immediately that
cia = O for all A} configurationsi,.

So we may suppose that the above sum is only over albctﬁmenfigurations.
We now look at a fixed rational double point configuratiBp which is not an
Aé configuration. There is exactly one irreducible compon@&nof (z) passing
through an exceptional curve &,. (This is by construction of the divisdr).)
We putz’ = z + ¢ - yoq, Which is a small perturbation of our functian For e
general enough, a case by case check shows that the unique irreducible component
C! of (z'7) passing through an exceptional cugof R, is smooth andeduced
The minimal vanishing order of a function m along E, is m(a), the coefficient
of the fundamental cycle at the curig . From the definition of the functiong,,
for b # a, it follows that they vanish with order at leasti2a) along E,. Here
we use thaR, is notan Aé configuration. Also all functions in the square of the
maximal ideal vanish with order at least2a) alongE,. As by construction the
function y;, vanishes with ordem(a) + 7 along E,, it follows that the classes
of yia (¢ < m(a) — 1) in the local ring ofC! generate its maximal ideal. Thus,
we conclude thaty, — ¢- ¢, c14, ... are zero. As this is true for all small| also
coq = 0. O

Note that in all cases, (except in caﬂé) we also wrote down the divisor of a
functionw. From the proposition it follows that must be expressible in thg,
and the functionz. We will make this somewhat more explicit in the following
proposition.

PROPOSITION (3.4)One can choose and they;, such that inOx the2 x 2

minors of the matri¥\/, of Definition(2.1) are identically zero. In particular, one

can express the functian, € Ox as done in Definitior§2.1).
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Proof. We suppress the suffix in this proof. For eachR D P-configuration
(exceptA}) we consider an idedl in the local ring of the singularity.

i AZ (yp’ z", ZYos - - - TYp—1, Yp+1y - -+ ayq—l)!

o Di: (2%, yF 1, wyl, za, 2yt ),

o DI (k1,98 Yoy, - - - YUk 2, TY0, - - - » Yk 2),

b D£I£+1: (yk—17 3327 LYoy - -+ s LYk -2, yga s 7y0yk—2);

L4 E6: (yga ]737 $23/0),

o Br (3, 2% my1, v3, 28, y§y1, my2).

In each case we define the divisliras the infimum of the divisors of functions
appearing in the definition of the above id€alA case by case check shows that
w € O(—H). We now claim thatl = O(—H). First of all, a case by case check,
using Artin’s Theorem (3.2), shows that the number of generato¢¥(efH ) is
exactly the number of generators we used to defin€o prove the claim, one
therefore has to show that the functions used to ddfiaee linearly independent
modulomO(—H). This is done by looking at vanishing orders of the functions
along certain exceptional divisors.

To give an example, look at the caBg/. Here the divisoiH is given by the
left-hand side of the following picture. On the right-hand side, we rewrite the
coefficient of the fundamental cycle on this rational double point configuration
(which is also the maximal ideal cycle, as we have a rational surface singularity).

1
2 2k-1 4k-4 4 2 1 k 2k-2 2 1

* ¢ 0 muluuel) .—.—I—ooo—.—‘
A |F
2k-2 k-1

We give some of the exceptional curves names, as indicated by the above picture.
Now suppose

aye-1+ Y aiyoyi + »_ bizy; € MO(—H)

for constants, a;, b;. We have to show that they are all zero. The vanishing order
of y,_1 along A is 2k — 1. All other functions in our list have higher vanishing
order along this curve. As an elementrimO(—H) has vanishing order at least
3k — 1 alongA it follows thata = 0. Elements irmO(—H) have vanishing order

at least & — 4 along the curvéd’. The vanishing orders of

yS, < YoYk—2, TYL, - - DY -2
alongF are respectively

Ak —2,4k,... 6k — 6,4k —1,...,6k —b5.
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Every ordel with 4k — 2 < o < 6k — 5 occur exactly once. It follows that and
b; are all zero. This shows indeed that in this cAse O(—H).
All other cases are treated in a similar way, by looking at vanishing order at
certain exceptional divisors. We therefore leave the other cases to the reader.
Because, as already remarkede O(—H), it follows thatw can be written
as a combination of the generators of the ideakriting I = (¢g1,...,9s) in the
order as written above, we have= }";_; a;g; for somea;. We now claim that
a1 anday are units. This again is done by looking at the vanishing order along
certain exceptional divisors. We again take the above example.;Foe look at
the vanishing order alongd: the functionw vanishes with orderR— 1 there. But
yk_1 IS the only generator vanishing with ordetr 2 1 there; the other vanish with
higher order. Therefore; must be a unit. Fot,, look at the non-compact curve
intersecting the utmost right exceptional curve. The funcgiiis the only one
generator not vanishing there. Asby construction does not vanish there either,
a» must be a unit. Again all other cases are treated in a similar way.
After redefining some functions (if necessary), we may supposethai, =
1. We now define rational functions = «, in each case. We moreover redefine
some generators of the local ring in such a way, that th2ninors of the matrix
M, vanish identically onOx. We treat some cases in more detail, leaving the
remaining cases to the reader.

° AZ:

1
a:yp—l-,
w

Y = ypai_p;i <p-—1,
yi = yprrcd P iz p+ L

e D!: Choose a new, such thatz?> = yw. By a coordinate change we can
dispose of the termsy?—1 andy*~1 in the expression fotw. Now define
o= w/z.

e DII: We deduce that®*~2ys/wk~1y, 1 = v is a unit, because its divisor is
empty. Let3 be a unit with3%—1 = 1/v. We know replaceyo with Byo, v 1
with 5%y, _1 andw with 3%w. With these new choices we define the rational
functiona = a, by a = 22/w. Finally definey; = a’yofor 1 <i <k — 1.0

PROPOSITION (3.5)Let R, and R;, be two rational double point configurations,
and o, and «;, the corresponding rational functions as defined in the previous
proof. Then there exist units v € Ox such that

Qg — VQp = U.

Proof. The pole divisor of bothy, and«;, on the minimal resolution consist
of thesamebranchP intersecting the central curve transversally. The image of
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on X is smooth as the generic hyperplane section vanishes with multiplicity one
on the central curve, hence has vanishing order onB.orhe image ofP on X

we also denote byP. Consider a functio in Ox whose non-compact divisor
on the minimal resolution is equal 8+ REST, where REST has no points in
common withP, and is reduced. Using Artin’s Theorem, such functions are easy
to construct. Consider the functiotsa, ¢, a, . Because the pole divisor af, is
just P, and the rational function, has degree one (hence does not vanish) on the
central curve, the vanishing order &of the functionn, ¢ is exactly the vanishing
order of¢ along the central curve. Moreover the functiogyp vanishes on REST.

As the same statements hold tay, it follows that modulop one has an equality

aqp = vapep for some uniy € Ox.

We therefore have an equality
AP — voyd = ud

for someu € Ox. We divide by¢
Qg — VO = U.

Because the zero divisors @f anday, are completely different, even if restricted
to the central curve, if follows that is a unit. O

Proof of the second statement of Theor@1B). We fix a rational double point
configurationRy. For every other rational double point configuratiBnwe have,
by Proposition (3.5) units, andv, in Ox such that

Qo = Ug + VqQyq-

Therefore, the Z 2 minors of the matriXV of Definition (2.2) are identically zero
as elements aP .

By abuse of notation we consider they;, as variables, so are parameters for
the embedding space &f. Take liftsu,, v, in C{x, y;, } which are also units. Then
the 2x 2 minors of N are in the ideal defining our singularify. We claim that
they generate the ideal definidd Suppose the contrary, i.e. there is a functfon
which vanishes identically oX but which is not in the ideal generated by the 2
minors of N. But in the previous section we saw that the sp&éelefined by the
2 x 2 minors of N define a rational surface singularity, in particular it is a normal
surface singularity. Buk is contained in the zero locus ¢fon X', which then is
a (maybe non-reduced) curve singularity. But this is a contradiction, because we
assumed thak is a rationakurfacesingularity. O
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4. TheT! and T? of a determinantal rational surface singularity

Let X be a determinantal rational surface singularity. In this section we give
formulas forT% andT2. In obtaining the results of this section, experiments with
the computer algebra system Singular [5] were helpful. Basic for us is the following
result.

THEOREM (4.1) [2] (5.1.1)Let X be a rational surface singularity of multiplicity
m. Then the number of generators 8% is (m — 1)(m — 3).

Behnke and Christophersen in their paper gave examples of rational surface
singularities where the dimensiondf is exactly(m — 1)(m — 3). Further inves-
tigations on the dimension @f? for rational surface singularities were carried out
in [6]. Although formulated differently in loc.cit., their result can be stated as

THEOREM (4.2) [6] (3.16 B) and (1.10).et X be a rational surface singularity
with reduced fundamental cycle, of multiplicity > 3. Let X be obtained from¥
by blowing-up the singular point. Then

dim(7%) = (m — 1)(m — 3) + Y dim(T% ).
peX 7

The usefulness of this Theorem lies in the fact that the right-hand side can be
computed by a inductive procedure. Indeed, one has the following result of Tjurina.

THEOREM (4.3) [12].Let X — X be the blow-up o at the singular point of a
rational surface singularity. LeX’ be the space obtained from the minimal reso-
lution of X by contracting all exceptional curves which intersects the fundamental
cycle trivially. ThenX” is isomorphic taX .

For a general rational surface singularity, the inequality
. 2 . 2
dim(Ts) > (m —1)(m — 3) + Z dlm(TXm)
peX

has been proved recently by Christophersen and Gustavsen [3]. One cannot expect
equality in general however, a counterexample is given in [2].

In order to investigatd™ for rational determinantal singularities we recall the
following result of Behnke and Christophersen.

PROPOSITION (4.4) [2] (2.12.1)Let f1,..., fn,91,---,9, DE elements of the

maximal ideal ofC{z1, ..., z.}. LetX be aCohen—Macaulagingularity defined
by the2 x 2-minors of
<f1 fo ... fn>
g1 92 ... On
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Then theO x-moduleT? is annihilated by the idedlfs, ..., fu, 91, - - -, 9n)-

Before applying this proposition, we do one small coordinate change in the equa-
tions for rational determinantal singularities; In case we havé/asingularity for
whichp = 0 (i.e. anA}, singularity), we do the coordinate change

Yo yo— .

Apart from this coordinate change, we assume that rational determinantal singu-
larities are given by the equations of Section 2. We immediately deduce from
these equations of determinantal rational surface singularities and the proposition
of Behnke and Christophersen the following

PROPOSITION/DEFINITION (4.5)Let X be a rational determinantal surface
singularity, given by the equations described above. Then the m@guie anni-
hilated by ally;,. MoreoverT'2 is annihilated by:?, where = ¢(X) is given by
the minimum oveg,, for all rational double point configuration®,,. Thesep, are
given by the following

A? ¢a = 1?

qu a:7”+1,

Al pa=rm, k=qr—p, 0<p<g-1
For all other rational double point configurations, one hgs= 2.

PROPOSITION (4.6)Let X be a rational determinantal surface singularity of
multiplicity m. Then there exists a one parameter deformafign— 1" of X with

on thegenerafiber$ = ¢(X) rational surface singularities of multiplicity:. This
deformation occurs on the Artin component. By openness of versality, one might
even assume that these singularities are all cones over rational normal curves of
degreem.

Proof. Look at the equations of a determinantal rational surface singularity.
(Note the coordinate change in casg we did above). We are going to perturb the
matrix which give the equations for the determinantal rational surface singularities.
Then deform the singularity by taking thex22 minors of the perturbed matrix.
This deformation occurs on the Artin component, by a result of Wahl [14], (3.2).
In the sub-matrix belonging to a rational double point configurafignthere is
a termz% occuring (with coefficient 1). We are going to perturb the matrix by
just perturbing these terms. Fix pairwise different numbers. . ¢4, which are all
different from 0. Then perturb the terate by (z — teg) - - - (v — tey) (z%2 %), For
t # 0 we are getting singularities gf, = 0 andz = ¢;t, fori = 1,...,¢4. A
tedious check shows that at these points the singularity has multipkcity
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THEOREM (4.7).Let X be a determinantal rational surface singularity of multi-
plicity m > 3. Then

dim(T%) = (m—1)(m —-3)+ > dim(T;p).

peX

Proof.We first claim that

(m—21)(m—-3)¢p=(m—-1)(m—-3)+ Z dim(T/%,,p).
peX

This is just an investigation of the blow-up of a rational determinantal surface
singularity, using the result of Tjurina. From Wahl’s result on the structure of the
resolution of a rational determinantal surface singularities, and Tjurina’s result on
the blow-up of we deduce that we have the following two possibilities.

(1) The fundamental cyclg intersects the central curve strictly negative, i.e. we
have anAcl’ singularity. Thenp = 1, and on the first blow u we just have
rational double points. SE;)EX dim(T/% p) = 0, which proves the theorem
in this case. 7

(2) Z intersects the central curve trivially. Then &hwe have, apart from rational
double points, just one rational determinantal surface singularityX$awe
claim that$(X') = ¢(X) — 1. This just a case by case check, using Tjurina’s
description and the computation sequence for the fundamental Zyéier
instance suppose that one haB@ E7, DL or DI! configuration forX, then
X' has anA¢{ singularity, as the fundamental cycle f&" now will intersect
the central curve negatively. So we just have to investigatelfhease, which
is easy, either using the resolution and Tjurina’s result, or using the equations
and the definition o immediately.

This proves the claim. As remarked before, the inequality the statement of the
Theorem s a general result by Christophersen and Gustavsen. But in our case it can
also be deduced quite elementary: It is well-known that the dimens'[6§ o&dr a
rational surface singularity of multiplicity» (m > 3) is at leas{m — 1)(m — 3).

Use the above deformation intbrational surface singularities of multiplicity:

(the multiplicity of X) and semi-continuity of the dimension @® to get the
inequality>. For the other inequality we use again that the number of generators
of T% is (m — 1)(m — 3). Furthermore we know thaf? is annihilated by the
functionsy;, andz?, see (4.5). So we deduce that difig.) < (m — 1)(m — 3)¢.0

As a corollary of the result df'2, and the existence of the special one parameter
deformation, one also gets a result on the dimensidhigfand on the surjectivity
of the obstruction map.
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COROLLARY (4.8).Let X be a determinantal rational surface singularity, of
multiplicity m and let¢ = ¢(X). Let(X, E) — (X, z) be the minimal resolution.
Let® ; be the tangent sheaf &f. Then

dim(T%) = (m — 3)¢ + dim(HY(© ¢)).

Proof. We look at the one parameter deformati&n of X which hasp cones
over the rational normal curve of degree on the general fiber. Look at the
associated long exact sequence of cotangent modules

1 't 1 a 1 2
---—>TXT/T—>TXT/T—>TX—>TXT/T
‘4 2 B 2
—>TXT/T—>TX...

The dimension ofl'? for a cone over the rational normal curve of degreds

(m —1)(m — 3), so the(C{t}-moduIeT)z(T/T has rank at least(m — 1)(m — 3).
Hence the image of has at least dimensiop(m — 1)(m — 3), which we just
provedto be the dimension@% . Therefores is surjective and it follows that there

are no other singularities on a general fiber, apart maybe from rational double and

triple points. As a finitely generatet{ ¢t }-module, the rank df/%T/T is dim(coker
(-t))— dim(ker(t)). Therefore multiplication by is injective orﬂ‘)%T/T. From the

exact sequence it follows thatis surjectivetoo. The proof now literally goes as in
[6], proof of (3.16A), which we repeat here. One knows that((ﬂfh(G)X)) is the
dimension of the Artin component, which is well-known to be smooth. We denote
by cod(X) the codimension of the Artin componentTit. The statement of the
Theorem simply is

codX) = (m — 3)¢.

By Greuel and Looijenga [4] the dimension of the imagenofso in our case
dim(T%)) is the dimension of the Zariski-tangent space at a general pojitfof
wherej(T) — the base space of a semi-universal deformatioX pis a map,
inducing by base change the given one parameter deformatjon> T. Now

4(T) lies on the Artin component, which is smooth. Openness of versality gives
that the codimension of the Artin component is additive. The codimension of the
Artin component of the cone of the rational normal curve of degtes m — 3

[9], and as one hag of those on the general fiber, the result follows. O

COROLLARY (4.9).The ‘obstruction map’ for a determinantal rational surface
singularity is surjective, i.e. the minimal number of equations to describe the
base space of a semi-universal deformation of a determinantal rational surface
singularity X is the dimension df'2.

Proof. Just repeat the argument of [6] (4.2).
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